
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3375–3385
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

3375

An Analysis of the Utility of Explicit Negative Examples
to Improve the Syntactic Abilities of Neural Language Models

Hiroshi Noji
Artificial Intelligence Research Center

AIST, Tokyo, Japan
hiroshi.noji@aist.go.jp

Hiroya Takamura
Artificial Intelligence Research Center

AIST, Tokyo, Japan
takamura.hiroya@aist.go.jp

Abstract

We explore the utilities of explicit negative
examples in training neural language mod-
els. Negative examples here are incorrect
words in a sentence, such as barks in *The
dogs barks. Neural language models are com-
monly trained only on positive examples, a
set of sentences in the training data, but re-
cent studies suggest that the models trained
in this way are not capable of robustly han-
dling complex syntactic constructions, such as
long-distance agreement. In this paper, we first
demonstrate that appropriately using negative
examples about particular constructions (e.g.,
subject-verb agreement) will boost the model’s
robustness on them in English, with a negli-
gible loss of perplexity. The key to our suc-
cess is an additional margin loss between the
log-likelihoods of a correct word and an incor-
rect word. We then provide a detailed analy-
sis of the trained models. One of our findings
is the difficulty of object-relative clauses for
RNNs. We find that even with our direct learn-
ing signals the models still suffer from resolv-
ing agreement across an object-relative clause.
Augmentation of training sentences involving
the constructions somewhat helps, but the ac-
curacy still does not reach the level of subject-
relative clauses. Although not directly cogni-
tively appealing, our method can be a tool to
analyze the true architectural limitation of neu-
ral models on challenging linguistic construc-
tions.

1 Introduction

Despite not being exposed to explicit syntactic su-
pervision, neural language models (LMs), such
as recurrent neural networks, are able to generate
fluent and natural sentences, suggesting that they
induce syntactic knowledge about the language
to some extent. However, it is still under debate
whether such induced knowledge about grammar is

robust enough to deal with syntactically challeng-
ing constructions such as long-distance subject-
verb agreement. So far, the results for RNN lan-
guage models (RNN-LMs) trained only with raw
text are overall negative; prior work has reported
low performance on the challenging test cases (Mar-
vin and Linzen, 2018) even with the massive size
of the data and model (van Schijndel et al., 2019),
or argue the necessity of an architectural change
to track the syntactic structure explicitly (Wilcox
et al., 2019b; Kuncoro et al., 2018). Here the task
is to evaluate whether a model assigns a higher
likelihood on a grammatically correct sentence (1a)
over an incorrect sentence (1b) that is minimally
different from the original one (Linzen et al., 2016).

(1) a. The author that the guards like laughs.
b. * The author that the guards like laugh.

In this paper, to obtain a new insight into the syn-
tactic abilities of neural LMs, in particular RNN-
LMs, we perform a series of experiments under a
different condition from the prior work. Specifi-
cally, we extensively analyze the performance of
the models that are exposed to explicit negative
examples. In this work, negative examples are the
sentences or tokens that are grammatically incor-
rect, such as (1b) above.

Since these negative examples provide a direct
learning signal on the task at test time it may not
be very surprising if the task performance goes up.
We acknowledge this, and argue that our motiva-
tion for this setup is to deepen understanding, in
particular the limitation or the capacity of the cur-
rent architectures, which we expect can be reached
with such strong supervision. Another motivation
is engineering: we could exploit negative examples
in different ways, and establishing a better way
will be of practical importance toward building an
LM or generator that can be robust on particular
linguistic constructions.

3376

The first research question we pursue is about
this latter point: what is a better method to uti-
lize negative examples that help LMs to acquire
robustness on the target syntactic constructions?
Regarding this point, we find that adding additional
token-level loss trying to guarantee a margin be-
tween log-probabilities for the correct and incorrect
words (e.g., log p(laughs|h) and log p(laugh|h) for
(1a)) is superior to the alternatives. On the test set
of Marvin and Linzen (2018), we show that LSTM
language models (LSTM-LMs) trained by this loss
reach near perfect level on most syntactic construc-
tions for which we create negative examples, with
only a slight increase of perplexity about 1.0 point.

Past work conceptually similar to us is Engue-
hard et al. (2017), which, while not directly ex-
ploiting negative examples, trains an LM with ad-
ditional explicit supervision signals to the evalua-
tion task. They hypothesize that LSTMs do have
enough capacity to acquire robust syntactic abili-
ties but the learning signals given by the raw text
are weak, and show that multi-task learning with a
binary classification task to predict the upcoming
verb form (singular or plural) helps models aware
of the target syntax (subject-verb agreement). Our
experiments basically confirm and strengthen this
argument, with even stronger learning signals from
negative examples, and we argue this allows us to
evaluate the true capacity of the current architec-
tures. In our experiments (Section 4), we show that
our margin loss achieves higher syntactic perfor-
mance than their multi-task learning.

Another relevant work on the capacity of LSTM-
LMs is Kuncoro et al. (2019), which shows that by
distilling from syntactic LMs (Dyer et al., 2016),
LSTM-LMs can improve their robustness on var-
ious agreement phenomena. We show that our
LMs with the margin loss outperform theirs in most
of the aspects, further strengthening the argument
about a stronger capacity of LSTM-LMs.

