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Abstract

This paper proposes a simple and effective
approach to address the problem of poste-
rior collapse in conditional variational autoen-
coders (CVAEs). It thus improves perfor-
mance of machine translation models that use
noisy or monolingual data, as well as in con-
ventional settings. Extending Transformer and
conditional VAEs, our proposed latent vari-
able model measurably prevents posterior col-
lapse by (1) using a modified evidence lower
bound (ELBO) objective which promotes mu-
tual information between the latent variable
and the target, and (2) guiding the latent vari-
able with an auxiliary bag-of-words predic-
tion task. As a result, the proposed model
yields improved translation quality compared
to existing variational NMT models on WMT
Ro↔En and De↔En. With latent variables
being effectively utilized, our model demon-
strates improved robustness over non-latent
Transformer in handling uncertainty: exploit-
ing noisy source-side monolingual data (up to
+3.2 BLEU), and training with weakly aligned
web-mined parallel data (up to +4.7 BLEU).

1 Introduction

The conditional variational autoencoder
(CVAE; Sohn et al., 2015) is a conditional
generative model for structured prediction tasks
like machine translation. This model, learned
by variational Bayesian methods (Kingma and
Welling, 2014), can capture global signal about
the target in its latent variables. Unfortunately,
variational inference for text generation often
yields models that ignore their latent variables
(Bowman et al., 2016), a phenomenon called
posterior collapse.

In this paper, we introduce a new loss func-
tion for CVAEs that counteracts posterior collapse,
motivated by our analysis of CVAE’s evidence
lower bound objective (ELBO). Our analysis (§2)

reveals that optimizing ELBO’s second term not
only brings the variational posterior approximation
closer to the prior, but also decreases mutual infor-
mation between latent variables and observed data.
Based on this insight, we modify CVAE’s ELBO in
two ways (§3): (1) We explicitly add a principled
mutual information term back into the training ob-
jective, and (2) we use a factorized decoder (Chen
et al., 2017), which also predicts the target bag-
of-words as an auxiliary decoding distribution to
regularize our latent variables. Our objective is
effective even without Kullback–Leibler term (KL)
annealing (Bowman et al., 2016), a strategy for it-
eratively altering ELBO over the course of training
to avoid posterior collapse.

In applying our method to neural machine trans-
lation (NMT; Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014), we find that we have mea-
surably mitigated posterior collapse. The latent
variables are not ignored, even in the presence of a
powerful Transformer decoder. By addressing this
problem, the resulting NMT model has improved
robustness and performance in low-resource sce-
narios. Noisy data like those scraped from the
Internet (Smith et al., 2013; Michel and Neubig,
2018) present a challenge for NMT (Khayrallah
and Koehn, 2018; Ott et al., 2018a); we are measur-
ably more able to model this extrinsic uncertainty
than the (non-latent) Transformer (Vaswani et al.,
2017) or existing variational NMT with the CVAE
architecture (Zhang et al., 2016). Finally, we ex-
tend the model to semi-supervised learning (Cheng
et al., 2016) to more effectively learn from mono-
lingual data.

In summary, our conditional text generation
model overcomes posterior collapse by promoting
mutual information. It can easily and successfully
integrate noisy and monolingual data, and it does
this without the cost of lower BLEU score than
non-latent NMT in typical settings.
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2 Formalism and Mathematical Analysis

Here we review the standard framework for neural
MT. Next, we connect this to the conditional vari-
ational autoencoder, a model with latent random
variables whose distributions are learned by black-
box variational Bayesian inference. Finally, we
analyze the CVAE’s objective to explain why these
models will ignore their latent variables (“posterior
collapse”).

2.1 Neural Machine Translation
Problem instances in machine translation are
pairs of sequences (x , [x1, . . . , xm],y ,
[y1, . . . , yn]), where x and y represent the source
and target sentences, respectively. Conventionally,
a neural machine translation model is a parame-
terized conditional distribution whose likelihood
factors in an autoregressive fashion:

pθ(y | x) =

n∏
t=1

pθ(yt | x,y<t) . (1)

The dominant translation paradigm first represents
the source sentence as a sequence of contextual-
ized vectors (using the encoder), then decodes this
representation into a target hypothesis according
to Equation 1. The parameters θ are learned by
optimizing the log-likelihood of training pairs with
stochastic gradient methods (Bottou and Cun, 2004;
Kingma and Ba, 2015). Decoding is deterministic,
using an efficient approximate search like beam
search (Tillmann and Ney, 2003). The Transformer
architecture with multi-head attention has become
the state of the art for NMT (Vaswani et al., 2017).

