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Abstract
Neural machine translation (NMT) is the state of the art for
machine translation, and it shows the best performance when
there is a considerable amount of data available. When only
little data exist for a language pair, the model cannot produce
good representations for words, particularly for rare words.
One common solution consists in reducing data sparsity by
segmenting words into sub-words, in order to allow rare
words to have shared representations with other words. Tak-
ing a different approach, in this paper we present a method
to feed an NMT network with word embeddings trained on
monolingual data, which are combined with the task-specific
embeddings learned at training time. This method can lever-
age an embedding matrix with a huge number of words,
which can therefore extend the word-level vocabulary. Our
experiments on two language pairs show good results for
the typical low-resourced data scenario (IWSLT in-domain
dataset). Our consistent improvements over the baselines
represent a positive proof about the possibility to leverage
models pre-trained on monolingual data in NMT.

1. Introduction
Neural machine translation [1, 2] has shown to be highly ef-
fective in conditions where there is a good quantity of data
available, but struggles to provide good results in a low-
resource condition. In general, publicly-available parallel
data are small in size, containing at most only few millions
of parallel sentences. Therefore, it becomes important to in-
crease the quantity of data by using monolingual data, which
are always available in a larger quantity.
Improving MT with monolingual data is a long-standing
technique from statistical machine translation (SMT) [3].
In that case, target-side monolingual data are used to train
a better language model for producing more fluent transla-
tions [4], or even to perform domain adaptation [5]. By con-
trast, there are no effective usages of source-side monolin-
gual data.
In NMT, there is only one model trained end to end instead
of several different statistical models that are combined by
means of a log-linear function. The end-to-end approach is
considered to be the strength point of NMT [6], but it also
means that there is no obvious way to use monolingual data.
In fact, the most used approach so far consists in augmenting

the training set with synthetic parallel data. They are usu-
ally back-translations of target monolingual sentences [7],
but also forward-translations of the source side [8] or even
copies of the target language in the source side [9]. In all
the cases, as the synthetic data are mixed with the real data,
the number of synthetic sentence pairs should be kept un-
der control to prevent a degradation of performance. This
strongly limits the size of usable monolingual data. Other ap-
proaches explore different machine learning frameworks for
using monolingual data, such as multi-task learning [10] to
improve the encoder with source-side monolingual data [11],
or reinforcement learning to jointly learn two systems and ex-
ploit monolingual data from both sides [12].
In other NLP tasks, unsupervised learning on large data has
been extensively used for training continuous representation
of words [13, 14] that are used to initialize the embeddings
for the task-specific model, or as an input to it. In NMT, there
are word embeddings for both source and target side, and
they are generally jointly learnt with the rest of the network.
As far as we know, for NMT there are no works reporting
improvements by initializing the embeddings with embed-
dings trained on monolingual data. One of the reasons can be
that pre-training the embeddings together with the RNNs that
combine them [15, 16] was considered a more promising op-
tion. A second reason can be found in the tokens granularity
in NMT, which is usually at a sub-word level in state-of-the-
art systems. By using sub-words, the embeddings should be
recomputed every time a different training set is used. Thus,
while effective in terms of performance, the subword-level
translation precludes the access to additional existing word-
level resources. Moreover, the sub-word tokens are more am-
biguous than their word-level counterparts, and this can lead
to wrong translations that are harder to catch automatically if
compared with “unknown” tokens.
In this work, we propose to modify the NMT architecture to
take as additional input the embeddings computed on mono-
lingual data, which we call external. The external embed-
dings are merged with the internal embeddings learned dur-
ing the NMT training in order to achieve an improved word
representation. A previous work [17] shows that using ex-
ternal embeddings in a high resource setting harms the per-
formance. Thus, we set the experiments in a low-resource
scenario, simulated by taking only in-domain IWSLT [18]
data for TED talks. We experiment our method on En$Fr
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Figure 1: Merging external embeddings with the normal NMT embeddings in the encoder side. The tokens ”The” and ”car” are
used to extract the two kinds of embeddings that are merged before being used as input for the encoder RNN.

and En!De. Our results in all the language directions show
significant improvements over the word-level baseline while
using only out-domain monolingual data, and comparable re-
sults with the BPE baseline that is not limited by the vocab-
ulary size.
The codebase we have used, based on Nematus1 [19] is avail-
able on Github2.