The latter part of this paper is a detailed anal-
ysis of the trained models and introduced losses.
Our second question is about the true limitation of
LSTM-LMs: are there still any syntactic construc-
tions that the models cannot handle robustly even
with our direct learning signals? This question can
be seen as a fine-grained one raised by Enguehard
et al. (2017) with a stronger tool and improved eval-
uation metric. Among tested constructions, we find
that syntactic agreement across an object relative
clause (RC) is challenging. To inspect whether this

is due to the architectural limitation, we train an-
other LM on a dataset, on which we unnaturally
augment sentences involving object RCs. Since it
is known that object RCs are relatively rare com-
pared to subject RCs (Hale, 2001), frequency may
be the main reason for the lower performance. In-
terestingly, even when increasing the number of
sentences with an object RC by eight times (more
than twice of sentences with a subject RC), the ac-
curacy does not reach the same level as agreement
across a subject RC. This result suggests an inher-
ent difficulty in tracking a syntactic state across an
object RC for sequential neural architectures.

We finally provide an ablation study to under-
stand the encoded linguistic knowledge in the mod-
els learned with the help of our method. We exper-
iment under reduced supervision at two different
levels: (1) at a lexical level, by not giving negative
examples on verbs that appear in the test set; (2)
at a construction level, by not giving negative ex-
amples about a particular construction, e.g., verbs
after a subject RC. We observe no huge score drops
by both. This suggests that our learning signals
at a lexical level (negative words) strengthen the
abstract syntactic knowledge about the target con-
structions, and also that the models can generalize
the knowledge acquired by negative examples to
similar constructions for which negative examples
are not explicitly given. The result also implies
that negative examples do not have to be complete
and can be noisy, which will be appealing from an
engineering perspective.

2 Target Task and Setup

The most common evaluation metric of an LM
is perplexity. Although neural LMs achieve im-
pressive perplexity (Merity et al., 2018), it is an
average score across all tokens and does not inform
the models’ behaviors on linguistically challenging
structures, which are rare in the corpus. This is
the primary motivation to separately evaluate the
models’ syntactic robustness by a different task.

2.1 Syntactic evaluation task

As introduced in Section 1, the task for a model
is to assign a higher probability to the grammati-
cal sentence over the ungrammatical one, given a
pair of minimally different sentences at a critical
position affecting the grammaticality. For example,
(1a) and (1b) only differ at a final verb form, and
to assign a higher probability to (1a), models need

3377

to be aware of the agreement dependency between
author and laughs over an RC.

Marvin and Linzen (2018) test set While ini-
tial work (Linzen et al., 2016; Gulordava et al.,
2018) has collected test examples from naturally
occurring sentences, this approach suffers from the
coverage issue, as syntactically challenging exam-
ples are relatively rare. We use the test set compiled
by Marvin and Linzen (2018), which consists of
synthetic examples (in English) created by a fixed
vocabulary and a grammar. This approach allows
us to collect varieties of sentences with complex
structures.

The test set is divided by the syntactic construc-
tions appearing in each example. Many construc-
tions are different types of subject-verb agreement,
including local agreement on different sentential
positions (2), and non-local agreement across dif-
ferent types of phrases. Intervening phrases include
prepositional phrases, subject RCs, object RCs, and
coordinated verb phrases (3). (1) is an example of
agreement across an object RC.
(2) The senators smile/*smiles.
(3) The senators like to watch television shows

and are/*is twenty three years old.
Previous work has shown that non-local agreement
is particularly challenging for sequential neural
models (Marvin and Linzen, 2018).

The other patterns are reflexive anaphora depen-
dencies between a noun and a reflexive pronoun
(4), and on negative polarity items (NPIs), such
as ever, which requires a preceding negation word
(e.g., no and none) at an appropriate scope (5):
(4) The authors hurt themselves/*himself.
(5) No/*Most authors have ever been popular.

Note that NPI examples differ from the others
in that the context determining the grammaticality
of the target word (No/*Most) does not precede
it. Rather, the grammaticality is determined by
the following context. As we discuss in Section 3,
this property makes it difficult to apply training
with negative examples for NPIs for most of the
methods studied in this work.

All examples above (1–5) are actual test sen-
tences, and we can see that since they are synthetic
some may sound somewhat unnatural. The main
argument behind using this dataset is that even
not very natural, they are still strictly grammatical,
and an LM equipped with robust syntactic abilities
should be able to handle them as a human would

do.
We use the original test set used in Marvin and

Linzen (2018).1 See the supplementary materials
of this for the lexical items and example sentences
in each construction.

2.2 Language models

Training data Following the practice, we train
LMs on the dataset not directly relevant to the
test set. Throughout the paper, we use an English
Wikipedia corpus assembled by Gulordava et al.
(2018), which has been used as training data for
the present task (Marvin and Linzen, 2018; Kun-
coro et al., 2019), consisting of 80M/10M/10M
tokens for training/dev/test sets. It is tokenized and
rare words are replaced by a single unknown token,
amounting to the vocabulary size of 50,000.

Baseline LSTM-LM Since our focus in this pa-
per is an additional loss exploiting negative exam-
ples (Section 3), we fix the baseline LM through-
out the experiments. Our baseline is a three-layer
LSTM-LM with 1,150 hidden units at internal lay-
ers trained with the standard cross-entropy loss.
Word embeddings are 400-dimensional, and in-
put and output embeddings are tied (Inan et al.,
2016). Deviating from some prior work (Mar-
vin and Linzen, 2018; van Schijndel et al., 2019),
we train LMs at sentence level as in sequence-to-
sequence models (Sutskever et al., 2014). This
setting has been employed in some previous work
(Kuncoro et al., 2018, 2019).2

Parameters are optimized by SGD. For regular-
ization, we apply dropout on word embeddings
and outputs of every layer of LSTMs, with weight
decay of 1.2e-6, and anneal the learning rate by
0.5 if the validation perplexity does not improve
successively, checking every 5,000 mini-batches.
Mini-batch size, dropout weight, and initial learn-
ing rate are tuned by perplexity on the dev set of
Wikipedia dataset.3 Note that we tune these values
for the baseline LSTM-LM and fix them across the
experiments.

