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Abstract

One great challenge in neural sequence label-
ing is the data sparsity problem for rare entity
words and phrases. Most of test set entities
appear only few times and are even unseen
in training corpus, yielding large number of
out-of-vocabulary (OOV) and low-frequency
(LF) entities during evaluation. In this work,
we propose approaches to address this prob-
lem. For OOV entities, we introduce local
context reconstruction to implicitly incorpo-
rate contextual information into their represen-
tations. For LF entities, we present delex-
icalized entity identification to explicitly ex-
tract their frequency-agnostic and entity-type-
specific representations.  Extensive experi-
ments on multiple benchmark datasets show
that our model has significantly outperformed
all previous methods and achieved new start-
of-the-art results. Notably, our methods sur-
pass the model fine-tuned on pre-trained lan-
guage models without external resource.

1 Introduction

In the context of natural language processing
(NLP), the goal of sequence labeling is to assign a
categorical label to each entity word or phrase in a
text sequence. It is a fundamental area that under-
lies a range of applications including slot filling and
named entity recognition. Traditional methods use
statistical models. Recent approaches have been
based on neural networks (Collobert et al., 2011;
Mesnil et al., 2014; Ma and Hovy, 2016; Strubell
et al., 2017; Li et al., 2018; Devlin et al., 2018; Liu
et al., 2019a; Luo et al., 2020; Xin et al., 2018)
and they have made great progresses in various
sequence labeling tasks.

However, a great challenge to neural-network-
based approaches is from the data sparsity problem
(Augenstein et al., 2017). Specifically in the con-
text of sequence labeling, the majority of entities

Frequency Number Percentage
= 0 (0O0V) 1611 65.1%
=1 (Low) 191 7.7%

< 10 (Low) 635 25.7%
> 20 (High) 117 4.7%

> 0 (Total) 2475 100.0%

Table 1: Number of occurrences of test set entities in
the training set. OOV entities are those that have no
occurrence (Frequency = 0) in the training set. Low
frequency entities are those with fewer than ten occur-
rences (Frequency < 10). Percentages of entity occur-
rences are also shown. Data source is CoNLL-03.

in test dataset may occur in training corpus few
times or are absent at all. In this paper, we refer
this phenomenon particularly to rare entity prob-
lem. It is different from other types of data sparsity
problems such as the lack of training data for low-
resource language (Lin et al., 2018), as this rare
entity problem is more related to a mismatch of en-
tity distributions between training and test, rather
than the size of training data. We present an exam-
ple of the problem in Table 1. It shows that less
than 5% of test set entities are frequently observed
in the training set, and about 65% of test set entities
are absent from the training set.

The rare entities can be categorized into two
types: out-of-vocabulary (OOV) for those test set
entities that are not observed in the training set,
and low frequency (LF) for those entities with low
frequency (e.g., fewer than 10) occurrences in the
training set. Without proper processing, rare en-
tities can incur the following risks when building
a neural network. Firstly, OOV terms may act as
noise for inference, as they lack lexical information
from training set (Bazzi, 2002). Secondly, it is hard
to obtain high-quality representations on LF enti-
ties (Gong et al., 2018). Lastly, high occurrences
of OOV and LF entities expose distribution discrep-
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ancy between training and test, which mostly leads
to poor performances during test.

In general, there are two existing strategies at-
tempting to mitigate the above issues: external
resource and transfer learning. The external re-
source approach, for example (Huang et al., 2015;
Li et al., 2018), uses external knowledge such as
part-of-speech tags for NER or additional infor-
mation from intent detection for slot filling. How-
ever, external knowledge such as part-of-speech tag
is not always available for practical applications
and open source taggers such as (Manning et al.,
2014) may perform poorly for cross-domain anno-
tations. Character or n-gram feature are mainly de-
signed to deal with morphologically similar OOV
words. The transfer learning approach, such as
using EL.Mo (Peters et al., 2018) and BERT (De-
vlin et al., 2018), fine-tunes pre-trained models on
the downstream task (Liu et al., 2019a). Never-
theless, it is not directly addressing problems such
as entity distribution discrepancy between training
and test. Moreover, our proposed methods sur-
pass these methods without resorting to external
resources nor large pre-trained language models.

This paper proposes novel techniques that enable
sequence labeling models to achieve state-of-the-
art performances without using external resource
nor transfer learning. These are

e local context reconstruction (LCR), which is
applied on OOV entities, and

e delexicalized entity identification (DEI),
which is applied on LF entities.

