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RÉSUMÉ
Caractérisation entropique de la structure termino-conceptuelle : Une enquête préliminaire
Les termes représentent des concepts, qui consistent en des caractéristiques conceptuelles. Dans
la formation sur le terrain du concept et du terme, qui est effectuée par les chercheurs, le proces-
sus est inversé : les éléments / caractéristiques conceptuels sont consolidés pour former des con-
cepts, qui seront représentés par des termes. Les concepts n’existant pas a priori, ce processus est
échafaudé par ce que nous pouvons appeler un “système termino-conceptuel”. Les terminologues,
tant dans la pratique que dans la recherche, ne font pas que cueillir et énumérer des termes; en plus
ils analysent, décrivent et définissent les termes tout en systématisant les terminologies. Pour mener
à bien ces tâches, les terminologues doivent se référer aux systèmes conceptuels, dans la mesure
où ils contribuent à systématiser les terminologies ; les terminologues abordent donc également le
domaine du système terminologique-conceptuel. Dans cet article nous appuyons le statut du do-
maine terminologique-conceptuel en proposant un procédé pour caractériser la structure du système
terminologique-conceptuel en termes d’entropie. Nous analysons l’entropie des terminologies en
langue anglaise de six domaines : l’agriculture, la botanique, la chimie, l’informatique, la physique
et la psychologie.

ABSTRACT
Terms represent concepts, which consist of conceptual characteristics. In actual concept-term forma-
tion, which is done by researchers, the process is in reverse: conceptual elements/characteristics are
consolidated to form concepts, which are represented by terms. As concepts do not exist on the fly,
what we may call termino-conceptual system provides scaffolding in this process. Terminologists,
both in practice and in research, do not only collect and list terms but also analyse, describe and
define terms and systematise terminologies. To carry out these tasks, terminologists must refer to
conceptual systems, to the extent that they contribute to systematising terminologies; terminologists
thus also deal with the sphere of termino-conceptual system. In this paper, we consolidate the status
of termino-conceptual sphere and propose a way to characterise the structure of termino-conceptual
system by using entropy. The entropic characterisation of English terminologies of six domain, i.e.
agriculture, botany, chemistry, computer science, physics and psychology are presented.

MOTS-CLÉS : Terminologie, entropie, structure de spécification, structure de classification.
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1 Introduction

In societies of which technologies and specialised knowledge are inherent part, understanding of
specialised concepts and proper treatment of technical terms are required in many social activities.
Terminologists, both in practice and in research, play an important role in the activities that involve
technical communication, including technical translation. The task of terminologists are not only to
collect terms but also to analyse, describe and define terms and to systematise terminologies. In order
to carry out these tasks, terminologists refer to conceptual systems that underline terminologies.

Concepts of a domain are formed and named as terms by researchers of the domain. Concepts con-
sist of characteristics, and concept formation can be approximately regarded as structurisation of
conceptual characteristics. This process is bound by existing conceptual system and terminology
(Sager, 1990; Kageura, 2002). As terminological naming tends towards “transparency and consis-
tency” (Sager, 1990:57), representational structure of terminologies reflect conceptual system to a
substantial extent. We can identify here a system consisting of conceptual characteristics and con-
cepts not in their abstract existence but as represented by terminologies, which we may call a sphere
of “termino-conceptual” system.

This sphere operates implicitly as scaffolding for researchers in their activities, while it constitutes,
in a sense, the main target of terminological work, as terminologists are concerned with terms and
concepts to the extent that they are relevant to terminology processing and management. Neverthe-
less, this sphere itself has not been the explicit reflective target of terminological research (Kageura,
2015). Against this backdrop, this paper tries to consolidate the sphere of termino-conceptual
system, introduces a simple information-theoretic approach to characterise the termino-conceptual
structure, and analyses and characterises English terminologies of six domains, i.e. agriculture,
botany, chemistry, computer science, physics and psychology.

