
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6994–7007
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

6994

Language to Network: Conditional Parameter Adaptation with Natural
Language Descriptions

Tian Jin∗
IBM Thomas J. Watson Research Center

Yorktown Heights, New York 10598
tian.jin2@ibm.com

Zhun Liu∗♦
Microsoft

Bellevue, WA 98004
zhunliu@microsoft.com

Shengjia Yan
Tandon School of Engineering

New York University
Brooklyn, NY 11201
sjyan@nyu.edu

Alexandre Eichenberger
IBM Thomas J. Watson Research Center

Yorktown Heights, New York 10598
alexe@us.ibm.com

Louis-Philippe Morency
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
morency@cs.cmu.edu

Abstract

Transfer learning using ImageNet pre-trained
models has been the de facto approach in a
wide range of computer vision tasks. However,
fine-tuning still requires task-specific training
data. In this paper, we propose N3 (Neural
Networks from Natural Language) - a new
paradigm of synthesizing task-specific neural
networks from language descriptions and a
generic pre-trained model. N3 leverages lan-
guage descriptions to generate parameter adap-
tations as well as a new task-specific classifica-
tion layer for a pre-trained neural network, ef-
fectively “fine-tuning” the network for a new
task using only language descriptions as in-
put. To the best of our knowledge, N3 is
the first method to synthesize entire neural
networks from natural language. Experimen-
tal results show that N3 can out-perform pre-
vious natural-language based zero-shot learn-
ing methods across 4 different zero-shot image
classification benchmarks. We also demon-
strate a simple method to help identify key-
words in language descriptions leveraged by
N3 when synthesizing model parameters.1

1 Introduction

A person with generic world knowledge can learn
to perform a new task based on verbal instructions.
On the other hand, despite recent successes in deep

∗First two authors contributed equally.
♦This work was performed when Zhun Liu was affiliated

with Carnegie Mellon University.
1Code is released at https://github.com/tjingrant/n3cr .

Husky

This breed has a
well rounded, apple
like shaped head
with a muzzle that
is tiny in contrast to
the head.

Chiwawa
Husky

Golden Retriever

N3 CNN to
Classify

Dogs

Chihuahua

C
lassify

Synthesize
Run Once

Figure 1: An illustration of N3. A list of object class
descriptions is fed to the N3 model to produce a CNN
classifier that can classify images belonging to the ob-
ject classes described.

learning, it remains challenging to re-purpose pre-
trained visual classification models to recognize a
new set of objects without labeling a new training
dataset. A natural question emerges from this ob-
servation: can a computer also learn to recognize
new objects, simply by reading the descriptions of
them in natural language? Concretely, can we cre-
ate visual classifiers using language descriptions of
the objects of interest?

In this paper, we introduce a new paradigm for
synthesizing task-specific neural networks for im-
age classification simply from language descrip-
tions of the relevant objects. We propose N3 -
Neural Networks from Natural Language, a meta-
model that takes a list of object descriptions as
input to produce a classification model for these
objects, as illustrated in Figure 1. The capability
of producing task-specific neural network from lan-

6995

guage descriptions makes N3 ideal to a wide range
of zero-shot tasks (Wah et al., 2011; Zhu et al.,
2017; Elhoseiny et al., 2017; Zhu et al., 2017; Nils-
back and Zisserman, 2006) where we do not have
visual training data but can still easily obtain lan-
guage descriptions of the objects of interest.

Prior zero-shot learning methods aim to achieve
a similar goal of applying pre-trained networks on
unseen classes. In zero-shot image classification, a
typical method of generalizing to unseen classes is
to construct class embeddings to augment the clas-
sification layer of the pre-trained network or take
retrieval-based approaches while utilizing generic
visual features from pre-trained networks (Akata
et al., 2015; Kodirov et al., 2017; Elhoseiny et al.,
2013; Lei Ba et al., 2015; Reed et al., 2016).

Extending on the idea of generating classifica-
tion layers for the pre-trained network, N3 modifies
the parameters of all layers in the pre-trained net-
work. While the underlying pre-trained network
in previous approaches only extracts generic vi-
sual features, N3 makes it possible to extract task-
specific ones. This approach effectively increases
the capacity at which semantic information in the
descriptions can affect the pre-trained network.

In our experiments, we evaluated our proposed
N3 method with 4 popular zero-shot image classifi-
cation benchmark datasets. We performed ablation
studies to understand the importance of synthesiz-
ing task-specific feature extractors, the necessity
of a pre-trained visual classification model and the
effects of language representation choices on the
efficacy of N3. In addition, we provide a simple
approach to help interpret what aspects in the lan-
guage descriptions are N3-generated models exam-
ining when making predictions.

To summarize, our contributions are 3-fold:

1. We propose a novel meta-model N3 to syn-
thesize task-specific neural network models
using natural language descriptions.

2. We demonstrate N3’s superior efficacy in solv-
ing natural language guided zero-shot learning
problems. Our analysis shows that N3’s abil-
ity to tailor neural network models to extract
task-specific features plays an important role
in achieving such superior accuracy.

3. We show that N3 can aid the interpretation of
predictions of synthesized models as they can
be traced back to both supportive and refuta-
tive evidence within language descriptions.

2 Related work

In this section, we are situating our work in the con-
text of zero-shot learning and dynamic parameter
generation for neural networks.

Zero-shot Learning Zero-shot learning studies
how we can generalize our models to perform well
for tasks without any labeled training data at all.
Achieving classification accuracy above chance-
level in such scenarios requires modeling the rela-
tionships between the seen classes during training
and the unseen classes during testing. A typical and
effective method is to manually engineer class at-
tribute vectors to obtain representations of seen and
unseen classes in a shared attribute space (Duan
et al., 2012; Kankuekul et al., 2012; Parikh and
Grauman, 2011; Zhang and Saligrama, 2016; Akata
et al., 2016). Yet such a method requires labori-
ous engineering of class attributes, which is not
feasible for large-scale and/or fine-grained classi-
fication tasks (Russakovsky et al., 2015; Khosla
et al., 2011; Welinder et al., 2010). Hence, there
is also work in zero-shot learning that attempts
to leverage textual data as object class representa-
tions (Lei Ba et al., 2015; Elhoseiny et al., 2013).
The majority of these models are committed to
embedding-based retrieval approaches, where clas-
sification is re-formulated as retrieving the class
embedding with maximal similarity (Akata et al.,
2015; Kodirov et al., 2017). While they can han-
dle well the case where there is an indefinite num-
ber of classes during test time, such approaches
suffer from extra computation cost at inference
time since they need to traverse all the seen data
points. Moreover, these models often rely on a
pre-trained feature extractor for input, which is usu-
ally fixed and cannot be further adapted for the
unseen classes (Akata et al., 2015; Kodirov et al.,
2017; Elhoseiny et al., 2013). While there is a
handful of work that tries to modify the parame-
ters in-place during test time, they either rely on
shallow language representation with limited ex-
pressiveness (Lei Ba et al., 2015) or require a sig-
nificant amount of textual descriptions per class to
train their model (Reed et al., 2016), both of which
are not ideal. In our work, we aim to learn a model
that can synthesize parameters for entire neural
networks to adapt to the new tasks using short de-
scriptions of the object classes. This leads to better
metadata efficiency of our proposed method.