Local context reconstruction enables OOV enti-
ties to be related to their contexts. One key point is
applying variational autoencoder to model this re-
construction process that is typically a one-to-many
generation process. Delexicalized entity identifi-
cation aims at extracting frequency-agnostic and
entity-type-specific representation, therefore reduc-
ing the reliance on high-frequency occurrence of
entities'. It uses a novel adversarial training tech-
nique to achieve this goal. Both methods use an
effective random entity masking strategy.

We evaluate the methods on sequence labeling
tasks on several benchmark datasets. Extensive ex-
periments show that the proposed methods signifi-
cantly outperform previous models by a large mar-
gin. Detailed analysis indicates that the proposed

IThis paper refers slots in slot filling tasks as entities for
brevity, although their definitions are not equivalent.

methods indeed alleviate the rare entity problem.
Notably, without using any external knowledge nor
pre-trained models, the proposed methods surpass
the model that uses fine-tuned BERT.

2 Background

Given an input sequence X = [z1,22, - ,ZN]
with N tokens, the sequence labeling task aims at
learning a functional mapping to obtain a target
label sequence Y = [y1,¥2, - ,yn| with equal
length. In the following, we briefly introduce a
typical method for sequence labeling and review
related techniques we use in deriving our model.

2.1 Bidirectional RNN + CRF

Recurrent neural network (RNN) (Hochreiter and
Schmidhuber, 1997) has been widely used for se-
quence labeling. The majority of high performance
models use bidirectional RNN (Schuster and Pali-
wal, 1997) to encode input sequence X and condi-
tional random field (CRF) (Lafferty et al., 2001) as
a decoder to output Y.

The bidirectional RNN firstly embeds observa-
tion z; at each position ¢ to a continuous space X;.
It then applies forward and backward operations
on the whole sequence time-recursively as

{ﬁz = 7(&33171) 1)
ti = 7(Xi, tz‘+1) '

CRF computes the probability of a label se-
quence Y given X as

log p(Y[X) oc Y (gilyi] + Glyi, yit1])
i » (2

where @ denotes concatenation operation. G and
W are learnable matrices. The sequence with the
maximum score is the output of the model, typi-
cally obtained using Viterbi algorithm.

We use bidirectional RNN + CRF model, in par-
ticular, Bi-LSTM+CRF (Huang et al., 2015), as the
baseline model in our framework and it is referred
in the bottom part of Figure 1.

2.2 Variational Autoencoder

The above model, together with other encoder-
decoder models (Sutskever et al., 2014; Bahdanau
et al., 2014), learn deterministic and discriminative
functional mappings. The variational auto-encoder
(VAE) (Kingma and Welling, 2015; Rezende et al.,

6442



list flights to 0/1 with fares

*

Local Context
Reconstruction

*

Local Context
Reconstruction

*

Delexicalized

Entity
Identification

on 0/1 please

Local Context
Reconstruction
please

Delexicalized

Entity
Identification

“r r
[SOS] list flights to indianapolis with fares on monday morning . [EOS]
[ Neural Sequence Labeling (Bi-LSTM + CRF) ]

< g

[SOS] ) 0] 0

&

B-FROMLOC O

bt

&

(6] B-DATE

&

<
<
I-DATE O (6] O [EOS]

Figure 1: Overall framework to use local context reconstruction and delexicalized entity identification for neural
sequence labeling. “[SOS]” and “[EOS]” are used for marking sequence begining and sequence ending, respec-
tively. The local context reconstruction is applied between any two sucessive entities, including the special entities.
The delexicalized entity identitification is applied for all entities except for the special entities.

2014; Bowman et al., 2015), on the other hand, is
stochastic and generative.

Using VAE, we may assume a sequence X =
[x1,X2, - ,Xn] is generated stochastically from
a latent global variable z with a joint probability of

p(x,2) = p(x|z) * p(z). 3)
where p(z) is the prior probability of z, generally
a simple Gaussian distribution, to keep the model
from generating x deterministically. p(x|z) repre-
sents a generation density, usually modeled with a
conditional language model with initial state of z.