2 An approximation to termino-conceptual sphere

2.1 Framework and layers for observing termino-conceptual structure

What we call here the sphere of termino-conceptual system is, as briefly stated in Introduction, the
sphere where terminological representations and conceptual system meets. It contains conceptual
characteristics, concepts and conceptual system to the extent that they are relevant to terms. Re-
searchers’ thinking process and external factors that lead them to come up with new concepts are out
of this sphere. It contains terms and terminological system to the extent that they represent concepts.
Linguistic features or social status of terminological elements are not a part of this sphere. While
this sphere is defined as a theoretical abstraction, practical terminological work is carried out in or
around this sphere. For instance, definitions given in terminological lexicons describe concepts only
to the extent that they are identified within the terminological system that represent them.

Terms represent concepts, which consist of conceptual characteristics. Terms are “motivated”
(de Saussure, 1911) to a substantial degree, representing important characteristics of the concepts by
constituent elements of complex terms. For instance, “brain tumour” represents the concept of “the
growth of abnormal cells (tumour) in the tissues of the brain”1. Two conceptual characteristics, i.e.

1National Cancer Institute. NCI Dictionary of Cancer Terms. https://www.cancer.gov/publications/dictionaries/cancer-
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tumour as the genus concept and brain, the body part, as the core differentiating characteristic, are
represented as nucleus and determinant of this term, respectively. A substantial amount – around 80
percent – of terms in most domains in many languages are complex (Cerbah, 2000; Nomura & Ishii,
1988). These complex terms represent important conceptual characteristics while at the same time
showing the relative position of concepts represented by terms within the conceptual system (Sager,
1990; Kageura, 2012).

As a first step, therefore, we can approximate the termino-conceptual system by means of the sur-
face structure of terminologies, under some simplifying assumptions: (a) constituent elements of
terms represent conceptual characteristics without ambiguities; (b) terms represent important con-
ceptual characteristics by their constituent elements; and (c) the structure of complex terms reflect
the position, i.e. the nucleus and the determinants, of conceptual characteristics. We basically adopt
here that terms/concepts are formed by combining constituent elements/conceptual characteristics.
This approximation can enable us to observe differences in linguistic representations of concepts in
different domains or in different languages.

Under the assumptions adopted here, we can define layers of characterising termino-conceptual
structure, starting from a set of conceptual characteristics (cf. Sager, 1990; Kageura, 2002):

1. Each subject domain has a set of conceptual characteristics, by using which concepts are
consolidated. We call it the base set.

2. These conceptual characteristics are used repeatedly in forming concepts; this assigns distri-
bution to conceptual characteristics in the domain. We call this layer the selection structure.

3. These conceptual characteristics are used in combination with other constituent elements to
form concepts, either as a nucleus of concepts, fixing the core of the concepts, or as determi-
nants, to specify the concepts. We call this layer the specification structure.

4. These conceptual characteristics are used to form concepts in such a way that the paradigmatic
or classificatory positions of the concepts within the conceptual system are reflected. We call
this layer classificatory structure.

Note that these layers are not for describing or analysing given terms or terminologies, but for
characterising the termino-conceptual sphere that underlies given terms and terminologies, from
the point of view of the organisation of conceptual characteristics. We can regard the status of
termino-conceptual sphere to given terms and terminologies as somewhat analogous to the status
of “language model” to given corpus data in NLP, although the compositional elements and their
arrangements of the models and the theoretical status are different2.

2.2 Entropic characterisation

Assuming one-to-one correspondence between conceptual characteristics and constituent elements
of terms, we can characterise these layers by analysing given terminologies (hence we also use
elements to refer to conceptual characteristics). In this study, as a first step, we characterise the

terms/def/brain-tumor. Accessed 31 March 2019
2Unlike language models, the descriptions here cannot be directly used for generating or processing possible terms. Also,

terminological models need to address “realistic possibility of existence” (Kageura, 2002) while language models in general
deal with any sort of reasonably “well-formed” expressions.
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structure of these layers by using entropy (Cover & Thomas, 2006; Alajaji & Chen, 2018). Let X
be a discrete random variable taking values in the finite base set of constituent elements/conceptual
characteristics X , to which probability distribution is given. Then the entropy H(X) of X is:

H(X) = −
|X |∑

i=1

P (xi) log2 P (xi).