1We use the “EMNLP2018” templates in
https://github.com/BeckyMarvin/LM syneval.

2On the other hand, the LSTM-LM of Marvin and Linzen
(2018), which is prepared by Gulordava et al. (2018), is trained
at document level through truncated backpropagation through
time (BPTT) (Mikolov et al., 2011). Since our training regime
is more akin to the task setting of syntactic evaluation, it may
provide some advantage at test time.

3Following values are found: mini-batch size: 128; initial
learnin rate: 20.0; dropout weight on the word embedding
layer and each output layer of LSTM: 0.1.

3378

The size of our three-layer LM is the same as
the state-of-the-art LSTM-LM at document-level
(Merity et al., 2018). Marvin and Linzen (2018)’s
LSTM-LM is two-layer with 650 hidden units and
word embeddings. Comparing two, since the word
embeddings of our models are smaller (400 vs. 650)
the total model sizes are comparable (40M for ours
vs. 39M for theirs). Nonetheless, we will see in the
first experiment that our carefully tuned three-layer
model achieves much higher syntactic performance
than their model (Section 4), being a stronger base-
line to our extensions, which we introduce next.

3 Learning with Negative Examples

Now we describe four additional losses for exploit-
ing negative examples. The first two are existing
ones, proposed for a similar purpose or under a
different motivation. As far as we know, the latter
two have not appeared in past work.4

We note that we create negative examples by
modifying the original Wikipedia training sen-
tences, not sentences in the test set. As a running
example, let us consider the case where sentence
(6a) exists in a mini-batch, from which we create a
negative example (6b).
(6) a. An industrial park with several compa-

nies is located in the close vicinity.
b. * An industrial park with several compa-

nies are located in the close vicinity.

Notations By a target word, we mean a word
for which we create a negative example (e.g., is).
We distinguish two types of negative examples: a
negative token and a negative sentence; the former
means a single incorrect word (e.g., are), while the
latter means an entire ungrammatical sentence.

3.1 Negative Example Losses
Binary-classification loss This is proposed by
Enguehard et al. (2017) to complement a weak
inductive bias in LSTM-LMs for learning syntax.
It is multi-task learning across the cross-entropy
loss (Llm) and an additional loss (Ladd):

L = Llm + βLadd, (1)

where β is a relative weight for Ladd. Given out-
puts of LSTMs, a linear and binary softmax layers

4The loss for large-margin language models (Huang et al.,
2018) is similar to our sentence-level margin loss. Whereas
their formulation is more akin to the standard large-margin
setting, aiming to learn a reranking model, our margin loss
is simpler, just comparing two log-likelihoods of predefined
positive and negative sentences.

predict whether the next token is singular or plural.
Ladd is a loss for this classification, only defined
for the contexts preceding a target token xi:

Ladd =
∑

x1:i∈h∗

− log p(num(xi)|x1:i−1),

where x1:i = x1 · · ·xi is a prefix sequence and h∗

is a set of all prefixes ending with a target word
(e.g., An industrial park with several companies is)
in the training data. num(x) ∈ {singular, plural}
is a function returning the number of x. In practice,
for each mini-batch for Llm, we calculate Ladd

for the same set of sentences and add these two to
obtain a total loss for updating parameters.

As we mentioned in Section 1, this loss does not
exploit negative examples explicitly; essentially a
model is only informed of a key position (target
word) that determines the grammaticality. This is
rather an indirect learning signal, and we expect
that it does not outperform the other approaches.

Unlikelihood loss This is recently proposed
(Welleck et al., 2020) for resolving the repetition
issue, a known problem for neural text genera-
tors (Holtzman et al., 2019). Aiming at learning a
model that can suppress repetition, they introduce
an unlikelihood loss, which is an additional loss
at a token level and explicitly penalizes choosing
words previously appeared in the current context.

We customize their loss for negative tokens x∗i
(e.g., are in (6b)). Since this loss is added at token-
level, instead of Eq. 1 the total loss is Llm, which
we modify as:∑
x∈D

∑
xi∈x
− log p(xi|x1:i−1) +

∑
x∗
i∈negt(xi)

g(x∗i),

g(x∗i) = −α log(1− p(x∗i |x1:i−1)),

where negt(·) returns negative tokens for a target
xi.5 α controls the weight. x is a sentence in the
training data D. The unlikelihood loss strength-
ens the signal to penalize undesirable words in a
context by explicitly reducing the likelihood of
negative tokens x∗i . This is a more direct learning
signal than the binary classification loss.

Sentence-level margin loss We propose a differ-
ent loss, in which the likelihoods for correct and
incorrect sentences are more tightly coupled. As in

5Empty for non-target tokens. It may return multiple to-
kens sometimes, e.g., themselves→{himself, herself}.