Maximum likelihood training of a model for Eq.
(3) involves computationally intractable integration
of z. To circumvent this, VAE uses variational infer-
ence with variational distribution of z coming from
a Gaussian density ¢(z|x) = N(p,diag(c?)),
with vector mean y and diagonal matrix variance
diag(c?) parameterized by neural networks. VAE
also uses reparameterization trick to obtain latent
variable z as follows:

Z=u+0o0e, 4)

where ¢ is sampled from standard Gaussian distri-
bution and ® denotes element-wise product.

The evidence lower bound (ELBO) of the like-
lihood p(x) is obtained using Jensen’s inequality
Eyz)x) log p(x,z) < log p(x) as follows:

L£7(x) = —KL(q(z|x)||p(2))
—CE(q(z|x)|p(x|2))’
where KL(q||p) and CE(q|p) respectively denote

the Kullback-Leibler divergence and the cross-
entropy between distribution ¢ and p. ELBO can

)

be optimized by alternating between optimizations
of parameters of ¢(z|x) and p(x|z).

We apply VAE for local context reconstruction
from slot/entity tags in Figure 1. This is a gener-
ation process that is inherently one-to-many. We
observe that VAE is superior to the deterministic
model (Bahdanau et al., 2014) in learning represen-
tations of rare entities.

2.3 Adversarial Training

Adpversarial training (Goodfellow et al., 2014), orig-
inally proposed to improve robustness to noise in
image, is later extended to NLP tasks such as text
classification (Miyato et al., 2015, 2016) and learn-
ing word representation (Gong et al., 2018).

We apply adversarial training to learn better rep-
resentations of low frequency entities via delexical-
ized entity identification in Figure 1. It has a dis-
criminator to differentiate representations from the
original low-frequency entities and the representa-
tions of the delexicalized entities. Training aims at
obtaining representations that can fool the discrimi-
nator, therefore achieving frequency-agnostics and
entity-type-specificity.

3 The Model

We illustrate the overall framework of the proposed
model in Figure 1. Its baseline sequence labeling
module is described in Section 2.1. We describe the
details of local context reconstruction in Sec. 3.1
and delexicalized entity identification in Sec. 3.2,
together with an example to illustrate them in Fig-
ure 2. We denote parameters in Sec. 2.1 as ™" and
Gemb, respectively, for its RNN and matrix to obtain
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Figure 2: An example to illustrate local context reconstruction and delexicalized entity identification.

embedding. Parameters in Sec. 3.1 and Sec. 3.2 are
each denoted as ' and 6°.

3.1 Local Context Reconstruction

Contrary to the conventional methods that explic-
itly provide abundant lexical features from external
knowledge, we implicitly enrich word representa-
tions with contextual information by training them
to reconstruct their local contexts.

Masking Every entity word z; in X, which is

defined to be not associated with non-entity label

“0O”, in sequence X is firstly randomly masked
with OOV symbol “[UNK]” as follows:

“ UNK ”

ﬁ_{[ |

T

ify, #“0O”Ne>p
otherwise

= ; (6)
where constant p is a threshold and e is uniformly
sampled between 0 and 1.

Forward Reconstruction In the forward re-
construction process, the forward pass of Eq.
(1) is firstly applied on sequence X*
, x'§] to obtain hidden states A . Then,
a forward span representation, m;.c 1> Of the local
context between position k£ and j is obtained using
RNN-minus feature (Wang and Chang, 2016) as
follows:

[xlltv $§‘, -

=, =
m/, = hj — hY. (7
To apply VAE to reconstruct the local context, the
mean u and log-variance log o are firstly computed

from the above representation as follows:

{

where W7 are all learnable matrices. Then, the
reparameterization trick in Eq. (4) is applied on
u;.ck and a]fk exp(log a]fk) to obtain a global
latent variable zf ;. for the local context.

,ufk =W/ tanh(Wf)‘mfk)

; (8)
log afk =W¢ tanh(ngfk)

To generate the i-th word in the local context
sequence [T;{1,ZTj4+2, - ,Tk_1), we first apply a
RNN-decoder with its initial hidden state from the
latent variable zj.c i and the first observation from
the embedding of “[SOS]” symbol to recursively
obtain hidden state 7{ as follows:

¥ = Fx v, ©)

This RNN-decoder specifically does parameter
sharing with the forward pass RNN-encoder in
Eq. (1). We then use softmax to compute the distri-
bution of word at position [ as

?yae
i

where Wg is a learnable matrix.