The remaining issue is to define and estimate a probability distribution of elements at each layer. By
definition, elements are distributed uniformly in the base set layer. This provides a point of refer-
ence to the structure of other layers, as entropy takes its maximum for the base set layer. We can
assign probability distribution to the layer of selection structure by giving sample relative frequen-
cies of elements in given terminological data3. For the layer of specification structure, we define
the head/nucleus-modifier/determinant4 directed graph from terminologies (henceforth specification
graph), which enables us to analyse the overall system of elements representing specification struc-
ture. For the layer of classificatory structure, we construct bibliographic coupling (Kessler, 1963)
and co-citation (Small, 1973) graphs, both undirected, from the specification graph, by adding edges
among the elements that modify/are modified by the same element, respectively. In other words, they
show how systematic a set of modifiers classify the concept represented by heads (bibliographic cou-
pling) and how systematic a set of heads undergo a characterisation by modifiers (thus we call them
classification graph hereinafter)."

Figure 1 shows the specification graph (left) and classification graph made by bibliographic coupling
(right) constructed from a small artificial terminology consisting of 12 terms, i.e. “text classifica-
tion”, “document classification”, “information retrieval”, “library classification”, “automatic text
classification”, “document information”, “medical information”, “medical aid system”, “medical
diagnosis”, “disease diagnosis”, “diagnosis record”, “disease image record”.
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Figure 1: Specification graph (left) and Classification graph (right)

Once we define a graph, a number of methods to estimate graph entropy become immediately avail-
able (Dehmer, 2008b; Dehmer & Emmert-Streib, 2008; Dehmer, 2008a; Dehmer & Emmert-Streib,

3A simple estimation of probabilities of elements by sample relative frequency ignores the existence of potential elements
that do not occur in given terminological data. The issue starts from defining the base set. For entropy estimation in the
present scheme, we have several choices: (i) temporarily ignore this issue; (ii) estimate the unseen elements first (Baayen,
2001; Kageura, 2012), assign probabilities to them and measure entropies; (iii) theorise the change in entropy values in
accordance with the size of the data and extrapolate it to obtain entropy rate (Takahira et al., 2016), and (iv) use methods to
deal with this issue in the process of entropy estimation (Hausser & Strimmer, 2009; Archer et al., 2014). At this stage we
took the first approach, for this is sufficient to contrast structures in different layers and of different domains.

4We use “head” and “modifier” to refer to constituent elements of terms and “nucleus” and “determinants” to refer to
conceptual positions but within the immediate context of this paper we use them interchangeably.
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2009; Dehmer, 2011; Dehmer & Mowshowitz, 2011; Körner, 1973; Mowshowitz, 1968; Mow-
showitz & Dehmer, 2012; Simonyi, 1995; Trucco, 1956). We have to resist the temptation to resort
to complex graph entropic measures5. We introduce the graph to characterise the layers of specifica-
tion and classificatory structures, so gaining due probability distributions over constituent elements
which we can make sense of as characterising these layers is the goal.