2.2 The Conditional Variational Autoencoder
Our NMT approach extends the conditional varia-
tional autoencoder (Sohn et al., 2015), which we
identify as a generalization of Variational NMT
(Zhang et al., 2016). It introduces a latent random
variable z into the standard NMT conditional dis-
tribution from Equation 1:1,2

pθ(y | x) =

∫
z
pθ(y | z,x)︸ ︷︷ ︸

decoder

· pθ(z | x)︸ ︷︷ ︸
encoder

dz. (2)

For a given source sentence x, first a latent variable
z is sampled from the encoder, then the target sen-

1By contrast, the hidden states of a standard sequence-to-
sequence model are deterministic latent variables.

2In Equation 2 we assume a continuous latent variable. For
the discrete case, replace integration with summation.

tence y is generated by the decoder: z ∼ pθ(z |
x),y ∼ pθ(y | z,x).3

It is intractable to marginalize Equation 2 over
z. Instead, the CVAE training objective is a varia-
tional lower bound (the ELBO) of the conditional
log-likelihood. It relies on a parametric approxima-
tion of the model posterior: qφ(z | x,y). The vari-
ational family we choose for q is a neural network
whose parameters φ are shared (i.e., amortized)
across the dataset.

The ELBO lower-bounds the log-likelihood, as
can be proven with Jensen’s inequality. Its form is:

LCVAE = Eqφ(z|x,y) [log pθ(y | x, z)]

−DKL(qφ(z | x,y) ‖ pθ(z | x)), (3)

where DKL represents the Kullback–Leibler diver-
gence between two distributions.

We use amortized variational inference to simul-
taneously perform learning and approximate poste-
rior inference, updating both θ and φ with stochas-
tic gradient methods. Improving θ raises the lower
bound, and improvingφ keeps the bound tight with
respect to the model conditional log-likelihood.
The same argument pertains to the joint maximiza-
tion interpretation of the expectation–maximization
(EM) algorithm (Neal and Hinton, 1998). (Our op-
timization is a variational generalization of EM.)

2.3 Posterior Collapse

Despite their success when applied to computer vi-
sion tasks, variational autoencoders in natural lan-
guage generation suffer from posterior collapse,
where the learnt latent code is ignored by a strong
autoregressive decoder. This presents a challenge
to conditional language generation tasks in NLP
like machine translation.

The phenomenon can be explained mathemati-
cally by an analysis of the ELBO objective, as well
as from the perspective of a powerful decoder that
can model the true distribution without needing the
latent code. We consider both in this subsection.

ELBO surgery Recall that the computed objec-
tive approximates the objective on the true data
distribution pD, using a finite number of samples

3The sense of “encoder” in the context of variational au-
toencoders differs from the typical sense in neural machine
translation, such that the NMT encoder is a component of both
the VAE’s encoder and decoder. We can separate these by
computing a second, deterministic latent variable h from x
to represent the NMT encoder outputs, used by both the VAE
encoder and the NMT/VAE decoder.
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Figure 1: Model architecture in training (with parallel data) and inference.

(see, e.g., Brown et al., 1992):

L = EpD(x,y) [LCVAE(φ,θ;x,y)] . (4)

We can factor the KL term of Equation 3 (omitting
parameter subscripts) as:

EpD(x,y) [DKL(q(z | x,y) ‖ p(z | x))]

= H(x,y)−H(x,y | z)︸ ︷︷ ︸
,Iqφ (z;x,y)

+ Eq(z) log
q(z)

p(z)︸ ︷︷ ︸
,DKL(qφ(z)‖p(z))

,

(5)

which we prove in Appendix A, following (Hoff-
man and Johnson, 2016).

As both the resulting mutual information and
KL terms are non-negative (Cover and Thomas,
2006), the global minimum of Equation 5 is
Iqφ(z;x,y) = DKL(qφ(z) ‖ p(z)) = 0. Unfortu-
nately, at this point, the consequence of the opti-
mization is that the latent variable z is conditionally
independent of the data (x,y).