2. Background
Neural machine translation is based on the attention-
based encoder-decoder architecture [2] which jointly learns
the translation and alignment models with a sequence-
to-sequence process. A sequence of source words
f1, f2, . . . , fm is mapped to sequence of embedding vectors
x1,x2, . . . ,xm, via a look-up table X 2 R|V |⇥d, where |V |
is the vocabulary size and d is the dimensionality of the em-
bedding vectors. Hence, the memory occupied by the vocab-
ulary is linear in both the vocabulary size and the embeddings
size.
The embedding sequence is then processed by a bi-
directional RNN [20]:

�!
h j = g(xj ,

�!
h j�1), j = 1, ..m

 �
h j = g(xj ,

 �
h j+1), j = m, .., 1

where g is the LSTM [21] or the GRU [22] function, and the
outputs from the two directions are then concatenated. The
sequence of vectors produced by the bidirectional RNN is the
encoded representation of the source sentence.
The decoder takes as input the encoder outputs (or states)
and produces a sequence of target words e1, e2, . . . , el. The
decoder works by progressively predicting the probability of
the next target word ei given the previously generated target
words and the source context vector ci. At each step, the
decoder extracts the word embedding yi�1 of the previous
target word, applies one recurrent layer to it, and the out-
put from this layer is used to compute the attention over the
source tokens. Finally, the hidden state from the recurrent
layers, from the attention output and the word embeddings

1https://github.com/EdinburghNLP/nematus
2https://github.com/mattiadg/NMT-external-embeddings

are combined and then used for computing the normalized
probabilities over the target words with a softmax. The re-
current layer produces an hidden state si

si = g(yi�1, si�1, ci)

where, g can be computed with one or more LSTM or GRU
layers. The output of the RNN is then used by the attention
model to weigh the source vectors according to their similar-
ity with it, which is computed as:

↵ij =
exp(score(̃si,hj))Pm
k=1 exp(score(̃si,hk))

Where s̃i = GRU(yi�1, si�1) is a partial computation of
the hidden state whose aim is to compute the attention. After
this step, the weights are used to compute a weighted average
of the encoder outputs, which represents the source context:

ci =
mX

j=1

↵ijhj

The source context vector is then combined with the output
of the last RNN layer in a new vector oi that is passed as
input to the softmax layer to compute the probability for each
word in the vocabulary to be the next word, such that:

p(ei = k | ei�1, ci) / exp(o>
i V

k)

where Vk is the k� th column of the matrix V, which holds
the same size of the target-side embedding matrix, and oi is
a function of si and ci. Let ⇥ be the set of all the network
parameters, then the objective of the training is to find pa-
rameter values maximizing the likelihood of the training set
S, i.e.:

⇥⇤ = argmin⇥

X

(f ,e)2S

|e|X

i=1

log p(ei|e<i,x;⇥)

Hence, the network adapts all the parameters together to op-
timize the loss function.
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EnFr FrEn EnDe
Model tst2013 tst2014 tst2013 tst2014 tst2013 tst2014
Baseline word-level 31.41 28.26 31.30 29.09 16.51 13.33
Baseline tgt-BPE / / / / 21.72 18.11
Mix Sum 33.00 29.96 32.50 30.40 22.40 18.55
Mix Gate 32.23 29.44 32.76 29.86 21.64 18.54
Mix Ctrl 32.77 30.10 32.98 30.77 22.33 19.13
BPE 33.37 31.01 34.09 30.81 22.28 18.72
Mix Ctrl Bi 33.75 30.38 33.27 30.65 18.17 15.36
Mix Ctrl Bi BPE 33.58 30.98 32.66 30.72 21.79 18.42

Table 1: Results in terms of BLEU scores for all the language directions. In half of the cases, using subwords is still the best
approach. Adding external embeddings in the target side is usually not helpful. The improvements over the word-level baseline
are always clear.