Upon examining possible approaches, including the way to weight vertices in the graph (Bonacich,
1987; Estrada, 2015, 2016; Kolaczyk, 2009; Newman, 2010), we adopted PageRank (Avrachenkov
et al., 2015; Langville & Meyer, 2012; Page et al., 1998), as the algorithm assigns a probability to
each vertex and these probabilities can be interpreted in terms of a random walk on the graph, i.e. the
probability of arriving at a vertex in the graph. To the extent that the graphs defined above reflect,
en masse, the specification and classificatory structures, we can interpret these probabilities as the
likelihood of deploying elements in concept formation, captured at these layers. More specifically:

• Probability distribution of elements defined on a specification graph reflects the tendencies of
conceptual characteristics being used as nuclei in terminologies6 (nucleus-oriented specifica-
tion graph);

• Probability distribution defined on a specification graph with directions reversed reflects the
tendencies of characteristics being used as determinants (determinant-oriented specification
graph);

• Probability distribution defined on a classification graph constructed by bibliographic cou-
pling reflects the tendency of elements to be deployed as “sibling” characteristics in modi-
fiers/determinants (determinant-oriented classification graph);

• Probability distribution defined on a classification graph constructed by co-citation reflects
the tendency of elements to be deployed as sibling characteristics in heads/nuclei (nucleus-
oriented classification graph).

Entropies can be measured straightforwardly for each of these probability distributions.

3 Analysis of English terminologies of six domains

Here we analyse and describe the termino-conceptual structures of English terminologies, based on
the theoretical and methodological framework defined in Section 2.

3.1 Terminological data

Within the framework defined above, termino-conceptual structure of terminologies of six domains
are analysed, i.e. agriculture (Agr) (Japanese Ministry of Education, 1986a), botany (Bot) (Japanese
Ministry of Education, 1986b), chemistry (Chm) (Japanese Ministry of Education, 1986c), computer
science (Cmp) (Aiso, 1993), physics (Phy) (Japanese Ministry of Education, 1990b), and psychology
(Psy) (Japanese Ministry of Education, 1986d). To improve the correspondence between constituent

5Incidentally it is pointed out that the graph entropic measures need to be used with care (Zenil et al., 2017).
6This contrasts with observing distributions of constituent elements used as heads and modifiers of terms in terminologies.
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Dom T N V N/T N/V Nc Vc Nc/T Nc/Vc

Agr 15614 30436 8409 1.95 3.62 29519 7087 1.89 4.17
Bot 9774 16152 7032 1.65 2.30 15992 6409 1.64 2.50
Chm 10912 19110 6795 1.75 2.81 18934 5801 1.74 3.26
Cmp 14099 32410 4932 2.30 6.57 31770 3938 2.25 8.07
Phy 9974 21191 4914 2.12 4.31 20718 4267 2.08 4.86
Psy 5866 11477 4026 1.96 2.85 11068 3467 1.89 3.19

Table 1: Basic quantities of the terminologies of six domains

elements and conceptual characteristics, we removed 20 function words7 and applied stemming,
using porter2 algorithm (Dempsey, 2016). Table 1 gives the basic quantities of these terminologies8.
In Table 1, T stands for number of terms, N and V the number of constituent elements in token and
in type, respectively, and Nc and Vc are the number of constituent elements in tokens and in types
after functional elements were removed.

3.2 Specification and classification graphs

Based on the data, specification and classification graphs are constructed as follows9:

1. Head-modifier relations are automatically extracted by simple rules that reflect the fact that
English complex nouns are head final and nominal phrases with prepositions are head initial.
For complex terms consisting of more than three elements, all the possible head-modifier
relations are used. For instance, “abnormal grain growth”, “abnormal-grain”, “abnormal-
growth”, and “grain-growth” are extracted as head-modifier relations. We took into account
the reverse modification relations for phrasal terms. For instance, the head-modifier relation
for the “abandonment of cultivation” is identified as “cultivation-abandonment”.

2. The directed graphs for “head ← modifier” (nucleus-oriented) and for “modifier ← head”
(determinant oriented) are constructed as shown in Figure 1.

3. Bibliographic coupling and co-citation graphs are constructed based on the head-modifier
specification graph. When two elements are in specification relations, i.e. directly connected
in the specification graph, we did not link them in the classification graphs.