6996

Dynamic Parameter Generation As mentioned
before, N3 dynamically generates classification
models for designated classes. Dynamic param-
eter generation has been explored in the context
of generating recurrent cells at different time-steps
of RNNs (Ha et al., 2016), constructing intermedi-
ate linear models for interpretability inside neural
networks (Al-Shedivat et al., 2017), and contex-
tual parameter generation for different language
pairs in multilingual machine translation (Platanios
et al., 2018). As mentioned in Section 2, some zero-
shot learning methods can also be viewed as gen-
erating classifier parameters (Lei Ba et al., 2015;
Elhoseiny et al., 2013). However, many of the
previous work directly or indirectly mentions the
challenge of memory and computation complexity
- after all, the output of the parameter generation
model are large matrices that are excessively high
dimensional. To tackle this issue, previous work ei-
ther only generate very simple linear layers (Lei Ba
et al., 2015; Elhoseiny et al., 2013; Al-Shedivat
et al., 2017), or impose low-rank constraints on the
weights to mitigate the memory issues (Ha et al.,
2016). In our work, we utilize the architecture of
sequence-to-sequence models and treat the weight
matrices to be generated as a sequence of vectors.
This allows parameter generation for entire neural
networks with little memory bottleneck.

3 N3 Methodology

In this section, we describe our approach for synthe-
sizing task-specific neural networks to recognize
new objects with their natural language descrip-
tions and a generic pre-trained model. We denote a
list of natural language descriptions for K objects,
each containing L tokens as D = {dk,l}k=K, l=L

k=1, l=1 .
We denote a pre-trained model with parameters Θ
as F(·; Θ), so that for a set of images X , F(X; Θ)
produces the classification prediction Y .

We can now precisely formulate our problem as
follows: given a pre-trained classification model,
F(·; Θ), and the natural language description of K
object classes, D, adapt the original parameters Θ
to the specialized parameters Θ′ so that the fine-
tuned F(·; Θ′) model accurately classifies the K
objects described in D.

3.1 Synthesizing Task-specific Models via
Parameter Adaptation

Our method draws inspiration from transfer learn-
ing, which is often employed when the training

dataset is small. Transfer learning entails training a
neural network from a generic pre-trained model to
one that solves a new, often task-specific problem.
Thus, we can similarly formulate N3 to synthe-
size task-specific model parameters by adapting
existing ones in the generic pre-trained model with
the guidance of natural language task descriptions.
While transfer learning updates the pre-trained pa-
rameters using signals derived from task-specific
training data, N3 relies only on language descrip-
tions to achieve the same objective. Concretely, the
adapted parameters Θ′ are computed as follows:

Θ′ = Θ + µ · Φ(D; Γ) (1)

where Φ(·; Γ) is a function with parameter Γ, map-
ping natural language descriptions to parameter
adaptations for all parameters in the pre-trained
model. Since the transfer learning process often
proceeds with a tiny learning rate to restrict the
effect of fine-tuning, we introduced a trainable scal-
ing factor µ to similarly regulate the effect of pa-
rameter adaptation. The initial value of µ is a hyper-
parameter. In our experiments, we used an initial µ
value of 1e−3 to mimic the effect of using a small
learning rate for transfer learning. The specific
value of 1e−3 is derived from the default learning
rate used in the PyTorch transfer learning tutorial
(Chilamkurthy). In a later section, we evaluate the
necessity of this scaling factor as well as the effect
of a range of initial values of µ.

3.2 Making Adaptation Computationally
Feasible via Hierarchical Attention and
Layer Sharing

The mapping Φ from natural language descrip-
tions to parameter adaptations is particularly high-
dimensional. Constructing Φ with the transformer
block (Vaswani et al., 2017) is not straight-forward
for our scenario because it requires O(N2) size of
memory where N is the length of the input/output
sequence and our N = K ×L can be prohibitively
large. Thus, to reduce the memory consumption
of Φ, its attention span must be restricted to a
small but semantically relevant subset of all in-
put elements. To this end, we designed Φ to be
a two-level hierarchy of transformer blocks, as
illustrated in 2. The first level of transformers,
named the Tokens2Label Encoder, encodes the
natural language descriptions of each object class
to a label embedding vector. Intuitively, this level
summarizes the described visual features of an ob-

6997

Tokens2Label
Encoder

Labels2Adaptation
Encoder{

A.D.1 A.D.2 A.D.3A.D. = Adaptation
 Decoder

Token 1

Label 3

Label 4

Label 5

Label 6

Label 7

Token 2

Token 3

Token 4

Token 5

Token 6

Token 7

Label 1
Language

Description
=

Label
Embedding Vectors =

Layer 1 Layer 2 Layer 3

Param
Adaptations =

Adaptation Adaptation Adaptation

Figure 2: Hierarchical encoder for descriptions and de-
coder for parameter adaptations.

ject class to a single, fixed-sized embedding vec-
tor. Thus, attention in this level has a maximum
span of L spanning all tokens in each description.
The second level, named the Labels2Adaptation
Encoder-Decoder, encodes the sequence of label
embedding vectors and decodes them into param-
eter adaptations of multiple layers. This level of
transformer blocks examines the characteristics of
all encoded object classes and determines how to
adapt the pre-trained model parameters to classify
images corresponding to these object labels. In this
level, the model attention has a maximum span of
K spanning all the object classes. Moreover, due to
the sheer number of layers in state-of-the-art CNN
models, we initialize layer-specific adaptation de-
coders for each layer and decode from shared hid-
den states encoded by the adaptation encoder. Only
through these measures can we materialize the high-
dimensional mapping Φ under reasonable memory
constraints.

Putting everything together, for a pre-trained net-
work with parameter Θ, N3 applies the mapping
Φ to input descriptions to generate a parameter
adaptation ∆Θ with the same shape as Θ. The
adaptation ∆Θ is multiplied with a trainable scal-
ing factor µ to control its impact on the pre-trained
model. The scaled parameter adaptation µ ·∆Θ is
then combined with its pre-trained counterpart Θ
via point-wise addition.