3. Related works

The most widespread approach for improving NMT with
monolingual data is the use of back-translations for augment-
ing the training set [7]. Although being used in the state
of the art, this approach has limitations in a low-resource
scenario for two reasons. The first reason is the need for a
good system in the opposite translation direction, which is
also low-resources, and the translations quality affects per-
formance of the method [23]. The second reason is the sen-
sitiveness to data of this approach, which makes impossible
the use of large quantities of monolingual data.
Zoph et al. [15] investigated the transfer learning from a
high-resource language pair (parent) to low-resource lan-
guage pairs for MT (target), leading to consistent improve-
ments on the target language pairs. This approach, though
computationally expensive if the parent system is not already
available, is simple but it also does not have any effect out-
side a low-resource scenario.
Gulcehre et al. [24] were the first who tried to use monolin-
gual data in NMT, by integrating a language model (LM) into
the MT model. The model uses only the LM output for the
integration, thus monolingual data have no effect in improv-
ing the word representations.
Domhan and Hieber [25] proposed to add another recurrent
layer without dependencies on the source sentence to the de-
coder, in order to use target-side monolingual data via multi-
task training. Again, the multi-task learning does not affect
all the parameters of the network, thus the improvements are
limited. In fact, the authors show that back-translations still
perform better than their method. Ramachandran et al. [16]
propose to pre-train encoder and decoder as two separate
language models, hence using monolingual data from both
sides. They show that with monolingual data it is possible to
improve representations beyond the embeddings, and to im-
prove over back-translations. Our work differs from theirs as
we are focusing only on the contribution given by the embed-
dings, and we use them as an additional input to the network,
instead of pre-training it.

4. Using external word embeddings
The method we propose uses word embeddings trained on
monolingual data to enrich the representation of words in the
case of a low-resource scenario.
Each word in a sentence is used to index a word vector in the
NMT word embedding matrices and a word vector from an
external matrix trained on monolingual data. From now on,
we will refer to the first kind of embeddings as internal and
to the second as external. The internal and external vectors
for each word are then merged into a final vector that will be
used as input for the following layer. As this method can be
applied to both source and target side, the following layer is
the GRU both in the encoder and in the decoder. Our method
changes the word representations before any other compu-
tation on words is performed, thus it could also be used in
principle with different sequence-to-sequence architectures.
The external embeddings are learned for a task that is not
machine translation, hence we introduce a fully-connected
nonlinear layer that allows the network to learn how to map
the embeddings into a new space, hopefully more useful for
the translation task:

x̃j = tanh(x̄>
j W + b) for j = 1, . . . ,m

The data flow from words to RNN is illustrated in Figure 1.
In this work we investigated three different merge functions
with an increasing number of parameters: (1) mix sum, (2)
mix controller, (3) and mix gate, which can be used either
only in the source side or also in the target side.
In the rest of this section we describe the merge functions we
have investigated for combining internal and external embed-
dings.

4.1. Mix sum

The mix sum follows the assumption that the internal and
external embeddings have the same importance in the word
representation, and the network can learn to obtain comple-
mentary information from the two. Consequently, we add a
simple element-wise sum between the internal and the exter-
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Figure 2: External embeddings in the decoder. As for the
internal embeddings, during training the ground-truth word
is used, while at translation time it uses the previously trans-
lated word. This limits the possibility to use the extended
vocabulary of the external embeddings.

nal mapped embedding:

x̂j = xj + x̃j

Despite its simplicity, our experiments show that in several
cases this function performs comparably to the best function.