Basic information of the specification graphs are given in Table 210. The graphs are not connected
in the terminologies, but there is a single giant component in each terminology. We will explain how
random-walk probabilities are given in 3.4.

7We started from a larger list of English stopwords used in IR (http://www.lextek.com/manuals/onix/stopwords1.html)
and defined 20 function words for removal.

8The original data are the same as those used in (Asaishi & Kageura, 2011), but the statistics are slightly different, due to
normalisation including typo corrections and different ways of pre-processing.

9We used R package of igraph for graph construction and processing (Csardi & Nepusz, 2006).
10V stands for vertex, E stands for edge, Comp. stands for components, D is diameter and PL is average path length.

Type and token for isolates are different due to stemming. Information for classification graphs are not given due to space
limitations.
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Isolated V Connected V No. of No. of Maximum Component
Dom Type Token Type Token Edges Comp. V E D PL
Agr 2442 2489 4645 27030 14585 68 4506 14507 17 4.69
Bot 3137 3213 3272 12799 6389 68 3106 6282 23 5.66
Chm 2360 2399 3441 16535 8308 74 3290 8229 18 5.18
Cmp 706 719 3232 31051 17268 27 3169 17210 21 3.84
Phy 733 736 3534 19982 11368 56 3400 11279 13 5.61
Psy 951 957 2516 11423 5575 72 2322 5401 19 5.75

Table 2: Basic quantities of the specification graphs of six domains

3.3 Specification and classification graphs

To interpret entropies measured for these graphs, we introduced Erdös-Rényi (ER) random graph
(Erdös & Rényi, 1959; Frieze & Karoński, 2015), Barabási-Albert (BA) preferential attachment
graph (Barabási & Albert, 1999), and Watts-Strogatz (WS) small world graph (Watts & Strogatz,
1998), which are used frequently as points of reference to analyse the nature of real-world graphs
(Estrada, 2015, 2016; Kolaczyk, 2009; Newman, 2010):

• We constructed an ER directed graph with the same order (the number of vertices) and size (the
number of edges) as each of the terminologies. This provide the baseline in which the relation-
ships between nuclei and determinants are randomly chosen. As ER graph is “reversible”, it is
used as a point of reference for both nucleus-oriented and determinant-oriented specification
graphs. Thus ER graphs give reference situations in which modifying and modified relations
are “symmetric.” The same holds for WS graph.

• For BA graph, we adopt the same order and size as each of the terminologies, adding at each
time step the number of edges given by the integer division of size by order. We used linear
preferential attachment, and allowed multiple edges. BA model is known to generate degree
distribution that follows power law with the power approaching -3 (Kolaczyk, 2009; New-
man, 2010). As degree distributions correlates with the frequency distribution of constituent
elements and it is known that constituent elements roughly follow power law (Kageura, 2012),
BA model gives a point of reference to evaluate specification graphs in the light of degree dis-
tributions. BA graphs are not reversible, so we use two BA graphs for each terminology.

• For WS graph, we first constructed a directed lattice graph with the same order and size as
each of the terminologies, connecting “neighbouring” lattices by the number of edges given
by the integer division of size by order of the terminologies, and then rewired the edges with
rewire probabilities as 0.01, 0.05, 0.1 and 0.2. We report here the entropies for WS graphs with
rewire probabilities as 0.2, because they give on average values in diameter and average path
length closest to those of the largest components of the corresponding specification graphs.
WS graph is essentially reversible, so we use only one graph. WS graph gives a point of
reference in which the use of conceptual characteristics in determinants and nuclei start from
uniform distributions and then some motivated formations are introduced.