Lastly, we compute KL distance and cross-
entropy for length-L local context sequence in Eq.
(5) as follows:

= Softmax(Wg * r{), (10)

(
KLY, =37 ¢(ulyd), ol [d)).
d
1 vae
C@;:—ZE:MQ?;[MD7 (11)
vae __ f f
| 2y = —KLY, — CEf,,

where d denotes hidden dimension index and the
closed form KL divergence ( is defined as

(o) =p+0—(1+logo).  (12)

Backward Reconstruction Same as the forward
reconstruction, the backward reconstruction is ap-
plied on non-adjacent successive entities. The back-
ward pass of Eq. (1) is firstly applied on the entity-
masked sequence X*“. Once the backward span
representation, mz o of the local context between

position k and j is obtained as m} ;= %5‘ - ﬁ}i,
the same procedures of the above described for-
ward reconstruction are conducted, except using
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<_
the backward RNN-encoder f (-) in lieu of the
forward RNN-encoder in Eq. (9).
The objective for local context reconstruction is

_ ?Vae Vae
= jk ,
gler ernn

max

(13)
which is to maximize the ELBO w.r.t. parameters
9101‘ and ™0

jvae (X, glcr, ernn

3.2 Delexicalized Entity Identification

For low-frequency entities, the delexicalized entity
identification aims at obtaining frequency-agnostic
and entity-type-specific representations.

Delexicalization We first randomly substitute en-
tity words in input sequence X with their corre-
sponding labels as

zd = {yl
x;

where p is a threshold and ¢ is uniformly sampled
from [0, 1]. We refer this to delexicalization (Wen
et al., 2015), but insert randomness in it.

ify; £ “O” Ne>p

otherwise ’ (14)

Representation for Identification To obtain
representation to identify whether an entity has
been delexicalized to its label, we first use forward
and backward RNN-encoders in Eq. (1) on the
sentence X?¢ = [z¢,24,--- 24 ] and obtain hid-
den states td and h{ for each position ¢. Their
concatenation is h¢ = Kd ® h¢ e, For position 7 in
the original sequence without delex1cahzat10n its
concatenated hidden state h; = El @ h

For an entity with a span from position j to k, its
representation e?k is obtained from the following
average pooling

1
d—ii d
ejk_k—j—i—l i hy.

Average pooling is also applied on h;s to obtain
ey, for the original entity with that span.

(15)

Discriminator A multi-layer perceptron (MLP)
based discriminator with parameter AP is employed
to output a confidence score in [0, 1], indicating the
probability of the delexicalization of an entity; i.e.,

{p?k = J(VdT tanh(W g * e?k))

! a6
pjk = 0(vy tanh(Wy * ejyr.))

where paramters vy and W are learnable and o ()

is Sigmoid function m.

Algorithm 1: Training Algorithm

Input: Dataset .S, 6™", gemb  gler gD
1 repeat
2 Sample a minibatch with pairs (X,Y").
3 Update AP by gradient descent
according to Eq. (17).
4 Update ' and ™" by gradient ascent
to joint maximization of V3¢ 4 7Jat
according to Egs. (13) and (17).
5 Update 6™ and 6°™ by gradient
ascent according to Eq. (2).
¢ until Convergence;

Output: §™, gemb_ gler gb.

Following the principle of adversarial training,
we develop the following minimax objective to
train RNN model ™™ and the discriminator P:

jat(X, Y; 9D7 ernn) — (17)
mingo maxgrn Y, log(pjx) + log(1 — p}ik) ,

which aims at fooling a strong discriminator
6P with parameter #™" optimized, leading to
frequency-agnostics.

4 Training Algorithm

Notice that the model has three modules with their
own objectives. We update their parameters jointly
using Algorithm 1. The algorithm first improves
discriminator 6P to identify delexicalized items. It
then updates #'* and 6™ with joint optimization
JV and J to improve §™" to fool the discrimi-
nator. As VAE optimization of 7" has posterior
collapse problem, we adopt KL cost annealing strat-
egy and word dropout techniques (Bowman et al.,
2015). Finally, the algorithm updates both of ™"
and 6°™ in Bi-LSTM+CRF by gradient ascent ac-
cording to Eq. (2). Note that #'" shares the same
parameters with 0™ and 6°™P.

During experiments, we also find it is beneficial
to have a few epochs of pretraining of parameters
6™ and #°™P with optimization of Eq. (2).