The mapping Φ from object descriptions D to
∆Θ contains two parts. The Tokens2Label Encoder
transforms the set of tokens contained in K entries

of object class descriptions, each with length up
to L, denoted as {dk,l}, to a set of K object label
embedding vectors {ck}Kk=1:

ck = EncoderT2L(dk,1:L), k = 1, ...,K (2)

Subsequently, Labels2Adaptation Encoder-
Decoders translate the object label embedding
vectors into a parameter adaptation matrix ∆Θ.
Parameters in a typical neural network often have
more than two-dimensions, but for simplicity
in our setup, they are always viewed as a two-
dimensional matrix consisting of a sequence of
parameter columns. 1 Viewing the object-label
embeddings {ci}ki=1 as an input sequence and the
parameter adaptation ∆Θ as an output sequence
of M columns {∆θm}Mm=1, Labels2Adaptation
Encoder-Decoders can be expressed as:

h1:K = EncoderL2A(c1:K) (3)

∆θm = DecodermL2A(h1:K),m = 1, ...,M (4)

∆Θ = Concat([∆θ1; ∆θ2; ...; ∆θM]) (5)

Finally, pre-trained parameter Θ is adapted to
Θ′ using the following equation, with µ being a
trainable scaling factor:

Θ′ = Θ + µ ·∆Θ (6)

3.3 Training Methodology
We formulate the training of N3 as the following
optimization problem. Optimal parameters Γ for
N3 model Φ(·; Γ) should map a list of language de-
scriptions for K class objects D = {D1, · · · ,DK}
to parameter adaptations ∆Θ = Φ(D; Γ), such
that the cross entropy loss between ground truth
label Y and model prediction F(X; Θ,Φ(D; Γ))
is minimized for all image-label pairs (X,Y) in
the training set.

Thus, to train N3 on a image dataset I with labels
L, class descriptions D and a pre-trained model
F to produce a K-way classification model, we
first draw meta-batches of K class labels LK ∈ L.
Then, a subset of the image dataset ILK and de-
scription dataset DLK corresponding to the drawn
labels LK are constructed. We then draw mini-
batches of images B and ground-truth labels Y

1For instance, the parameter of a convolutional layer W
of shape [K,C, kH, kW] where K is the number of output
channels, C the number of input channels, kH , kW the kernel
height and width, is viewed as a sequence of K parameter
columns, with a column size of C × kH × kW .

6998

from ILK . For each mini-batch B, distinct param-
eter adaptations ∆Θ are generated by evaluating
Φ(·; Γ) at DLk . Batch loss is then calculated as
1
|B|

∑
i `(Yi,F(Xi; Θ,∆Θ)) where `(·, ·) refers to

cross-entropy loss. Since the meta-model Φ(·; Γ)
and the pre-trained modelF are fully differentiable,
gradients can be propagated back to meta-models
to optimize meta-model parameters Γ.

4 Experimental Setup

We evaluate N3 by comparing its efficacy in solving
natural language guided zero-shot learning prob-
lems with prior state-of-the-art methods.

In this section, we introduce our training method,
datasets and evaluation protocols.

4.1 Datasets

To evaluate the N3, we select 4 standard zero-shot
image classification datasets and collected natural
language descriptions for their object classes.

Caltech-UCSD-Birds 200-2011 (CUB) (Wah
et al., 2011) contains images of 200 species of birds.
Each species of bird forms its own class label. In
total, there are 11,788 images in this dataset.

Animal with Attributes (AWA) (Lampert et al.,
2014; Xian et al., 2017) is another dataset to evalu-
ate zero-shot classification methods. It consists of
50 classes of animals with a total of 37322 images.

North America’s Birds (NAB) is a dataset used
by prior state-of-the-art methods related to our
task. Following the established practices (Zhu et al.,
2017; Elhoseiny et al., 2017), we consolidated the
class labels into 404 distinct bird species. The con-
solidation process combines closely related labels
(e.g., ‘American Kestrel (Female, immature)’ and
‘American Kestrel (Adult male)’) into a single label
(e.g., ‘American Kestrel’). We end up with 48,000
images of 404 classes of bird-species.

Flowers-Species (FS) is a dataset we built based
on Oxford Flowers (Nilsback and Zisserman,
2006), another commonly used zero-shot dataset.
The original contains label categories that are a mix-
ture of species and genera. Some genus includes
thousands of species, yet the dataset examples only
cover a fraction of them. Such mismatch creates
biases in the dataset that fundamentally cannot be
addressed through learning from external descrip-
tions. This hence undermines its utility as a test
of our proposed method: for instance, when N3 is

asked to generate classifier to decide whether an
object is of label “anthurium”, which is a genus of
around 1000 species of varying visual appearance,
the efficacy of our generated model can only be
evaluated based on a representative samples that
cover most of the species within the genus “an-
thurium”. However, the dataset only contains a
tiny number of (i.e., 105) correlated (species-wise)
samples, making such evaluation neither compre-
hensive nor conclusive in the context of our task
objective and may introduce unexpected noise in
evaluation results. Therefore, we decided to filter
out the genera from the original Oxford Flowers
dataset, leaving only the species as class labels, as
an effort towards homogenizing the sample spaces
implied by the class labels and the image dataset.
This leaves us with 55 classes and 3545 images.

For each dataset, we collect language de-
scriptions for object classes from websites like
Wikipedia. To collect language descriptions from
Wikipedia, we use the python package Wikipedia
(Goldsmith) to access structured representation of
Wikipedia pages, and extract section content under
“Description” to be used as object class descriptions.
If no Wikipedia entry exists for a specific object
class, we resort to manually searching for the object
class description on Google. Furthermore, we trun-
cate these textual excerpts to a maximum length of
512 tokens to avoid excessively long descriptions
and the accompanying computational issues.

4.2 Evaluation Protocol
Recent study showed that previous zero-shot learn-
ing evaluation protocols are inadequate and pro-
posed a set of rigorous evaluation protocols for
attribute-based zero-shot learning methods (Xian
et al., 2017). Although both our tasks and datasets
differ, we nevertheless followed Xian et al.’s guid-
ing principles of their Rigorous Protocol and devel-
oped our evaluation protocol:

• Similar to Rigorous Protocol, we used two
meta-splits Standard Splits (SS) and Pro-
posed Splits (PS) to evaluate all methods; the
Standard Splits are established meta-splits
and Proposed Splits are meta-splits that guar-
antees the exclusion of ImageNet-1K classes
from the test set.

• Due to class imbalance, Rigorous Protocol
proposes to use per-class averaged accuracy
for more meaningful evaluation. Thus, to eval-
uate meta-model on a meta-split containing

6999

Datasets Total Standard Split/Proposed Split

Training Validation Testing

CUB (Wah et al., 2011) 200 100 50 50
AWA2 (Zhu et al., 2017; Elhoseiny et al., 2017) 50 30 10 10
NAB (Zhu et al., 2017) 404 324 40 40
FS (Nilsback and Zisserman, 2006) 55 35 10 10

Table 1: Number of Class Labels in Our Meta-Split (both Standard Split and Proposed Split). Within each meta-
split, training, validation and testing class labels are disjoint.

the set of classes C, we calculate the per-class
averaged accuracy as shown in Equation 7.