As these graphs statistically differ each time they are generated with the same parameters, we gen-
erated each graph 100 times and took the probability distributions based on PageRank, mean of en-
tropies and other basic measures. Note that BA and WS graphs are connected, while ER graphs may
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Base Selection Specification Classificatory
Dom nucleus determinant nucleus determinant
Agr 8.866 7.872 (0.887) 7.084 (0.799) 7.820 (0.882) 7.056 (0.796) 7.497 (0.846)
Bot 8.766 7.991 (0.912) 6.998 (0.799) 6.777 (0.773) 6.685 (0.763) 7.417 (0.846)
Chm 8.666 7.751 (0.894) 6.765 (0.781) 6.512 (0.751) 6.718 (0.775) 7.386 (0.852)
Cmp 8.278 6.986 (0.844) 6.400 (0.773) 7.105 (0.858) 6.577 (0.794) 7.153 (0.864)
Phy 8.359 7.327 (0.877) 6.672 (0.798) 6.539 (0.782) 6.586 (0.788) 7.433 (0.889)
Psy 8.151 7.285 (0.894) 5.551 (0.681) 6.820 (0.837) 6.352 (0.779) 7.058 (0.866)

Table 3: Entropies of different layers of termino-conceptual structure

Figure 2: Entropies of different layers of termino-conceptual structure

not necessarily be connected. Classification graphs are generated from these specification graphs.
They may not be connected.

3.4 Entropic nature of termino-conceptual sphere

Based on this setup, we measured entropies at each layer of termino-conceptual structure11. For the
entropies of the selection structure, we used maximum likelihood estimators12. For specification and
classificatory graph, we adopted the following setups:

• In applying PageRank, the restart probability, used to avoid walks to end at sinks, was set to
0.01, i.e. damping factor was set to 0.99. This is lower than what is widely used (0.15).

• The probabilities assigned to the vertices of each component were normalised by the number
of element tokens to make the interpretation intuitively natural13

Table 3 shows the entropies of terminologies (ratio to base set entropies are given in brackets). To
facilitate the analysis, Figure 2 gives the corresponding barplot. As entropies measured by MLE es-
timators depend on the number of items, it is not theoretically simple to directly compare the nature
of the termino-conceptual structure across domains. We observe several tendencies. First, specifica-
tion layers and classification layers are generally more “structured” than selection layer. Exceptions
are determinant-oriented specification and classificatory structures (fourth and the rightmost bars in
Figure 2, respectively) in computer science, and to some extent agriculture. This indicates that in
these domains, conceptual characteristics are deployed for determining concepts more evenly than

11We used R package of entropy for entropy calculation (Hausser & Strimmer, 2009).
12We also observed shrinkage estimator (Hausser & Strimmer, 2009) for selection structure but the values differ little in

our data. So we report MLE values.
13This normalisation in reality made little difference in entropies.
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the other domains. Secondly, in agriculture, computer science and psychology, entropies for nuclei-
oriented specification graphs are smaller than those for determinant-oriented specification graphs,
while these are the other way round in botany, chemistry and physics. Third, determinant-oriented
classificatory sphere is less structured and in most domains close to the entropies of the selection
layer. This may imply that conceptual characteristics used to differentiate nuclei are systematic, in
the sense that different nuclei are specified in similar manner.

Tables 4 and 5 show entropies for ER, BA (nucleus-oriented and determinant-oriented) and WS spec-
ification graphs. Table 4 also gives diameter (D) and average path length (PL). Figure 3 shows the
barplot of the entropies of the six domains, with the bars from left to right showing: nucleus-oriented
specification entropy of terminology, determinant-oriented specification entropy of terminology, en-
tropy of ER specification graph, nucleus-oriented entropy of BA specification graph, determinant-
oriented entropy of BA specification graph, entropy of WS specification graph. Figure 4 shows the
barplot of the entropies of the classificatory structure, with the bars from left to right showing the en-
tropies of the corresponding classificatory graphs and reference graphs. These values are the means
of 100 graphs each. We do not give standard deviations due to space limitations. Note that ER and
WS are very close in entropy values.

