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Abstract
In human cognition, world knowledge sup-
ports the perception of object colours: know-
ing that trees are typically green helps to per-
ceive their colour in certain contexts. We go
beyond previous studies on colour terms us-
ing isolated colour swatches and study visual
grounding of colour terms in realistic objects.
Our models integrate processing of visual in-
formation and object-specific knowledge via
hard-coded (late) or learned (early) fusion. We
find that both models consistently outperform
a bottom-up baseline that predicts colour terms
solely from visual inputs, but show interesting
differences when predicting atypical colours
of so-called colour diagnostic objects. Our
models also achieve promising results when
tested on new object categories not seen dur-
ing training.

1 Introduction

Research on human perception has shown that
world knowledge supports the processing of sen-
sory information (Mitterer et al., 2009; Ishizu,
2013). For instance, humans have been found
to use their knowledge about typical colours of
an object when perceiving an instance of that ob-
ject, in order to compensate for, e.g., perceptually
challenging illumination conditions and achieve
colour constancy (Mitterer and de Ruiter, 2008;
Witzel and Gegenfurtner, 2018). Thus, the visual
perception of object colours can be thought of as
leveraging top-down knowledge for bottom-up pro-
cessing of sensory input, in accordance with tra-
ditional approaches in psychology (e.g. Colman,
2009). The integration of visual information and
world knowledge in perception, however, is far
from obvious, with views ranging from processing
through bidirectionally connected bottom-up and
top-down components to the assumption that vi-
sual and conceptual representations themselves are
inseparably intertwined (Kubat et al., 2009).

Figure 1: Example object from VisualGenome with
annotated colour attribute. The tree is described as
“green”, despite of challenging illumination conditions.

A lot of recent work in Language & Vision
(L&V) has looked at grounding language in real-
istic sensory information, e.g. images of complex,
real-world scenes and objects (Bernardi et al., 2016;
Kafle and Kanan, 2017). In L&V, however, the use
of top-down knowledge has mostly been discussed
in the context of zero-shot or few-shot learning
scenarios where few or no visual instances of a par-
ticular object category are available (Frome et al.,
2013; Xian et al., 2018). 1

We present a simple experiment on language
grounding that highlights the great potential of
top-down processing even for very common words
with a lot of visual instances: we learn to ground
colour terms in visual representations of real-world
objects and show that model predictions improve
strongly when incorporating prior knowledge and
assumptions about the object itself. We investi-
gate visual grounding of colour terms by combin-
ing bottom-up and top-down modeling components
based on early and late fusion strategies, reflecting
different interpretations about the integration of
visual and conceptual information in human per-
ception. We find that these strategies lead to differ-

1Note that in L&V, the term “top-down” has recently been
used in a different way in the context of attention models
where it refers to systems that selectively attend to the output
of a certain layer (Anderson et al., 2018).
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ent predictions, especially for atypical colours of
objects that do have a strong tendency towards a
certain colour.2

2 Related Work

Even recent work on colour terms has mostly been
using artificial datasets with descriptions of iso-
lated colour swatches that show a single hue, pri-
marily examining effects of context and conver-
sational adequacy in colour naming (Baumgaert-
ner et al., 2012; Meo et al., 2014; McMahan and
Stone, 2015; Monroe et al., 2016, 2017; Winn and
Muresan, 2018). However, object colours bear a
range of additional challenges for perception and
grounding: (i) chromatic variation due to lighting
and shading (Witzel and Gegenfurtner, 2018), (ii)
effects of conventionalization as in e.g. red hair
(Gärdenfors, 2004) and (iii) the inherent complex-
ity of real-world objects (Witzel and Gegenfurtner,
2018), e.g. a tree with green leaves and a brown
trunk is typically called green (see figure 1). In
human cognition, several recalibration strategies
support the constant perception of object colours
given these challenges. In addition to bottom-up
driven strategies like the chromatic adaption to sit-
uational sources of light, this also includes mech-
anisms such as the Memory Colour Effect: The
automatic perception of canonical colours that ac-
companies the recognition of objects with charac-
teristic hues (Olkkonen et al., 2008). Our aim in
this work is to transfer knowledge-based recalibra-
tion mechanisms to the automatic classification of
object colours.