AccC =
1

|C|
∑
c∈C

#correctly predicted
samples in c

#total samples in c
(7)

• Unlike Rigorous Protocol which uses ResNet-
101 model, we use ResNet-18 as our pre-
trained model; such choice helps reduce the
output dimensionality of N3 by reducing the
number of parameters N3 adapts.

• Our method is unique in that permutations
of the classes belonging to the same meta-
split count as distinct tasks and therefore, to
account for variations, we test our models on
10 different permutations of test set classes
and report the medium value of the relevant
evaluation metric.

We have tabulated the number of class labels
used for training, validation and testing in Table. 1.

4.3 Baseline Models

PDCNN PDCNN (Lei Ba et al., 2015) is the
most relevant prior method as it use the natural
language descriptions of class labels to generate
classification layers capable of distinguishing be-
tween objects described. Note that PDCNN is dis-
tinct from our work in that it dynamically generates
fully connected layers and/or additional convolu-
tional layers to be appended to a pre-trained deep
neural network (VGG-19) whilst ours generates pa-
rameter adaptations to be combined directly with
all existing layers within deep neural network mod-
els, effectively “fine-tuning” the pre-trained model.
We compare with two variants of PDCNN, with
PDCNNFC generating a fully connected layer only
for classification and PDCNNFC+Conv producing an

additional convolutional layer to help with clas-
sification. To make our works comparable, we
replaced the TF-IDF feature extractor in PDCNN
with a BERT-based document embedding (specifi-
cally, a BERT token embedding followed by max-
pooling) and changed the pre-trained model from
VGG-19 to ResNet-18.

MEGAZSL Due to the scarcity of prior work
leveraging natural language descriptions for zero-
shot classifications in a metadata-efficient way,
we also adapted less metadata-efficient methods
to function with stricter metadata-efficiency re-
quirements. Specifically, ZSLPP (Elhoseiny et al.,
2017), GAZSL (Zhu et al., 2017) and Correction-
Network (Hu et al., 2019) all utilize natural lan-
guage object class descriptions to produce clas-
sifiers capable of distinguishing between images
belonging to unseen categories during training.
However, all of them require significantly more
metadata: specifically, parts annotations of each
sample image are used to provide extra supervi-
sion of the training procedure. Among these meth-
ods, GAZSL (Zhu et al., 2017) stands out as the
most cited work; therefore we adapted the code
released by its authors to learn from only natu-
ral language metadata, without using parts anno-
tations; to distinguish our modified version from
the original, we will refer to our modified version
as MEGAZSL (Metadata-Efficient GAZSL). To
make our works comparable, we also updated its
language representation from TF-IDF to BERT-
based ones and used ResNet-18 as the image fea-
ture embedding module. It is worth noting the
CorrectionNet(Hu et al., 2019) is orthogonal to our
work as it is designed to improve any existing zero-
shot classification task modules, and in its original
setup, GAZSL (Zhu et al., 2017) was used as the
main task module, which we do include in our ex-
perimental comparison.

For all experiments, hyper-parameters are tuned

7000

Method CUB-50 AWA2-10 NAB-40 FS-10

SS PS SS PS SS PS SS PS

PDCNNFC(Lei Ba et al., 2015) 6.1 6.1 12.8 18.4 6.7 7.4 13.1 11.9
PDCNNFC+CONV(Lei Ba et al., 2015) 7.5 6.5 22.6 17.2 8.9 5.6 7.7 13.6
MEGAZSL(Zhu et al., 2017) 2.9 1.8 14.0 10.4 2.8 3.7 10.3 12.3
N3 (Proposed) 17.6 9.5 34.0 37.5 14.1 20.7 16.4 17.6

Table 2: Zero-Shot Classification Accuracy (Defined by Eq. 7) On Various Datasets/Meta-Splits Combinations;
number of classification labels used in the test set are recorded next to the name of each dataset.

with the same exact algorithms (random search)
and for the same number of runs (10).

5 Results and Discussion

In this section, we compare N3 method with prior
work on 4 zero-shot image classification bench-
mark datasets. Furthermore, we provide a simple
approach to help interpret what part of the language
input is being taken as evidence by the synthesized
visual classifier to make predictions. We then show
through ablation studies the importance of adapta-
tion of all parameters in the pre-trained network,
the necessity of pre-trained networks, and the effect
of language representation choices on the success
of N3.

5.1 Benchmark Evaluations

We report performance in per-class averaged accu-
racy, as shown in Table 2. In these experiments, we
standardized the language representations, dataset-
splits, and other factors orthogonal to our model
design to ensure fairness of comparison. We also
include experimental results comparing N3 to mod-
els in their respective original settings in the Ap-
pendix. From Table 2, we can clearly observe that
N3 outperforms all competing methods by a sig-
nificant margin on all 8 dataset/meta-split combi-
nations. Noticing the large performance gap be-
tween MEGAZSL and the original GAZSL, we
performed additional investigations to pinpoint the
cause: we reproduced one of their experiments (on
CUB dataset with SCE meta-split), and replaced
their TF-IDF module with BERT document em-
bedding module. The modified module performed
noticeably better (from 10.3% to 11.3%); however,
when we replaced its image feature embedding
module, which is trained with additional parts an-
notations of bird images, the performance dropped
significantly (from 11.3% to 3.3%), confirming
our conjecture that such methods cannot be easily

adapted to work without extra supervision in the
form of additional data annotation.

5.2 Interpreting Model Predictions

In this section, we explore how N3 model architec-
ture can help interpret the predictions made by the
adapted model. Specifically, the design of N3 is
unique in that it examines all object class descrip-
tions in order to adapt neural network parameters.
This means that N3 can adapt neural networks to
seek both positive and negative evidence for an
image to be classified. Naturally, we want to un-
derstand how the model is using these object class
descriptions. In Figure. 3, we present our findings
by visualizing the magnitude of ∂E

∂Dij
where E is

the loss value computed on a test example (in our
experiment, this example is correctly predicted to
be an Acadian Flycatcher) and Dij is the BERT
representation of the j-th word in the i-th object
class description. We present two patterns in the
data that are indicative of the model behavior:

Top Positive Evidence: top positive evidence is
identified as tokens in the description of the ground
truth label with large gradients. Intuitively, these
tokens are top supporting evidence that encour-
ages the prediction of the correct label. We locate
them by ranking all tokens in the description of the
ground truth label by their magnitude of gradients
and take the top few. Top Negative Evidence: top
negative evidence is identified as tokens with large
gradients descriptions of the negative labels that
also has a low predicted probability. Intuitively,
these tokens are the keywords deemed as important
evidence when rejecting to predict a label. We lo-
cate such evidence by first ranking the descriptions
by the ratio between their largest token gradients
and the softmax probability of the corresponding
label. Then, within the set of class descriptions
with the largest aforementioned ratios, we locate
the tokens with the largest gradients.