3379

the binary classification loss, the total loss is given
by Eq. 1. We consider the following loss for Ladd:∑
x∈D

∑
x∗
j∈negs(x)

max(0, δ−(log p(x)− log p(x∗j))),

where δ is a margin value between the log-
likelihood of original sentence x and negative sen-
tences {x∗j}. negs(·) returns a set of negative sen-
tences by modifying the original one. Note that
we change only one token for each x∗j , and thus
may obtain multiple negative sentences from one
x when it contains multiple target tokens (e.g., she
leaves there but comes back ...).6

Comparing to the unlikelihood loss, not only de-
creasing the likelihood of a negative example, this
loss tries to guarantee a certain difference between
the two likelihoods. The learning signal of this loss
seems stronger in this sense; however, the token-
level supervision is missing, which may provide a
more direct signal to learn a clear contrast between
correct and incorrect words. This is an empirical
problem we pursue in the experiments.

Token-level margin loss Our final loss is a com-
bination of the previous two, by replacing g(xi) in
the unlikelihood loss by a margin loss:

g(x∗i) = max(0, δ−(log p(xi|x1:i−1)
− log p(x∗i |x1:i−1)).

We will see that this loss is the most advantageous
in the experiments (Section 4).

3.2 Parameters

Each method employs a few additional hyperparam-
eters (β for the binary classification loss, α for the
unlikelihood loss, and δ for the margin losses). We
preliminary select β and α from {1, 10, 100, 1000}
that achieve the best average syntactic performance
and find β = 1 and α = 1000. For the two margin
losses, we fix β = 1.0 and α = 1.0 and only see
the effects of margin value δ.

6In principle, one can cumulate this loss within a single
mini-batch for Llm as we do for the binary-classification loss.
However, obtaining Ladd needs to run an LM entirely on
negative sentences as well, which demands a lot of GPU
memories. We avoid this by separating mini-batches for Llm

and Ladd. We precompute all possible pairs of (x, x∗
j) and

create a mini-batch by sampling from them. We make the
batch size for Ladd (the number of pairs) as the half of that
for Llm, to make the number of sentences contained in both
kinds of batches equal. Finally, in each epoch, we only sample
at most the half mini-batches of those for Llm to reduce the
total amount of training time.

3.3 Scope of Negative Examples
Since our goal is to understand to what extent LMs
can be sensitive to the target syntactic constructions
by giving explicit supervision via negative exam-
ples, we only prepare negative examples on the
constructions that are directly tested at evaluation.
Specifically, we mark the following words in the
training data, and create negative examples:

Present verb To create negative examples on
subject-verb agreement, we mark all present
verbs and change their numbers.7

Reflexive pronoun We also create negative exam-
ples on reflexive anaphora, by flipping be-
tween {themselves}↔{himself, herself}.

These two are both related to the syntactic number
of a target word. For binary classification we re-
gard both as a target word, apart from the original
work that only deals with subject-verb agreement
(Enguehard et al., 2017). We use a single common
linear layer for both constructions.

In this work, we do not create negative exam-
ples for NPIs. This is mainly for technical reasons.
Among four losses, only the sentence-level mar-
gin loss can correctly handle negative examples for
NPIs, essentially because other losses are token-
level. For NPIs, left contexts do not have infor-
mation to decide the grammaticality of the target
token (a quantifier; no, most, etc.) (Section 2.1).
Instead, in this work, we use NPI test cases as a
proxy to see possible negative (or positive) impacts
as compensation for specially targeting some con-
structions. We will see that in particular for our
margin losses, such negative effects are very small.

4 Experiments on Additional Losses

We first see the overall performance of base-
line LSTM-LMs as well as the effects of addi-
tional losses. Throughout the experiments, for
each setting, we train five models from differ-
ent random seeds and report the average score
and standard deviation. The code is available at
https://github.com/aistairc/lm syntax negative.

Naive LSTM-LM performs well The main ac-
curacy comparison across target constructions for
different settings is presented in Table 1. We first

7We use Stanford tagger (Toutanova et al., 2003)
to find the present verbs. We change the number
of verbs tagged by VBZ or VBP using inflect.py
(https://pypi.org/project/inflect/).

3380

LSTM-LM Additional margin loss (δ = 10) Additional loss (α = 1000, β = 1) Distilled

M&L18 Ours Sentence-level Token-level Binary-pred. Unlike. K19

AGREEMENT:
Simple 94.0 98.1 (±1.3) 100.0 (±0.0) 100.0 (±0.0) 99.1 (±1.2) 99.7 (±0.6) 100.0 (±0.0)
In a sent. complement 99.0 96.1 (±2.0) 95.8 (±0.7) 99.3 (±0.4) 96.9 (±2.4) 92.7 (±3.1) 98.0 (±2.0)
Short VP coordination 90.0 93.6 (±3.0) 100.0 (±0.0) 99.4 (±1.1) 93.8 (±3.3) 95.6 (±3.0) 99.0 (±2.0)
Long VP coordination 61.0 82.2 (±3.4) 94.5 (±1.0) 99.0 (±0.8) 83.9 (±3.2) 90.0 (±2.4) 80.0 (±2.0)
Across a PP 57.0 92.6 (±1.4) 98.8 (±0.4) 98.6 (±0.3) 92.7 (±1.3) 95.2 (±1.2) 91.0 (±3.0)
Across a SRC 56.0 91.5 (±3.4) 99.6 (±0.4) 99.8 (±0.2) 91.9 (±2.5) 97.1 (±0.7) 90.0 (±2.0)
Across an ORC 50.0 84.5 (±3.1) 93.5 (±4.0) 93.7 (±2.0) 86.3 (±3.2) 88.7 (±4.1) 84.0 (±3.0)
Across an ORC (no that) 52.0 75.7 (±3.3) 86.7 (±4.2) 89.4 (±2.7) 78.6 (±4.0) 86.4 (±3.5) 77.0 (±2.0)
In an ORC 84.0 84.3 (±5.5) 99.8 (±0.2) 99.9 (±0.1) 89.3 (±6.2) 92.4 (±3.5) 92.0 (±4.0)
In an ORC (no that) 71.0 81.8 (±2.3) 97.0 (±1.0) 98.6 (±0.9) 83.0 (±5.1) 88.9 (±2.4) 92.0 (±2.0)