A powerful decoder Revisiting Equation 3, we
see that the decoder is conditioned on both the
stochastic latent variable z and the source text x.
A sufficiently high-capacity autoregressive decoder
can model the conditional density directly, ignor-
ing the latent variable and reducing inference to
Equation 1. The KL term can then be reduced to its
minimum (0) by equating the posterior to the prior.
To prevent this, some work weakens the decoder in
various ways. This is a challenge, because NMT
requires a powerful decoder such as Transformer
with direct attention to the encoder.

3 An Information-Infused Objective

We modify our training objective to explicitly retain
mutual information between the latent variable z
and the observation (x,y). Further, we use an
auxiliary decoder that only uses the latent variable,
not the encoder states. We combine it with the
existing decoder as a mixture of softmaxes (Yang
et al., 2018a). The model is trained with amor-
tized variational inference. When source-language
monolingual text is available, we augment our mod-
ified CVAE objective with a similarly modified
(non-conditional) VAE objective. The training and
inference strategy is summarized in Figure 1.

3.1 Adding Iqφ(z;x,y) to ELBO
To combat the optimization dilemma from Equa-
tion 5 (namely, that the objective discourages mu-
tual information between the latent variable and
the data), we explicitly add the mutual informa-
tion term to the CVAE’s ELBO and obtain a new
training objective:

LMICVAE = LCVAE + Iqφ(z;x,y)

= Eqφ(z|x,y) log p(y | x, z)

−DKL(qφ(z) ‖ p(z)) (6)

The new training objectiveLMICVAE aims to match
the aggregated approximate posterior distribution
of the latent variable qφ(z) (Hoffman and Johnson,
2016) to the aggregated-posterior prior distribution
pθ(z).4

4It can be seen as extending InfoVAE (Zhao et al., 2019)
to conditional generative models, where we have overcome
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3.2 Guiding z to Encode Global Information
Several existing approaches weaken the decoder:
limiting its capacity to encourage latent variables
to be utilized (Bowman et al., 2016; Gulrajani et al.,
2017). Here we propose a different approach: ex-
plicitly guiding the information encoded in z with-
out reducing the decoder’s capacity.

The decision to weaken the decoder can be un-
derstood in the context of Bits-Back Coding theory
(Chen et al., 2017), which suggests that at optimal-
ity the decoder will model whatever it can locally,
and only the residual will be encoded in the latent
variable z. A consequence is that explicit infor-
mation placement can give more powerful latent
representations.

Inspired by this Bits-Back perspective, we add
a global auxiliary loss for z to encode information
which cannot be modelled locally by the autore-
gressive decoder

∏
t pθ(yt | x,y<t, z). We use

bag-of-words (BoW) prediction as the auxiliary
loss. It encodes global information while having
a non-autoregressive factorization:

∏
t pψ(yt | z).

(We choose not to condition it on the source sen-
tence x.) Further, it requires no additional anno-
tated data. The auxiliary decoder complements
the autoregressive decoder (which is locally factor-
ized), interpolating predictions at the softmax layer,
i.e. p(yt | x,y<t, z) is a mixture of softmaxes
(Yang et al., 2018b):

p(yt | ·) = (1− λ) · pθ(yt | x,y<t, z)

+ λ · pψ(yt | z), (7)

with mixing parameter λ. (We use λ = 0.1 in this
paper.) Thus, the bag-of-words objective regular-
izes the log-likelihood bound.

4 Implementing Latent Variable NMT

4.1 Architecture
Our model uses discrete latent variables. These
are used to select a latent embedding, which is
concatenated to the decoder state.

Inference Network We use discrete latent
variables with reparameterization via Gumbel-
Softmax (Jang et al., 2017; Maddison et al., 2017)
to allow backpropagation through discrete sam-
pling. Unlike the multivariate Gaussian distribu-
tion commonly used in VAE and CVAE, our pa-
rameterization can explicitly account for multiple

the mismatch between the (joint) data distribution pD(x,y)
and the (conditional) likelihood objective pθ(y | x).

modes in the data. (See Rezende and Mohamed
(2015) for a perspective on the value of multimodal
distributions over latent variables.) To make our
model more general, we introduce a set of discrete
latent variables z = {z1, . . . ,zK} which are inde-
pendently sampled from their own inference net-
works Φk. Specifically, each Φk computes scaled
dot product attention with encoder outputs h ∈ Rd
using latent code embedding ek:

Ck = Attention
(
ekW

k,hW h,hW h
)

= Softmax
(
ekW

k(hW h)>√
d

)
hW h. (8)

We can now sample zk by the Gumbel-Softmax
reparameterization trick (Maddison et al., 2017;
Jang et al., 2017):

zk ∼ GumbelSoftmax(Ck) (9)

= Softmax
(

Ck + g

τ

)
, (10)

where g = − log(− log(u)),u ∼ Uniform is the
Gumbel noise and τ is a fixed temperature. (We
use τ = 1 in this paper.) At inference time, we use
a discrete version by directly sampling from the
latent variable distribution.

BoW Auxiliary Decoder Given an inferred sam-
ple z ∼ Φk(h), the BoW decoder predicts all
tokens at once without considering their order. We
compute the cross-entropy loss for the predicted
tokens over the output vocabulary space V :

LBoW =

|V |∑
i=1

pi log p̂ψ(yi | z),

|V |∑
i=1

pi = 1.

(11)
We take the (unnormalized) empirical distribu-
tion p̃i to be a token’s frequency within a sentence
normalized by its total frequency within a mini-
batch, mitigating the effect of frequent (stop) words.
This is then normalized over the sentence to sum
to 1, giving values pi. The model distribution p̂ψ is
computed by conditioning on the latent code only,
without direct attention to encoder outputs. We
use scaled dot-product attention between the latent
embeddings and the target embeddings (each of
dimensionality d, represented as a matrix EV ):

pψ(yi | z) = Softmax
(
e(z)Eᵀ

V√
d

)
i

. (12)
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Algorithm 1 Training Strategy
1: Φenc,Φk=1,...,K ,Θdec,ΘBoW ← init.
2: while Θenc,Θdec,ΘBoW ,Φk=1,...,K have not

converged do
3: Sample (x,y) from Dbitext

4: Compute LMICVAE with Equation 6
5: Train Φenc,Θdec,Φk=1,...,K with LMICVAE

6: Compute LBoW with Equation 12
7: Train Φenc,ΘBoW ,Φk=1,...,K with LBoW

8: if self training then
9: Sample x from Dmono

10: Compute LMono with Equation 13
11: Train Φenc,Φk=1,...,K with LMono

12: end if
13: end while

4.2 Training

For training with parallel data, we optimize
LMICVAE. We draw samples z from the approxi-
mate posterior qφ(z | x,y) parameterized by the
inference network, then feed the samples to both
the autoregressive and auxiliary (BoW) decoders
to get a Monte Carlo estimate of the gradient.

Estimating aggregated distributions We esti-
mate pθ(z) and qφ(z) over each minibatch, fol-
lowing Zhao et al. (2018).

Semi-supervised learning We apply the same
modification to VAE’s ELBO, following Zhao et al.
(2019). For jointly training with source-side mono-
lingual data, we add Iqφ(z;x) to the ELBO, and for
target-side monolingual data, we add Iqφ(z;y).5

The joint objective sums the modified CVAE and
VAE objectives:

LMono = log p(x | z)

+DKL

(
1

L

L∑
`=1

qφ
(
z(`)

∣∣∣x(`)
) ∣∣∣∣∣∣∣∣ 1

L

L∑
`=1

p
(
z(`)

))
(13)

LJoint = LMICVAE + LMono, (14)

where L is the number of monolingual examples.
Algorithm 1 describes the overall training strategy.

5Learning to copy the target text has proven useful for
low-resource NMT (Currey et al., 2017).

5 Experiments and Results

Here we present empirical results on the Trans-
former architecture. We evaluate our model on
four standard datasets and compare against three
baselines. We use four measures to quantify pos-
terior collapse, then examine translation quality
(BLEU score) in standard fully supervised settings,
a semi-supervised setting, and a fully supervised
setting with noisy source text. Hyperparameters,
regularization choices, and subword vocabulary in-
formation can be found in §5.3.

The results show that we have effectively ad-
dressed posterior collapse: latent variables are no
longer ignored despite the presence of a power-
ful decoder. As a result, we outperform both the
standard Transformer and the Transformer-based
variational NMT approach, when using noisy data
or source-language monolingual data.