7001

Top Positive Evidence
(The image is a Acadian Flycatcher because …)

the breast is washed with olive
adults have olive upperparts , darker on the wings
and tail
they also have a call similar to that of the northern
 flicker

Top Negative Evidence
(The image is not a [tern, oriole, warbler] because …)

it is a small tern , 22 - 24 cm (8.7-9.4 in) long

immature males are yellow - orange on the breast

Baltimore Oriole
(Negative Label)

Least Tern
(Negative Label)

Acadian Flycatcher
(Ground Truth)

females feature a similar coloration pattern , but the
 black is replaced with light grey

Northern Flicker
(Related Label)

Golden Winged Warbler
(Negative Label)

(Least Tern)

(Baltimore Oriole)

(Golden Winged Warbler)

SignificantInsignificant

Figure 3: When classifying an image of Acadian Flycatcher, we visualized the magnitude of gradients of descrip-
tion tokens w.r.t the loss. Higher magnitude is colored red and lower magnitude blue. Intuitively, words with higher
magnitude of gradient represent textual features that are more important for the classification decision.

Examples for both types of keyword evidence
are presented in 3 with their context. Several ob-
servations can be drawn about how N3 uses tex-
tual descriptions to make classification decisions.
Firstly, we can observe that distinguishing features
described with keywords such as “olive”, “darker”,
“yellow” and “grey” are used to support both posi-
tive and negative identifications, which support our
conjecture that N3 examines descriptions from all
object class descriptions to make classification de-
cisions, sometimes employing the process of elimi-
nation. Secondly, we can observe that some label
(or label word piece) like “flicker” and “tern” is
used as evidence to support or refute a classifica-
tion decision, which seems to suggest that some
task-specific knowledge is learned and employed
in the language representations.

5.3 Ablation Study: Task-specificness of
Synthesized Models

To account for the improved accuracy of mod-
els synthesized with whole-model parameter adap-
tations, we performed additional analysis to un-
derstand the features models are utilizing when
making predictions. Two variants of N3 meta-
models sharing the same set of hyper-parameters
are trained on CUB-50 with the standard split. One
is allowed to adapt parameters of every layer whilst
the other is ablated only to generate the classifi-
cation layer. Saliency map (as described in (Si-

Figure 4: Saliency map showing magnitude of gradi-
ents of loss w.r.t. every pixel in the input image.
Left: original image. Middle: saliency map from a
model with every layer adapted by N3. Right: saliency
map from a model where N3 is restricted to act on
only its fc layer. Purple indicates small values while
blue/green indicates large values.

monyan et al., 2014)) visualizing the importance of
each pixel w.r.t. predictions is plotted as a heatmap
in Figure. 4. Clearly, fully adapted models show a
greater concentration on task-specific regions.

5.4 Ablation Study: Importance of
pre-trained Model

To adapt generic pre-trained model parameters to
task-specific ones, N3 mixes the pre-trained model
parameters with a set of generated model param-
eter adaptations, using a trainable mixing ratio as
illustrated in Equation 6. It is natural to question
whether the pre-trained parameters are necessary.
In other words, can N3 generate parameters for a
task-specific model from scratch and achieve rea-
sonable classification accuracy? To study the im-
portance of pre-trained model parameters, we ex-

7002

γ initial µ Acc@1

0.999 0.001 16.2 %
0.99 0.01 18.5 %
0.9 0.1 16.2 %
0.5 0.5 6.2 %
0.1 0.9 2.1 %
0.01 0.99 2.3 %

Table 3: Comparison of different γ and initial µ values.
The pre-trained model is ignored when γ = 0.

Embedding Method Acc @ 1

ELMo (paragraph) 4.1 %
ELMo (sentence) 5.0 %
GloVe 8.9 %
BERT 17.6 %

Table 4: Comparison of different embedding methods
for N3 in zero-shot classification task.

periment with a modified version of Equation 6:

Θ′ = γ ·Θ + µ ·∆Θ

Where γ is a fixed scalar weight given to the pre-
trained model, µ is still the trainable scaling factor.
The choice of γ and the initial value of µ affects the
extent to which the pre-trained model contribute to
the parameter-adapted one.

In our main experiments, we have fixed γ to be
1 and initialized µ to be 1−3, such choice of value
initialization proves to work well, yet it remains
unclear to what extent the superior performance
of N3 depends on these two hyperparameters. To
answer this question, we decide to vary γ and µ;
In order to keep the magnitude of parameters rela-
tively stable, we always set the initial value of µ to
be 1− γ across different settings here. We trained
N3 to produce a 50-way classification model with
varying γ, and the resultant zero-shot classification
performance are shown in Table 3. Such an abla-
tion experiment demonstrates that setting a small
initial µ is crucial for performance, yet it is not
the smaller the better, re-affirming the crucial role
of parameter adaptation in achieving good perfor-
mance.

5.5 Ablation Study: Impact of Different
Word Embeddings

To understand the importance of pre-trained BERT
module, and whether N3 can be generalized to be
used with pre-trained word embedding modules
other than BERT, we compared the classification
accuracy of models adapted by variants of N3 us-
ing different word embeddings. Concretely, we
experimented with BERT (Devlin et al., 2018),
ELMo (Peters et al., 2018) and GloVe (Pennington
et al., 2014) embeddings. Results are shown in
Table 4. While BERT prevails as expected, ELMo
seems to under-perform GloVe. We hypothesize

that ELMo might have been impacted by unexpect-
edly long sequence lengths (here each description
is a paragraph up to 512 tokens), since LSTM-
based models are known to be worse at capturing
long-range dependencies. To further investigate,
we trained a variant of N3, where we limit the con-
text of ELMo to each sentence instead of the entire
paragraph. As expected, the performance increases
noticeably, but the resulting performance is still
not on par with other methods. In contrast, GloVe
embeddings worked better since such static embed-
dings are not affected by the long context windows.

6 Conclusion

In this paper, we have demonstrated that small
amount of unstructured natural language descrip-
tions for object classes can provide enough informa-
tion to fine-tune an entire pretrained neural network
to perform classification task on class labels unseen
during training. We have achieved state-of-the-art
performance for natural language guided zero-shot
image classification tasks on 4 public datasets with
practical metadata requirements. In addition, we
presented in-depth analysis and extensive ablation
studies on various aspects of the model functioning
mechanism and architecture design, showing the
necessity of our design contribution in achieving
good results.

Acknowledgment

This material is based upon work partially sup-
ported by the National Science Foundation (Awards
#1750439 #1722822) and National Institutes of
Health. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily re-
flect the views of National Science Foundation or
National Institutes of Health, and no official en-
dorsement should be inferred.