REFLEXIVE:
Simple 83.0 94.1 (±1.9) 99.4 (±1.1) 99.9 (±0.2) 91.8 (±2.9) 98.0 (±1.1) 91.0 (±4.0)
In a sent. complement 86.0 80.8 (±1.7) 99.2 (±0.6) 97.9 (±0.8) 79.0 (±3.1) 92.6 (±2.9) 82.0 (±3.0)
Across an ORC 55.0 74.9 (±5.0) 72.8 (±2.4) 73.9 (±1.3) 72.3 (±3.0) 78.9 (±8.6) 67.0 (±3.0)

NPI:
Simple 40.0 99.2 (±0.7) 98.7 (±1.6) 97.7 (±2.0) 98.0 (±3.1) 98.2 (±1.2) 94.0 (±4.0)
Across an ORC 41.0 63.5 (±15.0) 56.8 (±6.0) 64.1 (±13.8) 64.5 (±14.0) 48.5 (±6.4) 91.0 (±7.0)

Perplexity 78.6 49.5 (±0.2) 56.4 (±0.5) 50.4 (±0.6) 49.6 (±0.3) 50.3 (±0.2) 56.7 (±0.2)

Table 1: Comparison of syntactic dependency evaluation accuracies across different types of dependencies and
perplexities. Numbers in parentheses are standard deviations. M&L18 is the result of two-layer LSTM-LM in
Marvin and Linzen (2018). K19 is the result of distilled two-layer LSTM-LM from RNNGs (Kuncoro et al., 2019).
VP: verb phrase; PP: prepositional phrase; SRC: subject relative clause; and ORC: object-relative clause. Margin
values are set to 10, which works better according to Figure 1. Perplexity values are calculated on the test set of
the Wikipedia dataset. The values of M&L18 and K19 are copied from Kuncoro et al. (2019).

0 1 5 10 15
margin

80

85

90

95

100

Ac
cu

ra
cy

 /
Pe

rp
le

xi
ty

Agreement

sentence-level
token-level

0 1 5 10 15
margin

80

85

90

95

100 Reflexive

0 1 5 10 15
margin

60

70

80

90

100 NPI

0 1 5 10 15
margin

50

52

54

56

58 Perplexity

Figure 1: Margin value vs. macro average accuracy over the same type of constructions, or perplexity, with standard
deviation for the sentence and token-level margin losses. δ = 0 is the baseline LSTM-LM without additional loss.

notice that our baseline LSTM-LM (Section 2.2)
performs much better than Marvin and Linzen
(2018)’s LM. A similar observation is recently
made by Kuncoro et al. (2019).8 This suggests
that the original work underestimates the true syn-
tactic ability induced by LSTM-LMs. The table
also shows the results by their distilled LSTM-LM
from RNNGs (Section 1).

Higher margin value is effective For the two
types of margin loss, which margin value should
we use? Figure 1 reports average accuracies within
the same types of constructions. For both token
and sentence-levels, the task performance increases
along δ, but a too large value (15) causes a nega-

8We omit the comparison but the scores are overall similar.

tive effect, in particular on reflexive anaphora. In-
creases (degradations) of perplexity are observed in
both methods but this effect is much smaller for the
token-level loss. In the following experiments, we
fix the margin value to 10 for both, which achieves
the best syntactic performance.

Which additional loss works better? We see
a clear tendency that our token-level margin loss
achieves overall better performance. Unlikeli-
hood loss does not work unless we choose a huge
weight parameter (α = 1000), but it does not
outperform ours, with a similar value of perplex-
ity. The improvements by binary-classification loss
are smaller, indicating that the signals are weaker
than other methods with explicit negative exam-

3381

0.1M 0.37M 0.5M 0.8M
ORCs

75

80

85

90

95

100
Ac

cu
ra

cy
 o

n
'A

cr
os

s a
n

OR
C' with that (all cases)

LSTM-LM
margin (sent.)
margin (token)

0.1M 0.37M 0.5M 0.8M
ORCs

with that (animate only)

0.1M 0.37M 0.5M 0.8M
ORCs

no that (all cases)

0.1M 0.37M 0.5M 0.8M
ORCs

no that (animate only)

Figure 2: Accuracies on “Across an ORC” (with and without complementizer “that”) by models trained on aug-
mented data with additional sentences containing an object RC. Margin is set to 10. X-axis denotes the total
number of object RCs in the training data. 0.37M roughly equals the number of subject RCs in the original data.
“animate only” is a subset of examples (see body). Error bars are standard deviations across 5 different runs.

ples. Sentence-level margin loss is conceptually
advantageous in that it can deal with any type of
sentence-level grammaticality including NPIs. We
see that it is overall competitive with token-level
margin loss but suffers from a larger increase of
perplexity (4.9 points), which is observed even with
smaller margin values (Figure 1). Understanding
the cause of this degradation as well as alleviating
it is an important future direction.

5 Limitations of LSTM-LMs

In Table 1, the accuracies on dependencies across
an object RC are relatively low. The central ques-
tion in this experiment is whether this low perfor-
mance is due to the limitation of current architec-
tures, or other factors such as frequency. We base
our discussion on the contrast between object (7)
and subject (8) RCs:

(7) The authors (that) the chef likes laugh.
(8) The authors that like the chef laugh.