5 Experiments

This section compares the proposed model against
state-of-the-art models on benchmark datasets.

5.1 Settings

Slot Filling We use available ATIS dataset (Tur
et al., 2010) and SNIPS dataset (Coucke et al.,
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Models ATIS SNIPS CoNLL-03

Lample et al. (2016) Bi-LSTM + CRF w/ char 95.17 93.71 90.94

Liu et al. (2018) LM-LSTM-CRF 95.33 94.07 91.24

Liu et al. (2019a) GCDT 95.98 95.03 91.96
Qin et al. (2019) Stack-propagation’ 95.9 94.2 -
Liu et al. (2019b) CM-Net' 95.82 97.15 -

Bi-LSTM + CRF 95.02 93.37 90.11

This Work w/ external resources’ 95.67 94.76 91.04

w/ BERT fine-tuned embedding* 95.94 96.15 92.53

R w/ Proposed Methods | ¢ 96.01 9720  92.67

Table 2: Sequence labeling test results of baselines and the proposed model on benchmark datasets. * refers to fine
tuning on pretrained large models. ' refers to using multi-task learning. ¥ refers to adopting external resources.
The improvements over all prior methods are statistically significant with p < 0.01 under t-test.

2018). Meanwhile, we follow the same setup as
(Goo et al., 2018; Qin et al., 2019).

NER We use the public CoNLL-03 dataset (Sang
and Meulder, 2003) as in (Huang et al., 2015; Lam-
ple et al., 2016; Liu et al., 2019a). The dataset
is tagged with four named entity types, including
PER, LOC, ORG, and MISC.

Baselines We compare the proposed model with
five types of methods: 1) strong baseline (Lample
et al., 2016) use character embedding to improve
sequence tagger; 2) recent state-of-the-art models
for slot filling (Qin et al., 2019; Liu et al., 2019b)
that utilize multi-task learning to incorporate addi-
tional information from intent detection; 3) recent
state-of-the-art models, including Liu et al. (2018)
and Liu et al. (2019a), for NER; 4) Bi-LSTM +
CRF model augmented with external resources,
(i.e., POS tagging using Stanford Parser?); and
5) Bi-LSTM + CRF model with word embedding
from fine-tuned BERT 1, 4 rgr (Devlin et al., 2018).
Results are reported in F1 scores.

We follow most of the baseline performances
reported in (Lample et al., 2016; Liu et al., 2019b;
Qin et al., 2019; Liu et al., 2019a) and rerun the
open source toolkit NCRFpp?, LM-LSTM-CRF*,
and GCDT? on slot filling tasks®.

Implementation Details We use the same con-
figuration setting for all datasets. The hidden di-
mensions are set as 500. We apply dropout to hid-

Zhttps://nlp.stanford.edu/software/lex-parser.shtml.

3https://github.com/jiesutd/NCRFpp.

*“https://github.com/LiyuanLucasLiu/LM-LSTM-CRF.

Shttps://github.com/Adaxry/GCDT.

SFew results are not available for comparison as Qin et al.
(2019); Liu et al. (2019b) are for mult-task learning of intent
detection and slot filling.

den states with a rate of 0.3. L2 regularization is
set as 1 x 1079 to avoid overfit. Following (Liu
et al., 2018, 2019a,b), we adopt the cased, 300d
Glove (Pennington et al., 2014) to initialize word
embeddings. We utilize Adam algorithm (Kingma
and Ba, 2015) to optimize the models and adopt
the suggested hyper-parameters.

5.2 Main Results

The main results of the proposed model on ATIS
and CoNLL-03 are illustrated in Table 2. The pro-
posed model outperforms all other models on all
tasks by a substantial margin. On slot filling tasks,
the model obtains averaged improvements of 0.15
points on ATIS and 1.53 points on SNIPS over CM-
Net and Stack-propagation, without using extra in-
formation from jointly modeling of slots and intents
in these models. In comparison to the prior state-
of-the-art models of GCDT, the improvements are
0.03 points on ATIS, 2.17 points on SNIPS and
0.71 points on CoNLL-03.

Compared with strong baseline (Lample et al.,
2016) that utilizes char embedding to improve Bi-
LSTM + CRE, the gains are even larger. The model
obtains improvements of 0.84 points on ATIS, 3.49
points on SNIPS and 1.73 points on CoNLL-03,
over Bi-LSTM + CRF and LM-LSTM-CRF.