5.1 Datasets
First, we evaluate our models on a standard high-
resource and low-resource benchmark dataset from
WMT. Second, we focus on situations where noisy
or monolingual data is available. We note that low-
resource scenarios and noisy data are two represen-
tative challenges in MT (Lopez and Post, 2013).

WMT14 German–English We use data from the
WMT14 news translation shared task, which
has 3.9M sentence pairs for training with the
same BPE tokenization as in Gu et al. (2018).

WMT16 Romanian–English We use data from
the WMT16 news translation shared task. We
use the same BPE-preprocessed (Sennrich
et al., 2016b) train, dev and test splits as in
Gu et al. (2018) with 608k sentence pairs for
training.

FLORES Sinhala–English For this low-resource
benchmark, we use the same preprocessed
data as in Guzmán et al. (2019). There are
646k sentence pairs.

MT for Noisy Text (MTNT) French–English
This dataset pairs web-scraped text from
Reddit with professional translations. We use
30k subword units built jointly from source
and target sentences and only keep sentences
with less than 100 tokens. For training, there
are 34,380 sentence pairs for English–French
and 17,616 sentence pairs for French–English
(Michel and Neubig, 2018). We also used
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18,676 monolingual sentences per language
from the same data source (Reddit).

5.2 Baselines

We compare our model to three baselines:

Non-latent This is a standard Transformer model
without latent variables.

VNMT A CVAE model with Gaussian distribution
as proposed in Variational NMT by Zhang
et al. (2016), which we reimplement using
Transformer. (Zhang et al. (2016) use a GRU-
based recurrent model.)

DCVAE A CVAE model with the same discrete
latent variable parameterization as ours but
without the new objective (i.e., the mutual in-
formation term and bag-of-words regularizer).

5.3 Implementation details

All of our models build on Transformer. For
WMT14 De–En and WMT16 Ro–En, we use
the base configuration (Vaswani et al., 2017): 6
blocks, with 512-dimensional embedding, 2048-
dimensional feed-forward network, and 8 atten-
tion heads. For FLoRes (low-resource) and MTNT
(low-resource and noisy), we use a smaller Trans-
former: 4 layers, 256-dimensional embedding,
1024-dimensional inner layers, and 4 attention
heads. Input and output embeddings are shared
between the inference network and decoder. We
use T = 4 categorical latent variables of dimension
16 (found by grid search on the dev set). Auxiliary
bag-of-words predictions are combined with the
decoder prediction with λ = 0.1. We optimize us-
ing Adam (Kingma and Ba, 2015) with β1 = 0.9,
β2 = 0.98, ε = 1E-8, weight decay of 0.001, and
the warmup and learning rate schedule of Ott et al.
(2018b). All models are trained on 8 NVIDIA V100
GPUs with 32K tokens per mini-batch. We train
WMT14 De–En with 200k updates and others with
100k updates. We do not use early stopping.

We employ joint BPE vocabularies. The sizes
are 32k for En–De and En–Ro; 30k for Fr–En;
and 3k for Si–En. We also use a word dropout
rate of 0.4 during training of all models, which is
complementary to our approach.

We found the default initialization in the
FAIRSEQ NMT toolkit was effective; we did not
need to explore several initializations to avoid de-
generate models.

Model DKL Iqφ(z,x) Iqφ(z,y) NLL

DCVAE + KLA 0.001 0.001 4.2E-6 3.17
Our model 0.17 0.18 0.31 3.16

Table 1: Our model mitigates posterior collapse. The
KL value refers to DKL(qφ(z | x,y) ‖ pθ(z | x))
for DCVAE and DKL(qφ(z | y) ‖ pθ(z | x)) for our
model.

5.4 Preventing Posterior Collapse

We compare our model to a standard DCVAE lack-
ing the new objective. We report four metrics of
posterior collapse on the validation set of WMT
Ro–En:

1. Kullback–Leibler divergence (KL).

2. Mutual information between the latent vari-
able and the source: Iqφ(z;x)

3. Mutual information between the latent vari-
able and the target: Iqφ(z;y).

4. Negative conditional log-likelihood (NLL) per
token.

Table 1 shows that when using standard DCVAE
ELBO, even with the common practice of KL an-
nealing (KLA), both the KL loss and mutual infor-
mation settle to almost 0 which is consistent with
the analysis in Equation 5.