Importantly, the accuracies for a subject RC are
more stable, reaching 99.8% with the token-level
margin loss, although the content words used in the
examples are common.9

It is known that object RCs are less frequent
than subject RCs (Hale, 2001; Levy, 2008), and it
could be the case that the use of negative examples
still does not fully alleviate this factor. Here, to
understand the true limitation of the current LSTM
architecture, we try to eliminate such other factors
as much as possible under a controlled experiment.

9 Precisely, they are not the same. Examples of object
RCs are divided into two categories by the animacy of the
main subject (animate or not), while subject RCs only contain
animate cases. If we select only animate examples from object
RCs the vocabularies for both RCs are the same, remaining
only differences in word order and inflection, as in (7, 8).

Setup We first inspect the frequencies of ob-
ject and subject RCs in the training data, by pars-
ing them with the state-of-the-art Berkeley neural
parser (Kitaev and Klein, 2018). In total, while
subject RCs occur 373,186 times, object RCs only
occur 106,558 times. We create three additional
training datasets by adding sentences involving ob-
ject RCs to the original Wikipedia corpus (Sec-
tion 2.2). To this end, we randomly pick up 30
million sentences from Wikipedia (not overlapped
to any sentences in the original corpus), parse by
the same parser, and filter sentences containing an
object RC, amounting to 680,000 sentences. We
create augmented training sets by adding a subset,
or all of these sentences to the original training
sentences. Among the test cases about object RCs
we only report accuracies on subject-verb agree-
ment, on which the portion for subject RCs also
exists. This allows us to compare the difficulties
of two types of RCs for the present models. We
also evaluate on “animate only” subset, which has
a correspondence to the test cases for subject RCs
with only differences in word order and inflection
(like (7) and (8); see footnote 9). Of particular in-
terest to us is the accuracy on these animate cases.
We expect that the main reason for lower perfor-
mance for object RCs is due to frequency, and with
our augmentation the accuracy will reach the same
level as that for subject RCs.

Results However, for both all and animate cases,
accuracies are below those for subject RCs (Fig-
ure 2). Although we see improvements from the
original score (93.7), the highest average accuracy
by the token-level margin loss on the “animate”
subset is 97.1 (“with that”), not beyond 99%. This
result indicates some architectural limitations of
LSTM-LMs in handling object RCs robustly at a
near perfect level. Answering why the accuracy

3382

Across a PP
80

85

90

95

100

Ac
cu

ra
cy

Across a SRC Across an ORC

Long VP coord.
80

85

90

95

100

Ac
cu

ra
cy

LSTM-LM
margin (token)
margin (token) w/o negative
examples on target verbs
margin (token) w/o negative
examples on a construction

Figure 3: An ablation study to see the performance of
models trained with reduced explicit negative examples
(token-level and construction-level). One color repre-
sents the same models across plots, except the last bar
(construction-level), which is different for each plot.

does not reach (almost) 100%, perhaps with other
empirical properties or inductive biases (Khandel-
wal et al., 2018; Ravfogel et al., 2019) is future
work.

6 Do models generalize explicit
supervision, or just memorize it?

One distinguishing property of our margin loss,
in particular token-level loss, is that it is highly
lexical, making a contrast explicitly between cor-
rect and incorrect words. This direct signal may
make models acquire very specialized knowledge
about each target word, not very generalizable one
across similar words and occurring contexts. In this
section, to get insights into the transferability of
syntactic knowledge induced by our margin losses,
we provide an ablation study by removing certain
negative examples during training.

Setup We perform two kinds of ablation. For
token-level ablation (-TOKEN), we avoid creating
negative examples for all verbs that appear as a tar-
get verb10 in the test set. Another is construction-
level (-PATTERN), by removing all negative ex-
amples occurring in a particular syntactic pattern.
We ablate a single construction at a time for -
PATTERN, from four non-local subject-verb depen-
dencies (across a prepositional phrase (PP), sub-

10swim, smile, laugh, enjoy, hate, bring, interest, like, write,
admire, love, know, and is.

Second verb (V1 and V2)
Models All verbs like other verbs

LSTM-LM 82.2 (±3.4) 13.0 (±12.2) 89.9 (±3.6)
Margin (token) 99.0 (±0.8) 94.0 (±6.5) 99.6 (±0.5)

-TOKEN 90.8 (±3.3) 51.0 (±29.9) 95.2 (±2.6)
-PATTERN 90.1 (±4.6) 50.0 (±30.6) 94.6 (±2.2)

Table 2: Accuracies on long VP coordinations by the
models with/without ablations. “All verbs” scores are
overall accuracies. “like” scores are accuracies on ex-
amples on which the second verb (target verb) is like.

First verb (V1 and V2)
Models likes other verbs

LSTM-LM 61.5 (±20.0) 93.5 (±3.4)
Margin (token) 97.0 (±4.5) 99.9 (±0.1)

-TOKEN 63.5 (±18.5) 99.2 (±1.1)
-PATTERN 67.0 (±21.2) 98.0 (±1.4)

Table 3: Further analysis of accuracies on the “other
verbs” cases of Table 2. Among these cases, the second
column (“likes”) shows accuracies on examples where
the first verb (not target) is likes.

ject RC, object RC, and long verb phrase (VP)).11

We hypothesize that models are less affected by
token-level ablation, as knowledge transfer across
words appearing in similar contexts is promoted
by language modeling objective. We expect that
construction-level supervision would be necessary
to induce robust syntactic knowledge, as perhaps
different phrases, e.g., a PP and a VP, are processed
differently.