Mojsilovic (2005) and Van de Weijer et al.
(2007) propose pixelwise approaches for model-
ing colour naming in natural images, accounting
for factors such as illumination and non-uniform
object colours. Van de Weijer et al. (2007) assign
colour terms as labels to colour values of individual
pixels and then average over these labels to obtain
a colour term for an image region. We use their
model as one of our baselines in Section 4. How-
ever, they do not take into account object-specific
colour tendencies. Zarrieß and Schlangen (2016)
classify colour histograms for objects in real-world
images. They train object-specific classifiers that
recalibrate a bottom-up classifier, but only obtain
a small improvement from recalibration. We im-
plement a general top-down component that can be

2Code and data for this project are available at:
https://github.com/clause-jena/colour-term-grounding

integrated with bottom-up processing in different
ways.

3 Models

We focus on the effect of knowledge in language
grounding and adopt a slightly idealized setting
for modeling: we assume that the object type is
available during training and testing. Following e.g.
Snoek et al. (2005); Gunes and Piccardi (2008);
Baltrusaitis et al. (2019), we distinguish early and
late fusion as a way of integrating modeling compo-
nents with different sources of information. Figure
2 illustrates our models, which we describe below.

BOTTOM-UP This component relies solely on
sensory input and is implemented as a feed-forward
network trained to predict colour terms from 3-
dimensional RGB histograms (representing the
polychromatic distribution of colour values in com-
plex objects). The output layer has a softmax over
the 11 basic colour terms (Berlin and Kay, 1969).
For comparability, we adopt the architecture in
Zarrieß and Schlangen (2016) (Input Layer: 512
nodes, Hidden layers with 240 and 24 nodes and
ReLU activation, output layer: 11 nodes, Drop-
Out: 0.2). We did not obtain improvements when
testing other colour spaces. We also tried visual
features extracted with a neural object recognizer
(Simonyan and Zisserman, 2014) which only give
a small improvement over colour histograms. Thus,
in Section 4, we report results only for RGB his-
tograms, as they are more transparent as represen-
tations and do not include any conceptual informa-
tion on objects.

TOP-DOWN This component relies only on con-
ceptual information about the object which con-
sists of assignments of objects to object types and
colour distributions for object types reflected in
the data. Thus, this classifier predicts colour terms
given only the object type, which is supposed to
mimic the memory colour effect discussed in Sec-
tion 2. We use (pre-trained) word embeddings for
object types that are not fine-tuned during train-
ing. Hence, TOP-DOWN and the combined mod-
els can be tested on unseen object types. We use
100-dimensional pre-trained GloVe embeddings
(Pennington et al., 2014). The embedding layer
is followed by a hidden Layer (24 nodes, ReLU
activation, drop-out set to 0.2).

LATE-FUSION In this approach, BOTTOM-UP

and TOP-DOWN compute their classification de-

https://github.com/clause-jena/colour-term-grounding
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Figure 2: Late and Early Fusion

cisions independently. The output probability dis-
tributions are interpolated using a constant factor
(which is set to 1 in our case), i.e. we simply calcu-
late their arithmetic mean. Hence, the integration
of visual and conceptual information is hard-coded.

EARLY-FUSION Object type embeddings are
processed by a single Hidden Layer (24 nodes,
ReLU activation, 0.2 drop out), concatenated with
the visual input and then further processed by the
network (2 Hidden Layers with 240 and 24 nodes,
ReLU activation, 0.2 drop out). The classification
decision is computed after this shared processing.
The integration of both sources of information is
therefore learned by the model.

4 Experiments

4.1 Set-up
Data We use VisualGenome (Krishna et al.,
2016), which contains annotations and bounding
boxes for 3.8M objects in more than 100K images.
Roughly 2.8M object attributes are annotated, the
most frequent being colour descriptions. We ex-
tracted all objects with at least one attribute among
the basic colour terms black, blue, brown, green,
grey, orange, pink, purple, red, white, yellow. Ob-
jects with multiple names were split up into distinct
entries, basic colour terms were removed from ob-
ject names. To counter VisualGenome’s bias to-
wards images of people (Krishna et al., 2016), we
exclude objects with names that are hyponyms of
person.3 We compile our train and test data so that
colours are evenly distributed, as we do not want
the model to rely on biases in colour frequency.4

For the development and evaluation sets, we use
random under-sampling. To ensure training ex-
amples for less frequent object categories, 10K
instances for each colour category are randomly

3Excluding e.g. “white person” as a case of a highly con-
ventionalized colour.

4white has 290K, purple 10K instances in the data.

picked from the original train set, with the possi-
bility of objects being picked multiple times. In
summary, 110k objects are used for training, 17523
for development and 9328 for evaluation. In Sec-
tion 4.2, we report results for objects that occur at
least 100 times in the data. For testing on unseen
objects in Section 4.3, we use object types that oc-
cur at least 50 but less than 100 times with a colour
attribute in VisualGenome (these are excluded from
training).