ER BA WS
Dom Entr. D PL “Nuc” “Det” D PL Entr. D PL
Agr 8.156 17.0 7.4 5.645 8.354 11.4 3.1 8.152 17.2 7.4
Bot 7.719 28.9 11.0 5.488 8.017 10.8 2.0 7.709 28.3 11.0
Chm 7.794 22.1 8.9 5.498 8.067 11.0 3.0 7.786 21.8 8.9
Cmp 7.931 10.1 5.0 5.341 7.980 11.0 3.0 7.932 10.1 5.0
Phy 7.890 16.3 7.0 5.500 8.082 11.0 3.0 7.887 16.2 7.0
Psy 7.466 23.4 9.3 5.288 7.754 10.2 2.8 7.460 23.2 9.3

Table 4: Entropy, diameter and average path lengths of reference specification graphs

ER BA WS ER BA WS
Dom “Nuc” “Det” Dom “Nuc” “Det”
Agr 8.230 6.573 8.081 8.229 Cmp 7.969 6.350 8.026 7.969
Bot 7.721 6.421 7.403 7.721 Phy 7.963 6.330 7.850 7.962
Chm 7.851 6.266 7.599 7.850 Psy 7.507 5.994 7.288 7.508

Table 5: Entropy, diameter and average path lengths of reference classification graphs

From Figure 3, we can observe that, in all the domains, entropies of both nucleus-oriented and
determinant-oriented specification structures of terminologies are smaller than the entropies of ER,
determinant-oriented BA and WS graphs. Terminologies are more structured than these reference
graphs. On the other hand, entropies of nucleus-oriented specification structures are larger than the
entropies of nucleus-oriented BA graph. This indicates that tendencies for preferential combinations
in terminologies are weaker than the theoretical BA model we adopted here. It is notable that in psy-
chology the difference is much smaller compared to other domains. From Figure 4, we can observe
corresponding tendencies for the entropies of classificatory structures, with the apparent differences
between terminologies and BA graphs being smaller. All in all these show that specification and
classification structures of terminologies may be modelled starting from BA preferential-attachment
graph. This has been informally indicated by the fact that constituent elements follow power law.
The preference is weaker in general in terminologies, though.
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Figure 3: Entropies of specification structure and of reference graphs

Figure 4: Entropies of classificatory structure and of reference graphs

4 Conclusions and outlook

In this paper, we carried out three tasks, i.e. (1) consolidated the theoretical object which can be
called termino-conceptual sphere and argued that terminologists essentially work on this area; (2)
defined layers relevant to concept/term formation and introduced ways to characterising these layers;
and (3) described the structure of termino-conceptual sphere for the terminologies of the six domain.
Although the structures of terminologies became visible, the descriptions given in this paper serve
for understanding only the overall structural nature of terminologies.

Several issues remain and indicate directions for further research, of which we mention three here.
Extending the viewpoints of observations by introducing different summary measures and more
analytical features, within the framework we defined here is the first theoretical task. Graph-oriented
measures are abundant; but the give proper interpretation is a different issue. We also intend to carry
out the descriptive studies of terminologies of different domains and of different languages.

Second, when taking about concepts and conceptual characteristics, we assumed one-to-one corre-
spondence between conceptual characteristics and constituent elements of terms. We did not use, for
instance, distributional representations. In this paper, this was a deliberate decision. In terminology,
exactness in forms is important as in proper names; one cannot replace a constituent element of terms
with another element with similar meanings. As such, symbolic identity bear more information than
semantic similarity. This, however, is only one side of the story. To the extent that terms use linguis-
tic items as their representational elements, terms, concepts and their relations have certain degree of
flexibility (Rey, 1995). To fully capture the nature of terminological structure, it would be beneficial
to use, for instance, distributional representations of concepts.

Third, we can explore how to use the information contained in these layers for automatic terminology
processing. From this point of view, one possibility is to construct distributional representation of
concepts for constituent elements by using the information contained in these layers. We may further
use the information in the layers to improve terminology augmentation in generate-and-validate
framework (Iwai et al., 2016) and to improve performance of term translations.
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