7003

References
2019. albanie/convnet-burden :memory consumption

and flop count estimates for convnets. https://
github.com/albanie/convnet-burden.

2019. torchvision.models. https://pytorch.org/
docs/stable/torchvision/models.html.

Zeynep Akata, Florent Perronnin, Zaid Harchaoui, and
Cordelia Schmid. 2016. Label-embedding for image
classification. IEEE transactions on pattern analy-
sis and machine intelligence, 38(7):1425–1438.

Zeynep Akata, Scott Reed, Daniel Walter, Honglak
Lee, and Bernt Schiele. 2015. Evaluation of output
embeddings for fine-grained image classification. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2927–2936.

Maruan Al-Shedivat, Avinava Dubey, and Eric P. Xing.
2017. Contextual explanation networks. CoRR,
abs/1705.10301.

Soravit Changpinyo, Wei-Lun Chao, Boqing Gong,
and Fei Sha. 2016. Synthesized classifiers for zero-
shot learning. CoRR, abs/1603.00550.

Sasank Chilamkurthy. Transfer learning for computer
vision tutorial¶.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Kun Duan, Devi Parikh, David Crandall, and Kristen
Grauman. 2012. Discovering localized attributes for
fine-grained recognition. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pages
3474–3481. IEEE.

Mohamed Elhoseiny, Ahmed M. Elgammal, and Babak
Saleh. 2016. Write a classifier: Predicting vi-
sual classifiers from unstructured text descriptions.
CoRR, abs/1601.00025.

Mohamed Elhoseiny, Babak Saleh, and Ahmed Elgam-
mal. 2013. Write a classifier: Zero-shot learning us-
ing purely textual descriptions. In Proceedings of
the IEEE International Conference on Computer Vi-
sion, pages 2584–2591.

Mohamed Elhoseiny, Yizhe Zhu, Han Zhang, and
Ahmed M. Elgammal. 2017. Link the head to the
”beak”: Zero shot learning from noisy text descrip-
tion at part precision. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pages
6288–6297.

Jonathan Goldsmith. Wikipedia¶.

David Ha, Andrew M. Dai, and Quoc V. Le. 2016. Hy-
pernetworks. CoRR, abs/1609.09106.

R. Lily Hu, Caiming Xiong, and Richard Socher. 2019.
Correction networks: Meta-learning for zero-shot
learning.

P. Kankuekul, A. Kawewong, S. Tangruamsub, and
O. Hasegawa. 2012. Online incremental attribute-
based zero-shot learning. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pages
3657–3664.

Aditya Khosla, Nityananda Jayadevaprakash, Bang-
peng Yao, and Li Fei-Fei. 2011. Novel dataset for
fine-grained image categorization. In First Work-
shop on Fine-Grained Visual Categorization, IEEE
Conference on Computer Vision and Pattern Recog-
nition, Colorado Springs, CO.

Elyor Kodirov, Tao Xiang, and Shaogang Gong. 2017.
Semantic autoencoder for zero-shot learning. In The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

B. Kulis, K. Saenko, and T. Darrell. 2011. What you
saw is not what you get: Domain adaptation us-
ing asymmetric kernel transforms. In CVPR 2011,
pages 1785–1792.

C. H. Lampert, H. Nickisch, and S. Harmeling. 2014.
Attribute-based classification for zero-shot visual ob-
ject categorization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 36(3):453–465.

Jimmy Lei Ba, Kevin Swersky, Sanja Fidler, et al. 2015.
Predicting deep zero-shot convolutional neural net-
works using textual descriptions. In Proceedings of
the IEEE International Conference on Computer Vi-
sion, pages 4247–4255.

M-E. Nilsback and A. Zisserman. 2006. A visual vo-
cabulary for flower classification. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition, volume 2, pages 1447–1454.

Devi Parikh and Kristen Grauman. 2011. Relative at-
tributes. In Proceedings of the 2011 International
Conference on Computer Vision, ICCV ’11, pages
503–510, Washington, DC, USA. IEEE Computer
Society.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. CoRR, abs/1802.05365.

Emmanouil Antonios Platanios, Mrinmaya Sachan,
Graham Neubig, and Tom Mitchell. 2018. Contex-
tual parameter generation for universal neural ma-
chine translation. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 425–435. Association for Compu-
tational Linguistics.

https://github.com/albanie/convnet-burden
https://github.com/albanie/convnet-burden
https://github.com/albanie/convnet-burden
https://github.com/albanie/convnet-burden
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
http://arxiv.org/abs/1603.00550
http://arxiv.org/abs/1603.00550
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1601.00025
http://arxiv.org/abs/1601.00025
https://doi.org/10.1109/CVPR.2017.666
https://doi.org/10.1109/CVPR.2017.666
https://doi.org/10.1109/CVPR.2017.666
https://wikipedia.readthedocs.io/
https://openreview.net/forum?id=r1xurn0cKQ
https://openreview.net/forum?id=r1xurn0cKQ
https://doi.org/10.1109/CVPR.2012.6248112
https://doi.org/10.1109/CVPR.2012.6248112
https://doi.org/10.1109/CVPR.2011.5995702
https://doi.org/10.1109/CVPR.2011.5995702
https://doi.org/10.1109/CVPR.2011.5995702
https://doi.org/10.1109/TPAMI.2013.140
https://doi.org/10.1109/TPAMI.2013.140
https://doi.org/10.1109/ICCV.2011.6126281
https://doi.org/10.1109/ICCV.2011.6126281
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
http://aclweb.org/anthology/D18-1039
http://aclweb.org/anthology/D18-1039
http://aclweb.org/anthology/D18-1039

7004

Ruizhi Qiao, Lingqiao Liu, Chunhua Shen, and Anton
van den Hengel. 2016. Less is more: zero-shot learn-
ing from online textual documents with noise sup-
pression. CoRR, abs/1604.01146.

Scott Reed, Zeynep Akata, Honglak Lee, and Bernt
Schiele. 2016. Learning deep representations of
fine-grained visual descriptions. In The IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR).

Bernardino Romera-Paredes and Philip H. S. Torr.
2015. An embarrassingly simple approach to zero-
shot learning. In Proceedings of the 32Nd Interna-
tional Conference on International Conference on
Machine Learning - Volume 37, ICML’15, pages
2152–2161. JMLR.org.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, An-
drej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. 2015. Ima-
geNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV),
115(3):211–252.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2014. Deep inside convolutional networks: Vi-
sualising image classification models and saliency
maps. In 2nd International Conference on Learn-
ing Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Workshop Track Proceedings.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 6000–6010.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Be-
longie. 2011. The Caltech-UCSD Birds-200-2011
Dataset. Technical Report CNS-TR-2011-001, Cali-
fornia Institute of Technology.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff,
S. Belongie, and P. Perona. 2010. Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001,
California Institute of Technology.

