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Abstract

The paper investigates repetitive loops, a com-
mon problem in contemporary text generation
(such as machine translation, language mod-
elling, morphological inflection) systems. We
hypothesized that a model’s failure to distin-
guish respective latent states for different po-
sitions in an output sequence may be the pri-
mary cause of the looping. Therefore, we pro-
pose adding a position-aware discriminating
factor to the model in attempt to reduce that
effect. We conduct a study on neural models
with recurrent units by explicitly altering their
decoder internal state. We use a task of mor-
phological reinflection as a proxy to study the
effects of the changes. Our results show that
the probability of the occurrence of repetitive
loops is significantly reduced by introduction
of an extra neural decoder output. The out-
put should be specifically trained to produce
gradually increasing value upon generation of
each character of a given sequence. We also
explored variations of the technique and found
that feeding the extra output back to the de-
coder amplifies the positive effects.

1 Introduction

Over the last few years we witnessed a significant
progress in the field of Natural Language Process-
ing (NLP). Many state-of-the-art models are based
on neural architectures with recurrent units. For
instance, Sutskever et al. (2014) proposed one of
the first neural machine translation models that
achieved results comparable with statistical mod-
els. Similarly, Plank et al. (2016) introduced a
neural POS tagging model as a new state-of-the-art
on the task. Recently, neural architectures almost
superseded non-neural (finite-state or rule-based)
approaches in morphology modelling tasks such as
morphological reinflection (Cotterell et al., 2016,
2017) with average accuracy being over 90% on
high-resource languages. Error analysis conducted

by Gorman et al. (2019) demonstrated that among
general misprediction errors such as syncretism,
the models also produce certain “silly” errors that
human learners do not make. One case of such
errors, a looping error, is particularly notable. This
type of error is not specific to the task and several
other papers reported a similar problem (Holtzman
et al., 2019; Vakilipourtakalou and Mou, 2020).
Still, the causes and the nature of the error remains
under-studied. Here we provide some insights on
the causes of the issues and possible remedy to
it. We consider morphological reinflection task for
our experiments since it has low time and space
requirements and, therefore, allows us to reproduce
cases of looping in sufficient quantities and analyse
them relatively easy.

2 Morphological reinflection task

Morphological inflection is the task of generating a
target word form (e.g., “runs”) from its lemma (“to
run”) and a set of target morphosyntactic features
(tags, “Verb;Present Tense;Singular;3rd Person”).
The task is called morphological reinflection when
the lemma form is replaced with any other form
and, optionally, its morphosyntactic features. This
is a type of string-to-string transduction problem
that in many cases pre-supposes nearly monotonic
alignment between the strings. Traditionally, re-
searchers either hand-engineered (Koskenniemi,
1983; Kaplan and Kay, 1994) or used trainable
(Mohri, 1997; Eisner, 2002) finite state transduc-
ers to solve the task. Most recently, neural mod-
els were shown to outperform most non-neural
systems, especially in the case of high-resource
languages (Cotterell et al., 2016; Vylomova et al.,
2020).



3 Data

In terms of the study we focus on two typologi-
cally diverse languages, Nen (Evans and Miller,
2016; Evans, 2017, 2019) and Russian. Nen is a
Papuan language of the Morehead-Maro (or Yam)
family, spoken in the Western province of Papua
New Guinea by approximately 400 people. The lan-
guage is highly under-resourced, and Muradoglu
et al. (2020) is the only computational work on it
we are aware of, and in current study we use the
data derived from their corpus.

Russian, a Slavic language from Indo-European
family, on the other hand, is considered as
high-resource. We use the splits from the
SIGMORPHON–CoNLL 2017 shared task on mor-
phological reinflection (Cotterell et al., 2017).

We used medium sized training sets which oc-
curred to yield highest rates of looped sequences in
predicted word forms. The number of samples in
the datasets are presented in Table 1.

Nen Russian
Training samples 1589 1000

Development samples 227 1000

Table 1: Dataset sizes

4 Experiments

We reused the hard attention model specifically de-
signed for the morphological reinflection task (Aha-
roni and Goldberg, 2017) for our explorations. The
model uses an external aligner (Sudoh et al., 2013)
to extract input-to-output character sequence trans-
formation steps for a given morphological sample.
Instances of a special character (STEP) are inserted
into transformed words to represent alignment step
advances. The resulting seq2seq model is trained to
perform transformation from a given lemma into a
target inflected form which contains STEP charac-
ters. The model consists of two modules; (1) an ar-
ray of LSTM (Hochreiter and Schmidhuber, 1997)
encoders and (2) an LSTM decoder. When a STEP
character occurs in a target sequence (either learnt
or predicted), the encoder array index advances
to the next position. It corresponds to advancing
current pointer in the lemma by one character. In
such a way, a hard monotonic attention schema is
implemented.