We also plot the progression of DKL, Iqφ(z;x),
and Iqφ(z;y) during training in Figure 2. The pos-
terior collapse of the baseline model is apparent:
both DKL mutual information terms drop to 0 at
the beginning of training as a result ELBO’s design.
On the other hand, our model, without using any
annealing schedule, effectively increases mutual
information and prevents KL loss from settling to
a degenerate solution early on.

5.5 Translation Quality

We report corpus-level BLEU (Papineni et al.,
2002)6 on the test sets where the translations
are generated by sampling each zk with soft-
assignment (vs. argmax).

Supervised Learning on Parallel Data First,
we evaluate our model’s performance when trained
with parallel data on standard WMT datasets. Ta-
ble 2 shows that our model consistently outper-
forms both VNMT and DCVAE models—which

6We use detokenized SacreBLEU (Post, 2018).
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Figure 2: Row (A): comparison of KL and mutual information between baseline (DCVAE, solid triangle, orange
color) and our model (solid circle, teal color). Rows (B) and (C): ablation study on relative contribution from
MICVAE and BoW. All metrics are computed on the WMT16 Ro–En validation set over the course of 140k
training updates.

WMT16 WMT14

Model Ro–En En–Ro De–En En–De

VNMT 34.20 34.27 30.35 25.84
DCVAE 34.16 34.51 29.76 25.46
Our model 34.76 34.97 31.39 26.42

Non-latent 34.73 34.54 30.89 26.36

Table 2: BLEU score on WMT benchmarks. Best re-
sult on each dataset is in bold. Our model provides mi-
nor gains (≤ 0.5 points) over the standard Transformer,
not degrading like VNMT and DCVAE. Alongside im-
provements in semi-supervised or noisy settings, this
suggests that there is no BLEU compromise in choos-
ing this model.

require ad-hoc KL annealing—while on par with a
strong Transformer baseline.

Semi-supervised with Source-side Monolingual
Data Leveraging monolingual data is a common
practice to improve low resource NMT. One pop-
ular approach uses target-side monolingual data
through “backtranslation” as a data augmentation,
but how to effectively leverage source-side mono-
lingual data is an open challenge (Sennrich et al.,

Model Fr–En En–Fr

Non-latent 26.7 24.8
DCVAE 26.4 26.1
+ source mono 27.3 26.4

Our model 28.6 26.3
+ source mono 29.8 26.7

Table 3: Translation performance (BLEU) of utilizing
source-side monolingual data. Best result on each data
condition (with and without monolingual data) is bold.

2016a; Zhang and Zong, 2016; Wu et al., 2019).
We use the joint training objective described in
Equation 14. To have a fair comparison, we also
extend VNMT and DCVAE with the same joint
training algorithm, i.e., the newly added mono-
lingual data is used to train their corresponding
sequence encoder and inference network with stan-
dard VAE ELBO. That is, the only difference is that
our model was trained to promote mutual informa-
tion Iqφ(z,x) and Iqφ(z,y). As shown in Table 3,
by doing so the proposed model brings larger gains
during semi-supervised learning with source-side
monolingual data.
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Figure 3: BLEU when increasing the number of noisy
parallel sentences (ranked by Zipporah) in training, Si–
En.

Robustness to Noisy Data While high-quality
parallel data is scarce for low-resource language
pairs, weakly aligned sentence pairs can be mined
from massive unpaired data such as Paracrawl.7 We
evaluate our model’s performance when augment-
ing the training set with increasingly noisy parallel
data filtered by Zipporah (Xu and Koehn, 2017).
Because VNMT and DCVAE underperform our
proposal in previous experiments, we omit them
from this experiment. Figure 3 shows the results in
the Sinhala–English direction. Our model always
outperforms standard Transformer, which struggles
as more (and noisier) data is added. The gap grows
from +1.2 to +4.7 BLEU.

6 Analysis

Ablation Study How do the different ingredi-
ents of our proposed approach contribute to pre-
venting posterior collapse and improving trans-
lation quality? We explore two variants of the
proposed model: 1) modified ELBO only: only
adding mutual information term to the training ob-
jective, while without gradients from LBoW, 2)
BoW only: which is equivalent to DCVAE com-
bined with BoW decoder.