Results Figure 3 is the main results. Across
models, we restrict the evaluation on four non-
local dependency constructions, which we select
as ablation candidates as well. For a model with
-PATTERN, we evaluate only on examples of con-
struction ablated in training (see caption). To our
surprise, both -TOKEN and -PATTERN have sim-
ilar effects, except “Across an ORC”, on which
the degradation by -PATTERN is larger. This may
be related to the inherent difficulty of object RCs
for LSTM-LMs that we verified in Section 5. For
such particularly challenging constructions, models
may need explicit supervision signals. We observe
lesser score degradation by ablating prepositional
phrases and subject RCs. This suggests that, for
example, the syntactic knowledge strengthened for
prepositional phrases with negative examples could
be exploited to learn the syntactic patterns about

11We identify all these cases from the parsed training data,
which we prepared for the analysis in Section 5.

3383

subject RCs, even when direct learning signals on
subject RCs are missing.

We see approximately 10.0 points score degra-
dation on long VP coordination by both ablations.
Does this mean that long VPs are particularly hard
in terms of transferability? We find that the main
reasons for this drop, relative to other cases, are
rather technical, essentially due to the target verbs
used in the test cases. See Table 2, 3, which show
that failed cases for the ablated models are often
characterized by the existence of either like or likes.
Excluding these cases (“other verbs” in Table 3),
the accuracies reach 99.2 and 98.0 by -TOKEN and
-PATTERN, respectively. These verbs do not appear
as a target verb in the test cases of other tested
constructions. This result suggests that the transfer-
ability of syntactic knowledge to a particular word
may depend on some characteristics of that word.
We conjecture that the reason for weak transferabil-
ity to likes and like is that they are polysemous;
e.g., in the corpus, like is much more often used
as a preposition and being used as a present tense
verb is rare. This type of issue due to frequency
may be one reason for lessening the transferability.
In other words, like can be seen as a challenging
verb to learn its usage only from the corpus, and
our margin loss helps for such cases.

7 Discussion and Conclusion

Our results with explicit negative examples are
overall positive. We have demonstrated that mod-
els exposed to these examples at training time in
an appropriate way will be capable of handling the
targeted constructions at near perfect level except
a few cases. We found that our new token-level
margin loss is superior to the other approaches and
the remaining challenging cases are dependencies
across an object relative clause.

Object relative clauses are known to be harder
for a human as well, and our results may indicate
some similarities in the sentence processing be-
haviors by a human and RNN, though other stud-
ies also find some dissimilarities between them
(Linzen and Leonard, 2018; Wilcox et al., 2019a).
The difficulty of object relative clauses for RNN-
LMs has also been observed in the prior work
(Marvin and Linzen, 2018; van Schijndel et al.,
2019). A new insight provided by our study is
that this difficulty holds even after alleviating the
frequency effects by augmenting the target struc-
tures along with direct supervision signals. This

indicates that RNNs might inherently suffer from
some memory limitation like a human subject, for
which the difficulty of particular constructions, in-
cluding center-embedded object relative clauses,
are known to be incurred due to memory limitation
(Gibson, 1998; Demberg and Keller, 2008) rather
than purely frequencies of the phenomena. In terms
of language acquisition, the supervision provided
in our approach can be seen as direct negative ev-
idence (Marcus, 1993). Since human learners are
known to acquire syntax without such direct feed-
back we do not claim that our proposed learning
method itself is cognitively plausible.

One limitation of our approach is that the scope
of negative examples has to be predetermined and
fixed. Alleviating this restriction is an important fu-
ture direction. Though it is challenging, we believe
that our final analysis for transferability, which in-
dicates that the negative examples do not have to be
complete and can be noisy, suggests a possibility
of a mechanism to induce negative examples them-
selves during training, perhaps relying on other
linguistic cues or external knowledge.

Acknowledgements

We would like to thank Naho Orita and the mem-
bers of Computational Psycholinguistics Tokyo for
their valuable suggestions and comments. This
paper is based on results obtained from projects
commissioned by the New Energy and Industrial
Technology Development Organization (NEDO).

References
Vera Demberg and Frank Keller. 2008. Data from eye-

tracking corpora as evidence for theories of syntactic
processing complexity. Cognition, 109:193–210.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199–209, San Diego, California.
Association for Computational Linguistics.

Émile Enguehard, Yoav Goldberg, and Tal Linzen.
2017. Exploring the syntactic abilities of RNNs
with multi-task learning. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 3–14, Vancouver,
Canada. Association for Computational Linguistics.

Edward Gibson. 1998. Linguistic complexity: Locality
of syntactic dependencies. Cognition, 68(1):1–76.

https://doi.org/10.1016/j.cognition.2008.07.008
https://doi.org/10.1016/j.cognition.2008.07.008
https://doi.org/10.1016/j.cognition.2008.07.008
http://www.aclweb.org/anthology/N16-1024
http://www.aclweb.org/anthology/N16-1024
https://doi.org/10.18653/v1/K17-1003
https://doi.org/10.18653/v1/K17-1003

3384

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1195–1205. Associ-
ation for Computational Linguistics.

John Hale. 2001. A probabilistic earley parser as a psy-
cholinguistic model. In Second Meeting of the North
American Chapter of the Association for Computa-
tional Linguistics.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2019. The curious case of neural text degener-
ation.