Yongqin Xian, Bernt Schiele, and Zeynep Akata. 2017.
Zero-shot learning - the good, the bad and the ugly.
CoRR, abs/1703.04394.

Z. Zhang and V. Saligrama. 2016. Zero-shot learning
via joint latent similarity embedding. In 2016 IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 6034–6042.

Yizhe Zhu, Mohamed Elhoseiny, Bingchen Liu, and
Ahmed M. Elgammal. 2017. Imagine it for me: Gen-
erative adversarial approach for zero-shot learning
from noisy texts. CoRR, abs/1712.01381.

A Impact of Different Base Model
Architectures

In this section, we provide an additional ablation
experiment, we will be using the Standard Split
on CUB dataset. With the superior results of N3

obtained on the above datasets using ResNet-18
as the base architecture, it is reasonable to won-
der whether the power of N3 can extend to other
base architectures and whether N3 can work effec-
tively on other base model architectures. To answer
this question, we trained N3 with 2 additional base
model architecture: GoogleNet and SqueezeNet.
We compared them in terms of zero-shot classifi-
cation accuracy. Results are tabulated in Table 5.

Based on the results shown in Table. 5, we were
surprised to find out that SqueezeNet performs as
well as ResNet as N3’s base model and GoogleNet
can even out-perform ResNet-18 as a better base
model. One explaination for the superior perfor-
mance of GoogleNet is that parameters of batch
normalizations are not known to corrolate with task
semantics and therefore can hardly be fine-tuned.
GoogleNet, on the other hand, does not make use
of batch normalization, thus avoiding the poten-
tial performance degradations caused by lack of
fine-tuning on Batch Normalization layers.

B Additional Comparison with Prior
Work

In our main experimental evaluation section,
we performed extensive experiments comparing
our methods with prior arts using newly estab-
lished rigorous zero-shot learning evaluation guide-
lines (Xian et al., 2017). To adhere to the stricter
guidelines, and to compare fairly with prior arts,
we have to reproduce the results of prior methods
ourselves; one may wonder how do we compared
with each of these prior methods in their own ex-
perimental setup, and more importantly, how do
we compare with their originally published perfor-
mance numbers? In this section we seek to assure
readers that our method continues to perform no-
ticeably better than prior methods in their original
experimental setup. To begin with, we compare
the zero-shot classification performance of N3 with
prior work which also generates neural network
parameters directly (Lei Ba et al., 2015).

To make our results comparable, we adopted
the meta-training/testing splits from (Lei Ba et al.,
2015), where in CUB-2010/CUB-2011, the 200

http://arxiv.org/abs/1604.01146
http://arxiv.org/abs/1604.01146
http://arxiv.org/abs/1604.01146
http://dl.acm.org/citation.cfm?id=3045118.3045347
http://dl.acm.org/citation.cfm?id=3045118.3045347
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1703.04394
https://doi.org/10.1109/CVPR.2016.649
https://doi.org/10.1109/CVPR.2016.649
http://arxiv.org/abs/1712.01381
http://arxiv.org/abs/1712.01381
http://arxiv.org/abs/1712.01381

7005

Model Arch Acc @ 1 ImageNet Test Acc. (tor, 2019) Param Size (MB) (con, 2019)

GoogleNet 21.3 % 69.78 % 51
ResNet18 17.6 % 69.76 % 45
SqueezeNetV1.1 17.7 % 58.19 % 5

Table 5: N3 Zero-Shot Classification Accuracy on CUB2011 with Different Base Model Architectures

classes are randomly split into 160 ”seen” classes
for training and validation (within which 120
classes are randomly selected for training, and 40
for validation) and 40 ”unseen” classes for testing,
and a 40-class classification model is generated by
N3. Within the seen classes, 20% of the dataset
is are excluded since (Lei Ba et al., 2015) used
them for testing to report classification results on
seen classes, which is irrelevant to our comparisons.
Meta models are trained using the 160 seen classes
only. Similarly, in Oxford Flowers, the 102 classes
of flowers are split into 82 ”seen” classes and 20
”unseen” classes randomly. We used a ResNet-18
pre-trained on ImageNet as our base model. Note
that while we didn’t adopt the larger VGG-19 base
model as previous work, later we will show that
we are still able to outperform them significantly
with the lesser ResNet-18 architecture. During test
time, N3 generates neural networks based on test
set class descriptions and these generated networks
are used for zero-shot evaluation.

As shown in Table 6, N3 generated ResNet18
out-performs prior arts by a significant margin both
in terms of average precision and classification ac-
curacy on both CUB and Oxford Flower dataset.

We then move on to evaluate the performance of
N3 on more rigorous and difficult zero-shot meta-
splits on the CUB-2011 and NAB dataset. This
split is called SCE (super category exclusive) split,
which ensures that the parent categories of unseen
classes are exclusive to those of the seen classes.
Such split is used in many prior works (Zhu et al.,
2017; Elhoseiny et al., 2017; Changpinyo et al.,
2016) to evaluate their proposed method. We evalu-
ated N3 using such meta-split and results are shown
in Table 5. As explained in the experimental evalu-
ation section of our paper, later prior works (Zhu
et al., 2017; Elhoseiny et al., 2017) uses signif-
icantly more metadata (e.g., per sample parts
annotation) than N3 and yet N3 is able to exceed
their classification accuracy by using a generic
ResNet-18 base model.

C Magnitude of Parameter Adaptation

In this section, we visualize in Fig. 6, the magni-
tude of N3’s parameter adaptation per layer (quan-
tified by the L2 norm of each layer’s parameter
adaptation tensor generated by N3) when adapting
pre-trained ResNet-18.

D Hyper Parameters

We tabulated the set of hyper parameters used to
produce our experimental results in Table. 7.

E Computational Resource
Consumption

We used two types of machines - 4 x NVidia Pascal-
100 and 4 x NVidia Volta-100 - depending on avail-
ability. It is worth noting that computation was not
a bottleneck for our experiments; and a multi-GPU
setup is primarily used for their larger total mem-
ory size available since transformers are known to
consume a lot of memory when processing lengthy
sequences. We conjecture that recent development
of more efficient variants of transformer models
would enable N3 to train with fewer GPUs. The
training time ranged from a few hours to a single
day depending on the size of the dataset and the
computing power of the machine.