First, we perform the same collapse metrics eval-
uation as in Table 1. Figure 2(B) suggests that by
explicitly adding mutual information term back to
the training objective, both Iqφ(z;x) and Iqφ(z;y)
are effectively raised, while the remaining aggre-
gated KL term is still optimized to zero. Such
behavior is consistent with the analysis revealed

7https://paracrawl.eu/

Model De–En (3.9M) Ro–En (608K)

BoW and LMICVAE 31.4 34.8
BoW only 31.1 34.2

Table 4: Ablation study on translation quality (BLEU).
The information-infused loss function provides addi-
tional performance over the DCVAE with a bag-of-
words decoder.

in Equation 5. On the other hand, regularizing z
with the BoW decoder only, shown in Figure 2(C),
is very effective in preventing KL vanishing as
well as increasing mutual information. When two
approaches are combined, as was shown in Fig-
ure 2(A), the model retains higher mutual informa-
tion for both Iqφ(z;x) and Iqφ(z;y).

Next, we see whether the difference in mutual
information yields different translation quality. We
compare two models: BoW only (Figure 2(C))
and both (Figure 2(A)), on WMT14 De–En and
WMT16 Ro–En test sets. Table 4 shows the differ-
ence matters more in a low-data regime.

Analysis of Outputs Delving into model predic-
tions helps us understand how our model outper-
forms the others. We examined erroneous 1-best
predictions on the Ro–En data. We provide salient
examples of phenomena we identified in Table 5.
(Naturally, as the Ro–En score differences are not
dramatic, the predictions are largely similar.)

Several examples support the fact that our model
has more fluent and accurate translations than the
baseline or VNMT. VNMT often struggles by in-
troducing disfluent words, and both VNMT and
Transformer select justifiable but incorrect words.
For instance, in our second example, the gender
and animacy of the possessor are not specified in
Romanian. Our model selects a more plausible
pronoun for this context.

Analysis of Latent Variables Finally, we probe
whether different latent variables encode different
information. We random sample 100 sentences
from two test sets of distinct domains, MTNT
(Reddit comments) and WMT (news) with 50 sen-
tences each. We plot the t-SNE projection of
their corresponding samples zk inferred from Φk,
k = 1, 2, 3, 4 respectively. Figure 4 suggests that
different latent variables learn to organize the data
in different manners, but there was no clear signal
that any of them exclusively specialize in encoding
a domain label. We leave a thorough analysis of

https://paracrawl.eu/
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Source: ma intristeaza foarte tare .
Reference: that really saddens me .
Base: i am very saddened .
VNMT: i am saddened very loudly . (Wrong sense of tare)
Ours: i am very saddened .

Source: cred ca executia sa este gresita .
Reference: i believe his execution is wrong .
Base: i believe that its execution is wrong .
VNMT: i believe that its execution is wrong .
Ours: i believe that his execution is wrong .

Source: da , chinatown
Reference: yes , chinatown
Base: yes , chinatown
VNMT: yes , thin .
Ours: yes , chinatown

Source: nu stiu cine va fi propus pentru aceasta functie .
Reference: i do not know who will be proposed for this position .
Base: i do not know who will be proposed for this function .
VNMT: i do not know who will be proposed for this function .
Ours: i do not know who will be proposed for this position .

Source: recrutarea , o prioritate tot mai mare pentru companii
Reference: recruitment , a growing priority for companies
Base: recruitment , an increasing priority for companies
VNMT: recruitment , [article missing] increasing priority for companies
Ours: recruitment , a growing priority for companies

Table 5: Translation examples from the baseline Trans-
former, VNMT, and our model. Disfluent words or ab-
sences are in red, and slightly incorrect lexical choice
is in blue. Romanian diacritics have been stripped.

Figure 4: t-SNE visualization of zk, k = 1, 2, 3, 4 sam-
ples from 100 sentences from two datasets with distinct
domains, MTNT (orchid) and WMT news (green).

their information specialization to future work.

7 Related Work

Unlike most prior work in (conditional) text gener-
ation, we tackle posterior collapse without requir-
ing an annealing schedule (Bowman et al., 2016;
Sønderby et al., 2016; Kim et al., 2018), a weak-
ened decoder (Gulrajani et al., 2017), or a restricted
variational family (Razavi et al., 2019).