Jiaji Huang, Yi Li, Wei Ping, and Liang Huang. 2018.
Large margin neural language model. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1183–1191,
Brussels, Belgium. Association for Computational
Linguistics.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2016. Tying word vectors and word classifiers: A
loss framework for language modeling. In Interna-
tional Conference on Learning Representations.

Urvashi Khandelwal, He He, Peng Qi, and Dan Juraf-
sky. 2018. Sharp nearby, fuzzy far away: How neu-
ral language models use context. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 284–294, Melbourne, Australia. Association
for Computational Linguistics.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yo-
gatama, Stephen Clark, and Phil Blunsom. 2018.
Lstms can learn syntax-sensitive dependencies well,
but modeling structure makes them better. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1426–1436, Melbourne, Australia.
Association for Computational Linguistics.

Adhiguna Kuncoro, Chris Dyer, Laura Rimell, Stephen
Clark, and Phil Blunsom. 2019. Scalable syntax-
aware language models using knowledge distillation.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
3472–3484, Florence, Italy. Association for Compu-
tational Linguistics.

Roger Levy. 2008. Expectation-based syntactic com-
prehension. Cognition, 106(3):1126–1177.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of lstms to learn syntax-
sensitive dependencies. Transactions of the Associa-
tion for Computational Linguistics, 4:521–535.

Tal Linzen and Brian Leonard. 2018. Distinct patterns
of syntactic agreement errors in recurrent networks
and humans. In Proceedings of the 40th Annual Con-
ference of the Cognitive Science Society, pages 692–
697, Austin, TX. Cognitive Science Society.

Gary F. Marcus. 1993. Negative evidence in language
acquisition. Cognition, 46(1):53 – 85.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202,
Brussels, Belgium. Association for Computational
Linguistics.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. Regularizing and optimizing LSTM
language models. In International Conference on
Learning Representations.

Tomas Mikolov, Stefan Kombrink, Lukás Burget, Jan
Cernocký, and Sanjeev Khudanpur. 2011. Exten-
sions of recurrent neural network language model.
In ICASSP, pages 5528–5531. IEEE.

Shauli Ravfogel, Yoav Goldberg, and Tal Linzen. 2019.
Studying the inductive biases of RNNs with syn-
thetic variations of natural languages. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 3532–3542, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Marten van Schijndel, Aaron Mueller, and Tal Linzen.
2019. Quantity doesn’t buy quality syntax with neu-
ral language models. In Proceedings of the 2010
Conference on Empirical Methods in Natural Lan-
guage Processing, Hong Kong, China. Association
for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 conference of the North
American chapter of the association for computa-
tional linguistics on human language technology-
volume 1, pages 173–180. Association for Compu-
tational Linguistics.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2020. Neu-
ral text generation with unlikelihood training. In
International Conference on Learning Representa-
tions.

https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/N18-1108
https://www.aclweb.org/anthology/N01-1021
https://www.aclweb.org/anthology/N01-1021
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
http://www.aclweb.org/anthology/D18-1150
https://openreview.net/forum?id=r1aPbsFle
https://openreview.net/forum?id=r1aPbsFle
https://doi.org/10.18653/v1/P18-1027
https://doi.org/10.18653/v1/P18-1027
http://www.aclweb.org/anthology/P18-1249
http://www.aclweb.org/anthology/P18-1249
http://www.aclweb.org/anthology/P18-1132
http://www.aclweb.org/anthology/P18-1132
https://doi.org/10.18653/v1/P19-1337
https://doi.org/10.18653/v1/P19-1337
http://aclweb.org/anthology/Q16-1037
http://aclweb.org/anthology/Q16-1037
http://mindmodeling.org/cogsci2018/papers/0147/index.html
http://mindmodeling.org/cogsci2018/papers/0147/index.html
http://mindmodeling.org/cogsci2018/papers/0147/index.html
https://doi.org/https://doi.org/10.1016/0010-0277(93)90022-N
https://doi.org/https://doi.org/10.1016/0010-0277(93)90022-N
http://www.aclweb.org/anthology/D18-1151
http://www.aclweb.org/anthology/D18-1151
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=SyyGPP0TZ
http://dblp.uni-trier.de/db/conf/icassp/icassp2011.html#MikolovKBCK11
http://dblp.uni-trier.de/db/conf/icassp/icassp2011.html#MikolovKBCK11
https://doi.org/10.18653/v1/N19-1356
https://doi.org/10.18653/v1/N19-1356
https://arxiv.org/abs/1909.00111
https://arxiv.org/abs/1909.00111
https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://openreview.net/forum?id=SJeYe0NtvH
https://openreview.net/forum?id=SJeYe0NtvH

3385

Ethan Wilcox, Roger P. Levy, and Richard Futrell.
2019a. What syntactic structures block dependen-
cies in rnn language models? In Proceedings of the
41st Annual Meeting of the Cognitive Science Soci-
ety. Cognitive Science Society.

Ethan Wilcox, Peng Qian, Richard Futrell, Miguel
Ballesteros, and Roger Levy. 2019b. Structural su-
pervision improves learning of non-local grammati-
cal dependencies. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3302–3312, Minneapolis, Minnesota.
Association for Computational Linguistics.

https://cogsci.mindmodeling.org/2019/papers/0219/index.html
https://cogsci.mindmodeling.org/2019/papers/0219/index.html
https://doi.org/10.18653/v1/N19-1334
https://doi.org/10.18653/v1/N19-1334
https://doi.org/10.18653/v1/N19-1334