7006

Dataset Method A.P. Acc.@1 Acc.@5 Base Model

CUB-2010 DA (VGG) (Kulis et al., 2011) 0.037 - - VGG-19
PDCNN(fc) (Lei Ba et al., 2015) 0.1 12.0% 42.8% VGG-19
PDCNN(conv) (Lei Ba et al., 2015) 0.043 - - VGG-19
PDCNN(fc+conv) (Lei Ba et al., 2015) 0.08 - - VGG-19
Ours(ResNet18) 0.31 33.9% 77.0% ResNet-18

CUB-2011 PDCNN(fc) (Lei Ba et al., 2015) 0.11 - - VGG-19
PDCNN(conv) (Lei Ba et al., 2015) 0.085 - - VGG-19
PDCNN(fc+conv) (Lei Ba et al., 2015) 0.13 - - VGG-19
Ours(ResNet18) 0.27 32.6% 68.6% ResNet-18

Flowers PDCNN(fc) (Lei Ba et al., 2015) 0.07 - - VGG-19
PDCNN(conv) (Lei Ba et al., 2015) 0.054 - - VGG-19
PDCNN(fc+conv) (Lei Ba et al., 2015) 0.067 - - VGG-19
Ours(ResNet18) 0.16 10.4% 39.7% ResNet-18

Table 6: N3 Zero-Shot Classification Performance on CUB-2010, CUB-2011, Oxford Flower

Method CUB Acc.@1 NAB Acc.@1

WAC-Linear (Elhoseiny et al., 2016) 5 % -
WAC-Kernel (Elhoseiny et al., 2016) 7.7 % 6.0 %
ESZSL (Romera-Paredes and Torr, 2015) 7.4 % 6.3 %
ZSLNS (Qiao et al., 2016) 7.3 % 6.8 %
SynCfast (Changpinyo et al., 2016) 8.6 % 3.8
SynCOVO (Changpinyo et al., 2016) 5.9 % -
ZSLPP (Elhoseiny et al., 2017) 9.7 % 8.1 %
GAZSL (Zhu et al., 2017) 10.3 % 8.6 %
CorrectionNetwork (Hu et al., 2019) 10.0 % 9.5 %
Ours(ResNet18) 11.9 % 11.1 %

Figure 5: Zero-Shot Classification Performance on CUB-2011/NAB with SCE-split.

L2
-n

or
m

0.
0

12
.5

25
.0

37
.5

50
.0

co
nv

1.
w

ei
gh

t
bn

1.
w

ei
gh

t
bn

1.
bi

as
la

ye
r1

.0
.c

on
v1

.w
ei

gh
t

la
ye

r1
.0

.b
n1

.w
ei

gh
t

la
ye

r1
.0

.b
n1

.b
ia

s
la

ye
r1

.0
.c

on
v2

.w
ei

gh
t

la
ye

r1
.0

.b
n2

.w
ei

gh
t

la
ye

r1
.0

.b
n2

.b
ia

s
la

ye
r1

.1
.c

on
v1

.w
ei

gh
t

la
ye

r1
.1

.b
n1

.w
ei

gh
t

la
ye

r1
.1

.b
n1

.b
ia

s
la

ye
r1

.1
.c

on
v2

.w
ei

gh
t

la
ye

r1
.1

.b
n2

.w
ei

gh
t

la
ye

r1
.1

.b
n2

.b
ia

s
la

ye
r2

.0
.c

on
v1

.w
ei

gh
t

la
ye

r2
.0

.b
n1

.w
ei

gh
t

la
ye

r2
.0

.b
n1

.b
ia

s
la

ye
r2

.0
.c

on
v2

.w
ei

gh
t

la
ye

r2
.0

.b
n2

.w
ei

gh
t

la
ye

r2
.0

.b
n2

.b
ia

s
la

ye
r2

.0
.d

ow
ns

am
pl

e.
0.

w
ei

gh
t

la
ye

r2
.0

.d
ow

ns
am

pl
e.

1.
w

ei
gh

t
la

ye
r2

.0
.d

ow
ns

am
pl

e.
1.

bi
as

la
ye

r2
.1

.c
on

v1
.w

ei
gh

t
la

ye
r2

.1
.b

n1
.w

ei
gh

t
la

ye
r2

.1
.b

n1
.b

ia
s

la
ye

r2
.1

.c
on

v2
.w

ei
gh

t
la

ye
r2

.1
.b

n2
.w

ei
gh

t
la

ye
r2

.1
.b

n2
.b

ia
s

la
ye

r3
.0

.c
on

v1
.w

ei
gh

t
la

ye
r3

.0
.b

n1
.w

ei
gh

t
la

ye
r3

.0
.b

n1
.b

ia
s

la
ye

r3
.0

.c
on

v2
.w

ei
gh

t
la

ye
r3

.0
.b

n2
.w

ei
gh

t
la

ye
r3

.0
.b

n2
.b

ia
s

la
ye

r3
.0

.d
ow

ns
am

pl
e.

0.
w

ei
gh

t
la

ye
r3

.0
.d

ow
ns

am
pl

e.
1.

w
ei

gh
t

la
ye

r3
.0

.d
ow

ns
am

pl
e.

1.
bi

as
la

ye
r3

.1
.c

on
v1

.w
ei

gh
t

la
ye

r3
.1

.b
n1

.w
ei

gh
t

la
ye

r3
.1

.b
n1

.b
ia

s
la

ye
r3

.1
.c

on
v2

.w
ei

gh
t

la
ye

r3
.1

.b
n2

.w
ei

gh
t

la
ye

r3
.1

.b
n2

.b
ia

s
la

ye
r4

.0
.c

on
v1

.w
ei

gh
t

la
ye

r4
.0

.b
n1

.w
ei

gh
t

la
ye

r4
.0

.b
n1

.b
ia

s
la

ye
r4

.0
.c

on
v2

.w
ei

gh
t

la
ye

r4
.0

.b
n2

.w
ei

gh
t

la
ye

r4
.0

.b
n2

.b
ia

s
la

ye
r4

.0
.d

ow
ns

am
pl

e.
0.

w
ei

gh
t

la
ye

r4
.0

.d
ow

ns
am

pl
e.

1.
w

ei
gh

t
la

ye
r4

.0
.d

ow
ns

am
pl

e.
1.

bi
as

la
ye

r4
.1

.c
on

v1
.w

ei
gh

t
la

ye
r4

.1
.b

n1
.w

ei
gh

t
la

ye
r4

.1
.b

n1
.b

ia
s

la
ye

r4
.1

.c
on

v2
.w

ei
gh

t
la

ye
r4

.1
.b

n2
.w

ei
gh

t
la

ye
r4

.1
.b

n2
.b

ia
s

fc
.w

ei
gh

t
fc

.b
ia

s

L2-norm of Param Adaptations L2-norm of Pre-trained Params

Figure 6: Magnitude of Parameter Adaptation

7007

(Max) Training Epoch T2L Num Layer L2A Num Layer T2L LR L2A LR
CUB-SS/PS 40 2/1 1/1 3e-5/1e-5 5e-5/1e-5
AWA-SS/PS 20 2/1 1/1 2e-6/9e-6 1e-5/2e-6
NAB-SS/PS 25 2/2 1/1 2e-5/1e-5 2e-5/2e-5
FS-SS/PS 40 2/2 1/1 2e-5/1e-6 1e-6/1e-5

Figure 7: Hyper-parameters