Training We train for 25 epochs using RMSprop
as optimizer and a learning rate of 0.001.

Evaluation We evaluate our models by measur-
ing their accuracy both for the entire test set and for
separate subsets of objects. In line with previous re-
search in perceptual psychology (cf. Section 2), we
distinguish Colour Diagnostic Objects (CDOs),
that are strongly associated with a specific Mem-
ory Colour, and Colour Neutral Objects (CNOs),
objects without a typical colour appearance. We
expect the distinction between CDOs and CNOs to
be reflected primarily in model predictions that in-
volve the processing of conceptual object informa-
tion. For CDOs, determining the respective Mem-
ory Colour could result in improved classification
results, whereas this strategy is less promising for
CNOs.

Manually identifying objects as CDOs or CNOs
is hardly feasible when using large-scale data sets
such as VisualGenome. We therefore decide on
a quantitative basis whether object types exhibit
characteristic colours, namely by means of the en-
tropy of the colour term distribution of an object
type. For each object type o, we determine pc as
the relative frequency of a colour c for all instances
of the object. The entropy of an object’s colour
distribution is then calculated as

Eo = −
∑
c∈C

pc log2 pc
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CDO
All CDO CBO CNO typ. atyp.

Pixelwise 38.5 50.4 32.5 41.0 58.6 26.6
BOTTOM-UP 45.0 54.0 36.5 50.4 62.7 28.9

TOP-DOWN 33.7 72.6 26.6 19.7 96.6 2.6

LATE-FUSION 52.1 71.7 43.4 51.1 94.0 6.9
EARLY-FUSION 51.4 74.0 43.7 48.5 94.0 15.7

Table 1: Accuracy in colour prediction for all seen ob-
ject types (left); broken down for CDOs, CNOs, CBOs
(middle), and for typical and atypical colours of CDOs
(right)

where C is the set of basic colour terms. We use
the 100 objects with the lowest entropy as CDOs,
the 100 objects with the highest entropy as CNOs.
In our data, objects such as tree, carrot, jeans and
refrigerator are classified as CDOs. CNO exam-
ples include balloon, umbrella, fish and butterfly.
We consider CDO instances whose colouring cor-
responds to their associated colour to be typical
(e.g. objects annotated as green tree). Accordingly,
CDOs that differ from their associated colour are
considered atypical (e.g. red tree).

Some objects can neither be clearly identified
as CDOs nor as CNOs. These include objects
such as stone that often occur with specific colours
(e.g. grey) but also with other colours (e.g. brown,
green). To cover such cases we include Colour Bi-
ased Objects (CBOs) as a third group, determined
as the 100 object types whose entropy is closest to
the median of the data set.

Our test set contains a total of 1192 object in-
stances categorized as CDOs (887 typical and 305
atypical) as well as 933 CBO and 1755 CNO in-
stances.

Pixelwise Baseline For comparison, we report
results of Van de Weijer et al. (2007)’s model on
our data, that computes colour words for objects by
classifying the individual pixels in the respective
bounding box.

4.2 Results

Table 1 shows results for the separate model com-
ponents and the fusion strategies. We note that
BOTTOM-UP largely outperforms the pixelwise
baseline. As expected, TOP-DOWN performs much
worse than BOTTOM-UP on average, but achieves
high accuracy on CDOs. We observe interesting
differences between the fusion strategies:

LATE-FUSION
atypical typical

G
ol

d atypical 33 272

typical 53 834

EARLY-FUSION
atypical typical

G
ol

d atypical 69 236

typical 53 834

Table 2: LATE-FUSION and EARLY-FUSION predic-
tions for typical and atypical CDOs

LATE-FUSION This model generally performs
better than BOTTOM-UP and TOP-DOWN sepa-
rately. Moreover, the impact of the respective com-
ponent on the combined result depends on the type
of object: For CDOs, the model seems to gener-
ally predict the memory colour for these diagnos-
tic objects computed by TOP-DOWN. For CBOs,
there is still a clear improvement over BOTTOM-
UP, whereas for CNOs the model mostly relies
on BOTTOM-UP. Thus, even though the fusion is
hard-coded, it achieves the desired flexible pattern
for combining the components. However, LATE-
FUSION does not perform well at predicting atyp-
ical colours of CDOs, see the right columns of
Table 1. This suggests that, here, the prediction
of object colours is only based on knowledge and,
essentially, not visually grounded. This is unsatis-
factory as these atypical colours for CDOs could
be particularly salient in conversation (Tarenskeen
et al., 2015).