Finally, we have tried improving the baseline Bi-
LSTM+CREF in our model with external resources
of lexical information, including part-of-speech
tags, chunk tags and character embeddings. How-
ever, their F1 scores are consistently below the
proposed model by an average of 1.47 points. We
also replace word embeddings in Bi-LSTM+CRF
with those from fine-tuned BERT 1, 4 pz g but its re-
sults are worse than the proposed model, by 0.07
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Method SNIPS Method CoNLL-03

Bi-LSTM + CRF + LCR + DEI 97.20 OOV LF
w/o LCR 94.37 LM-LSTM-CRF 2049 1136
w/o VAE, w/ LSTM-LM 96.02 GCDT 2073 1149
w/o OOV masking 95.63 Bi-LSTM + CRF 2041 1135
w/o DEI 95.82 w/ external resource? 2052 1143
w/o LCR, DEI (Bi-LSTM + CRF) 93.37 w/ BERT fine-tuned embedding® | 2084 1153

~ Bi-LSTM+CRF+LCR  [2112 1139
Table 3: Ablation experiments for local context recon- Bi-LLSTM + CRF + DEI 2043 1169
struction (LCR) and delexicalized entity identification .

(DEI). LC(R inc)ludes VAE and OOV maysking. Bi-LSTM + CRE + LCR + DEI | 2124 1181
Total 2509 1363

points, 1.05 points and 0.14 points, respectively,
on ATIS, SNIPS, and CoNLL-03.

6 Analysis

It is noteworthy that the substantial improvements
by the model are obtained without using external
resources nor large pre-trained models. Keys to its
success are local context reconstruction and delex-
icalized entity identification. This section reports
our analysis of these modules.

6.1 Ablation Study

Local Context Reconstruction (LCR) We first
examine the impact bought by the LCR process.
In Table 3, we show that removing LCR (w/o
LCR) hurts performance significantly on SNIPS.
We then study if constructing local context in LCR
using a traditional deterministic encoder-decoder
can be equally effectively as using VAE. We make a
good faith attempt of using LSTM-based language
model (Sundermeyer et al., 2012) to generate local
context directly from local context representation
(w/o VAE, w/ LSTM-LM). This does improve re-
sults over that without LCR at all, indicating the
information from reconstructing local context is in-
deed useful. However, its F1 score is still far worse
than that of using VAE. This confirms that VAE is
superior to deterministic model in dealing with the
inherently one-to-many generation of local context
from entities. Lastly, we examine the impact of
OOV masking and observe that F1 score without it
(w/o OOV masking) drops about 1.6 point below
the model. We attribute this improvement from
OOV masking to mitigating the entity distribution
discrepancy between training and test.

Delexicalized Entity Identification (DEI) Re-
moving delexicalized entity identification (w/o
DEI) performs worse than the model, with large
drop of 1.38 point on SNIPS.

Table 4: Numbers of OOV and LF entities that are cor-
rectly labeled. * refers to fine tuning on pretrained large
models. * refers to adopting external resources.

These results show that both local context re-
construction and delexicalized entity identification
contribute greatly to the improved performance by
the proposed model. Because both LCR and DEI
share the same RNN-encoder as the baseline Bi-
LSTM, the information from reconstructing local
context and fooling the discriminator of delexical-
ization is useful for the Bi-LSTM to better predict
sequence labels.

6.2 Rare Entity Handling

In this section, we compare models specifically by
the numbers of OOV and LF entities they can recall
correctly. Such comparison reveals the capability
of each model in handling rare entities.

Results are presented in Table 4. In the case of
without using any external resource and pre-trained
models, the proposed model recalls 3.66% more
OOV entities and 3.96% more LF entities than
LM-LSTM-CRE. This gain is similar when com-
paring against Bi-LSTM+CRF. Furthermore, the
proposed model also recalls more rare entities than
GCDT, a recent state-of-the-art model in NER. Sep-
arately using LCR or DEI improves performance
over baseline Bi-LSTM+CREF. Their gains are com-
plementary as results show that jointly applying
LCR and DEI obtains the best performance. These
results demonstrate convincingly the capability of
local context reconstruction and delexicalized en-
tity identification in rare entities.