In our experiments we computed counts of
looped sequences in generated word forms dur-
ing model evaluation rounds that were carried out

upon each epoch of model training. We distin-
guished a generated character sequence as looped
if it satisfies both of the following conditions: (1)
the sequence contains at least 3 repeated instances
of some character subsequence at its very end, and
(2) the total length of those repeated subsequences
reaches at least 8 characters. While applying such
a criterion, we considered predicted sequences in
their alphabetical form, with all STEP characters
stripped off.1

We hypothesized that the looping is primarily
caused by merging of decoder states relevant to dif-
ferent word positions. Therefore, introduction of
variables that are guaranteed to be different at dis-
tinct stages of output word form production should
reduce looped prediction rate. Presence of such a
variable would facilitate distinguishing states that
correspond to different parts of generated word, if
even closely surrounding character sequences are
similar. To implement this idea, we introduced an
extra decoder output that is trained to always be in-
creasing while new output characters are produced.
More specifically, we added an extra output r and
an extra input r̃ to the decoder. To ensure that r
increases gradually while target word characters
are generated, we modified calculation of total loss
in the model training, allowing an extra (hinge-like)
term as follows:

L = max(0, γ · (s− ∆r)) (1)

Here ∆r is the difference between current and pre-
vious r values. Initially, for every predicted word
form r is set to zero. Having observed the dynam-
ics of r value in preliminary training experiments,
we chose γ = 50; s = 0.05.

For better exploration of different factors, we
tested combinations of the following setting varia-
tions:

• Feeding r back to r̃ vs. leaving it unused
(letting r̃ = 0). We hypothesized that even
when an increasing output itself isn’t used,
computation of its value still affects neural
weights at the front layer of the decoder.

• Requiring r to increase vs. leaving it free.

• Scalar vs. vector r (in the latter case, terms
according to equation 1 are to be added per
each component).

1We didn’t consider possible irregular (chaotic) looping
cases as they are extremely rare.



• Using an externally provided auto-
incremented value for r instead of an
extra decoder output.

Table 2 presents mode denotations we use in the
paper.

We repeated experiments 15 times for each dis-
tinct setting. The result figures presented are nor-
malized to single experiment.

denotation goal for r r̃ value
n (“none”) none zero
i (“increment”) r is ablated incrementing
f (“feedback”) none previous r
u (“unused”) increase zero
s (“all set”) increase previous r

Note: if r is a vector, its size is added before a
mode symbol: ‘3f’, ‘3u’, ‘3s’.

Table 2: A summary of explored modes

mode nen ru mode nen ru
n 0.040 2.313 i 0.020 0.033

0 1.267 0 0
s 0.017 0.017 3s 0.030 0.003

0 0 0.066 0
u 0.010 0.027 3u 0.810 39.87

0 0.133 0 24.13
f 0.087 5.770 3f 5.823 107.2

0.066 2.800 2.667 114.7

Table 3: Average looping counts (per epoch) observed
at epochs 15..34

mode nen ru mode nen ru
n 0.725 0.717 i 0.726 0.724
s 0.732 0.750 3s 0.716 0.753
u 0.727 0.728 3u 0.704 0.669
f 0.432 0.451 3f 0.668 0.574

Table 4: Development set accuracy achieved at differ-
ent modes

5 Results

The plots given in Fig. 1 present counts of looped
predictions at different epochs for the two datasets
used (Nen and Russian).2 It can be observed that

2The curves shown at Fig. 1, 2 are generated by a polyno-
mial smoothing procedure from a dataset with high variance.
They may expose some irrelevant artifacts, for example, they
fall to negative count values at some points.
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Figure 1: Looping counts observed in training a hard
attention model on morphological datasets for Nen (up-
per plot) and Russian (lower plot)

training a model with increasing r (modes ‘s’, ‘3s’)
demonstrates significantly lower rates of looped
word generation compared to the baseline mode
(‘n’). This is true for almost all considered epochs.
One may also note that the ‘u’ mode yields results
comparable to ones obtained with the ‘s’ mode.
This fact means that the presence of gradually in-
crementing decoder output is helpful for fighting
looping even when the output isn’t used. How-
ever, if the output is free of constraints and is fed
back to the decoder (mode ‘f’), the effect is mostly
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Figure 2: Looping count increase observed at some
modes on a Nen language morphological dataset (see
Figure 1 for other modes)

negative.
Fig. 1 demonstrates the results of the same kind

for the modes that occur to be less looping-prone
than the baseline mode. When its components
weren’t trained to gradually increase (mode ‘3f’),
a vector of 3 feedback values drastically increased
looping rate at all epochs. If a vector of 3 increas-
ing components was produced but wasn’t fed back
as input, the results were still negative. This is
surprising because the result for a respective scalar
mode (‘u’) is positive.