EARLY-FUSION This fusion strategy generally
improves the accuracy of BOTTOM-UP and TOP-
DOWN in isolation. On average, it slightly un-
derperforms LATE-FUSION, but obtains slightly
better accuracy values for CDOs and CBOs than
LATE-FUSION (Table 1). Table 2 illustrates that
EARLY-FUSION recognizes atypical object colours
slightly more often than LATE-FUSION. At the
same time, the model achieves higher accuracy for
atypical CDOs, indicating that it often predicts the
correct object colour in these cases. For typical
CDO colours, LATE-FUSION and EARLY-FUSION

achieve the same accuracy.
Thus, EARLY-FUSION improves the prediction

of atypical colours for CDOs as compared LATE-
FUSION (exemplified in figure 3). But it still
predicts canonical object colours too often and
achieves a lower accuracy on atypical CDO colours
than BOTTOM-UP. This indicates that early link-



6540

BOTTOM-UP EARLY-FUSION
object % top colour Acc. % top prediction Acc. % top prediction

heater 94.12 (white) 0.0 35.29 (gray) 82.4 76.47 (white)
tablet 42.86 (black) 19.0 42.86 (blue) 61.9 57.14 (black)
wipers 94.12 (black) 35.3 29.41 (black) 70.6 76.47 (black)
room 54.55 (white) 18.2 31.82 (gray) 50.0 36.36 (white)

cherry 100.0 (red) 68.8 68.75 (red) 0.0 100.0 (green)
lime 100.0 (green) 68.4 68.42 (green) 5.3 94.74 (yellow)
dumpster 37.93 (green) 72.4 27.59 (blue) 10.3 75.86 (pink)
plank 57.14 (brown) 66.7 33.33 (brown) 4.8 90.48 (gray)

Table 3: Accuracy and top predicted colours for selected object types unseen during training. The top four objects
obtain the highest improvements through early fusion, the bottom four objects decrease most with early fusion.

Figure 3: TOP-DOWN and LATE-FUSION predict
the canonical colour for the depicted bush (“green”).
BOTTOM-UP and EARLY-FUSION capture the anno-
tated colour (“purple”).

age and joint processing improves the integration
of visual and conceptual information, at least for
CDOs. It is, however, not a perfect solution to
all problems identified: Even though the model
learns to merge both sources of information, the
bias for canonical colours is still too strong, and
there remains a high dependence on non-sensory
data.

4.3 Unseen Object Types

By using pre-trained embeddings, our models are
able to handle object types that are unseen in the
training set, via similarity to seen object types in
the embedding space. For these objects, BOTTOM-
UP and EARLY-FUSION achieve an overall accu-
racy of 37.8 and 31.9, respectively5. To provide
more qualitative insights, Table 3 shows the top
four and bottom four objects in terms of how much
EARLY-FUSION improves over the BOTTOM-UP

baseline. With heater and wipers, the top four
objects include types with highly characteristic

5Note that these figures are not directly comparable with
the results described above, since the instances for the individ-
ual colours are not evenly distributed in this set.

colours. EARLY-FUSION appears to correctly de-
rive their object-specific colour tendencies from
similarities to trained objects. In the lower four
objects, all instances of cherry and lime share the
same colour. Here, EARLY-FUSION also predom-
inantly predicts a particular but incorrect colour,
i.e. similarity in the off-the-shelf embedding space
does not lead to good generalization for colour ten-
dencies. This is particularly evident with lime: The
prevailing prediction of yellow suggests that the
(in this case, misleading) semantic similarity to the
trained object type lemon is captured.

These findings support previous work on mul-
timodal distributional semantics showing that off-
the-shelf embeddings do not necessarily capture
similarity with respect to visual attributes of ob-
jects (Silberer and Lapata, 2014).

5 Discussion and Conclusion

As in human perception, knowledge about typical
object properties seems to be a valuable source of
information for visual language grounding. Our fu-
sion models clearly outperform a bottom-up base-
line that relies solely on visual input. We also
showed that the fusion architecture matters: the
early integration of visual and conceptual informa-
tion and their shared processing appears to be bene-
ficial when colour diagnostic objects have atypical
colours. However, even Early Fusion does not yet
achieve a perfect balance between top-down and
bottom-up processing. Future work should look at
more complex fusion strategies, possibly coupled
with bottom-up recalibration mechanisms (Zarrieß
and Schlangen, 2016; Mojsilovic, 2005) to further
enhance colour classification under difficult illu-
mination conditions. Our experiment on objects
unseen during training looks promising but can be
extended towards a more general approach that in-
terfaces colour prediction with object recognition.
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