Importantly, results in the last two rows reveal
that potentially large improvements can be poten-
tially achieved since there are still 15.34% of OOV
entities and 13.35% of LF entities not recalled.
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Figure 3: Visualization of learned representations on
CoNLL-03 test dataset. Entity types are represented in
different shapes with red for PER, blue for ORG, green
for LOC and orange for MISC. Rare entities are repre-
sented using bigger points. The points with ”X” are for
the delexicalized entities.

6.3 Representation for Delexicalized Entity
Identification

We visualize the learned representation at Eq. (15)
using t-SNE (Maaten and Hinton, 2008) in Figure 3.
It shows 2-dimensional projections of randomly
sampled 800 entities on CoNLL-03 dataset.

Figure 3 clearly shows separability of entities
by their entity types but no separations among low-
frequency and frequent entities. This observation is
consistent to the mini-max objective in Eq. (17) to
learn entity-type-specific and frequency-agnostic
representations.

6.4 Handling Data Scarcity

This section investigates the proposed model on
data scarcity. On ATIS, the percentage of training
samples are reduced down to 20% of the original
size, with a reduction size of 20%. This setting is
challenging and few previous works have exper-
imented. Results in Figure 3 show that the pro-
posed model consistently outperforms other mod-
els, especially in low-resource conditions. Further-
more, reductions of performance from the proposed
model are much smaller, in comparison to other
models. For instance, at percentage 40%, the pro-
posed model only lose 1.17% of its best F1 score
whereas GCDT loses 3.62% of its F1 score. This
suggests that the proposed model is more robust to
low resource than other models.
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Figure 4: Comparisons with respect to different per-
centage of training data on ATIS.

7 Related Work

Neural sequence labeling has been an active field
in NLP, and we briefly review recently proposed
approaches related to our work.

Slot Filling and NER Neural sequence labeling
has been applied to slot filling (Mesnil et al., 2014;
Zhang and Wang, 2016; Liu and Lane, 2016; Qin
et al., 2019) and NER (Huang et al., 2015; Strubell
etal.,2017; Liu et al., 2018; Devlin et al., 2018; Liu
et al., 2019a). For slot filling, multi-task learning
for joint slot filling and intent detection has been
dominating in the recent literature, for example
(Liu and Lane, 2016). The recent work in (Liu et al.,
2019b) employs a collaborative memory network
to further model the semantic correlations among
words, slots and intents jointly. For NER, recent
works use explicit architecture to incorporate infor-
mation such as global context (Liu et al., 2019a) or
conduct optimal architecture searches (Jiang et al.,
2019). The best performing models have been us-
ing pre-training models on large corpus (Baevski
et al., 2019) or incorporating fine-tuning on exist-
ing pre-trained models (Liu et al., 2019a) such as
BERT (Devlin et al., 2018).

External Resource This approach to handle rare
entities includes feature engineering methods such
as incorporating extra knowledge from part-of-
speech tags (Huang et al., 2015) or character em-
beddings (Li et al., 2018). Extra knowledge also
includes tags from public tagger (Manning et al.,
2014). Multi-task learning has been effective in
incorporating additional label information through
multiple objectives. Joint slot filling and intent de-
tection have been used in (Zhang and Wang, 2016;
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Qin et al., 2019; Zhang et al., 2019). Joint part-of-
speech tagging and NER have been used in (Lin
etal., 2018).

Transfer Learning This approach refers to
methods that transfer knowledge from high-
resources to low-resources (Zhou et al., 2019) or
use models pretrained on large corpus to benefit
downstream tasks (Devlin et al., 2018; Liu et al.,
2019a). The most recent work in (Zhou et al., 2019)
applies adversarial training that uses a resource-
adversarial discriminator to improve performances
on low-resource data.

8 Conclusion

We have presented local context reconstruction for
OOV entities and delexicalized entity identification
for low-frequency entities to address the rare entity
problem. We adopt variational autoencoder to learn
a stochastic reconstructor for the reconstruction and
adversarial training to extract frequency-agnostic
and entity-type-specific features. Extensive experi-
ments have been conducted on both slot filling and
NER tasks on three benchmark datasets, showing
that sequence labeling using the proposed methods
achieve new state-of-the-art performances. Impor-
tantly, without using external knowledge nor fine
tuning of large pretrained models, our methods
enable a sequence labeling model to outperform
models fine-tuned on BERT. Our analysis also in-
dicates large potential of further performance im-
provements by exploiting OOV and LF entities.
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