Table 3 shows average looping counts for the
‘later’ epochs (15..34). Those epochs are more sig-
nificant for the final quality assessment because
maximum accuracy is usually achieved at one of
them, so they have relatively high probability of
producing the best model. Also, the table displays
looping counts observed at epochs yielding best
prediction accuracy as measured at a respective
development set. The figures demonstrate that us-
ing modes with gradually increasing r (‘s’, ‘3s’,
‘u’, ‘i’) yields significant reduction of looping rate.
The only exception is mode ‘3u’ which causes in-
crease of the rate. As for the ‘f’ and, especially,
‘3f’ modes (feeding an output back without require-
ment to grow), they may cause unacceptable high
frequency of looped sequence generation. Overall,
the digits are in line with the trends shown in the

figures.
Increasing the dimensionality of extra decoder

output sometimes yields an improvement (‘3s’
mode) but generally the results suggest that vec-
tor size is a factor causing looping rate increase.
Finally, scalar seems to be more preferable than
vector.

Table 4 shows prediction accuracy figures
achieved in the experiments. For each training run,
the epoch which produced the highest prediction
accuracy against the development set was selected.
Then, an average over repeated similar experiments
was calculated. According to the figures, ‘s’ mode
yields a notable improvement of accuracy. In con-
trast, sticking to the ‘f’ mode causes a dramatic
decline of accuracy.

6 Discussion

We have found a strong evidence that the presence
of a decoder output which is trained to progres-
sively increment reduces the average rate of loop-
ing sequences in multiple times. In most cases the
positive effect is more significant if this output is
fed back to the decoder, although there are excep-
tions of minor magnitude. Attempts to scale the
effect further by increasing dimensionality of pro-
gressively incrementing variables are sometimes
successful. Still, if we consider an average ex-
plored case, the mode ‘s’ seems to be the most
effective and consistent in fighting looping. We
also observed that presence of an auto-incremented
decoder input (mode ‘i’) leads to looping rate re-
duction, but the effect is superior if the decoder it-
self serves to produce a gradually increasing value.
Thus, the practical recommendation arising from
our research should be (1) adding an extra scalar
output to the decoder, (2) endorsing it to increase
by inclusion a respective term into a training loss
formula, and (3) feeding it back as an encoder in-
put.

Conceptually, it isn’t surprising that the presence
of an increasing variable helps the decoder to dis-
tinguish states rated to different phases of output
word production and such a way reduces probabil-
ity of falling into a loop. Still, the details of this
mechanism yet need exploration. In our current
work we made no attempt to enforce the usage of
the new variable in any way; we only made such a
usage potentially possible. A detailed exploration
of its effect on the learning process is yet a sub-
ject of further research. And, what is even more



practically important, we yet need to find how the
system design may be changed to incorporate pro-
gressive variables in a more explicit, controllable
and efficient way.

The introduction of feedback variables adds el-
ements of RNN architecture to the decoder. We
observed highly negative results when such vari-
able values weren’t constrained (modes ‘f’ and,
especially, ‘3f’). This indirectly suggests that RNN
schema may not be a good solution for a decoder
in terms of looping prevention.

7 Related Work

Holtzman et al. (2019) associated the problem with
a more general degeneration issues that also in-
cludes production of blank and incoherent text.
The authors observed that the issue appears during
in maximization-based decoding methods such as
beam search. As a remedy, they proposed a nucleus
sampling technique that truncates unreliable tail of
the probability distribution in the decoder part. Ku-
likov et al. (2019) also compared two search strate-
gies, greedy and beam, proposing a novel iterative
beam search strategy that increases diversity of
the candidate responses. Contrary to that, Welleck
et al. (2019) suggests that the problem cannot be
solved by making beam search predictions more di-
verse. Instead, they propose focusing on likelihood
loss, and introduce “unlikelihood training” that
assigns lower probability to unlikely generations.
Finally, following earlier observations on chaotic
states w.r.t model parameters in Bertschinger and
Natschläger (2004) and Laurent and von Brecht
(2016), Vakilipourtakalou and Mou (2020) study
chaotic behavior (Kathleen et al., 1996) in RNNs
that are defined as iterative maps (Strogatz, 1994).

8 Conclusion

We proposed and explored a simple technique that
reduces rate of repetitive loops occurrence in a neu-
ral decoder output. Our work was inspired by a
hypothesis that looping effects in a neural decoder
are caused by its inability to distinguish states re-
lated to different positions in a generated word. We
both provided a simple and universal practical solu-
tion and outlined a promising direction for further
research.
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