Unlike Ma et al. (2018), who also employ bag-of-
words as an NMT objective, our BoW decoder only
sees the latent variable z, not the encoder states.
Conversely, unlike Weng et al. (2017), our genera-
tive decoder has access to both the latent variable
and the encoder states; bag-of-words prediction is
handled by separate parameters.

VNMT (Zhang et al., 2016) applies CVAE with
Gaussian priors to conditional text generation.
VRNMT (Su et al., 2018) extends VNMT, mod-

eling the translation process in greater granularity.
Both needed manually designed annealing sched-
ules to increase KL loss and avoid posterior col-
lapse. Discrete latent variables have been applied
to NMT (Kaiser et al., 2017; Gu et al., 2018; Shen
et al., 2019), without variational inference or ad-
dressing posterior collapse. Approaches to stop
posterior collapse include aggressively trained in-
ference networks (He et al., 2019), skip connec-
tions (Dieng et al., 2019), and expressive priors
(Tomczak and Welling, 2018; Razavi et al., 2019).

Unlike our conditional approach, Shah and Bar-
ber (2018) jointly model the source and target text
in a generative fashion. Their EM-based inference
is more computationally expensive than our amor-
tized variational inference. Eikema and Aziz (2019)
also present a generative (joint) model relying on
autoencoding; they condition the source text x on
the latent variable z. Finally, Schulz et al. (2018),
like us, value mutual information between the data
and the latent variable. While they motivate KL
annealing using mutual information, we show that
the annealing is unnecessary.

8 Conclusion

We have presented a conditional generative model
with latent variables whose distribution is learned
with variation inference, then evaluated it in ma-
chine translation. Our approach does not require
an annealing schedule or a hamstrung decoder to
avoid posterior collapse. Instead, by providing a
new analysis of the conditional VAE objective to
improve it in a principled way and incorporating
an auxiliary decoding objective, we measurably
prevented posterior collapse.

As a result, our model has outperformed previ-
ous variational NMT models in terms of transla-
tion quality, and is comparable to non-latent Trans-
former on standard WMT Ro↔En and De↔En
datasets. Furthermore, the proposed method has
improved robustness in dealing with uncertainty in
data, including exploiting source-side monolingual
data as well as training with noisy parallel data.
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A Derivation of Equation 5

To prove the decomposition of the conditional VAE’s regularization term into a mutual information term
and a KL divergence term, we introduce a random variable ` representing an index into the training data;
it uniquely identifies

(
x(`),y(`)

)
. This alteration is “entirely algebraic” (Hoffman and Johnson, 2016)

while making our process both more compact and more interpretable.

q(`, z) , q(`)q(z | `) q(z | `) , q(z | x(`),y(`)) q(`) ,
1

L

p(`, z) , p(`)p(z | `) p(z | `) , p(z) p(`) ,
1

L

We define the marginals p(z) and q(z) as the aggregated posterior (Tomczak and Welling, 2018) and
aggregated approximate posterior (Hoffman and Johnson, 2016). (This allows the independence assump-
tion above.) Moving forward will require just a bit of information theory: the definitions of entropy and
mutual information. For these, we direct the reader to the text of Cover and Thomas (2006).

Given these definitions, the regularization term of the ELBO objective may be expressed as

E` [DKL (q(z | x,y) ‖ p(z | x))] =
∑
`

1

L
q(z | x,y) log

q(z | x,y)

p(z | x)
.

We may now multiply the numerator and denominator by 1
L and use its equivalence to p(`) and q(`).

=
∑
`

q(`, z) log
q(`, z)

p(`, z)

Factoring then gives us two log terms.

=
∑
`

q(`, z)

[
log

q(z)

p(z)
+ log

q(` | z)

p(`)

]
We then distribute the weighted sum.

= DKL(q(z) ‖ p(z)) + Eq(z) [DKL(q(` | z) | p(`))]
Because of how we defined p(`), we expand the second term and factor out the constant H(p(`)) = logL.

= DKL(q(z) ‖ p(z)) + logL− Eq(z) [H(q(` | z))]

Finally, we arrive at the result from Equation 5 by using logL = H(q(`)).

= DKL(q(z) ‖ p(z)) + Iq(`; z).