4.2. Mix controller

The mix controller relaxes the assumption of the same im-
portance for the two embeddings. It is inspired by the con-
troller function introduced in [24], and allows us to give a
scalar weight to the external embeddings while giving always
a weight of 1 to the internal ones. In fact, in our preliminary
experiments we obtained some negative results using the ex-
ternal embeddings with large training data, suggesting that in
that case the embeddings are better learned from the transla-
tion task only.
The first step consists in computing the weight for the exter-
nal embedding in the range [0, 1], as a function of the embed-
ding itself:

wext = �(x̃>wctrl + bctrl)

after the weight has been computed, the two vectors are sim-
ply summed:

x̂j = xj + wextx̃j

The controller function is jointly learned with the rest of
the network.

4.3. Mix gate

With mix gate we want to give the network a finer-grained
control over the merging function with respect to the con-
troller. A gate is a vector that modifies the flow of the data

by giving weights to each vector component. The gate is
computed as a function of a branch of the data flow, which
may or may not coincide with the vector to which it is fi-
nally applied. All the elements of the gate are in the range
[0, 1], and it is applied by element-wise multiplication. Some
widely used gated functions are LSTM [21] and GRU [22],
but in this work we are inspired by the context gate [26]. The
context gate is computed as a function of two inputs and then
it is applied to both of them for computing an element-wise
weighted average of the two vectors. We apply the gate to
the internal and external embeddings:

zj = �([xj ; x̃j ]
>Wz + bz)

where zj is the output of the gate and � is the sigmoid func-
tion. The new vector is produced by combining linear trans-
formations of the inputs with the gate zj :

x̂j = tanh(zj � ff1(xj) + (1� zj)� ff2(x̃j))

Where ff is a fully-connected layer. In this setting the net-
work has more parameters to learn for combining the internal
and external embeddings in an effective way.

4.4. External embeddings in the target side

In the target side, we investigate the effectiveness of a
straightforward extension of the method. At each time step,
we merge the external and internal embeddings for the pre-
vious word with the same function used in the encoder. But,
the softmax can generate only words that are in the internal
vocabulary. We have chosen not to use the external vocabu-
lary both for speed reason, as a softmax over a big vocabulary
is really expensive, but also to give a priority to the internal
embeddings that we consider more relevant for the transla-
tion task. But, the main limitation of this approach resides in
the difference between training and generation. In fact, dur-
ing training we know all the target words in advance, and the
OOV words that are present in a sentence can still use their
“external” representation, if it exists. Hence, during training
it is similar to what happens in the source side. By contrast,
during the generation phase, when the system produces an
unknown token, this will be passed to the next time step and
the embeddings for “unknown” will be retrieved from both
internal and external matrices.
We are interested in verifying whether the additional infor-
mation during training, which can modify the unknown token
representation in a meaningful way, results in a less frequent
generation of unknown tokens, and better sentences in gen-
eral, during the translation phase [27].

5. Experiments
We have evaluated our method on the IWSLT 2016 [28]
datasets for English$French and English!German. For all
the experiments we used an attention-based encoder-decoder
with Nematus [19] as a codebase. The encoder is a single-
layer bidirectional GRU [20] while the decoder is the con-
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Figure 3: Learning curves on En!De. Without external em-
beddings the improvement is faster at the beginning, but then
it reaches a lower plateau. For readability reasons we in-
serted only the word-level baseline and the best performing
systems with external embeddings.

ditional GRU. We have used embeddings of dimension 500,
RNNs with 500 units and GRU [22] activation. As an opti-
mizer we have used Adam [29] with learning rate 0.0003. A
dropout of 0.1 is applied to the word indexes and 0.2 to the
embedding and hidden vectors.
For the monolingual embeddings, we have used in English
the Gigacrawl embeddings available in the GloVe website3

which has a vocabulary of 1.9M words and has been trained
on 42B tokens. The French and German monolingual em-
beddings have been computed using fastText [30] on mono-
lingual data, training for 5 epochs with context windows of
size 10 and hierarchical softmax as a loss function. For
French, we used the publicly-available Gigaword dataset that
consists of 2.5B tokens, and a vocabulary of 900K words.
For German, we used the monolingual newscrawl from 2007
to 2017, for a total of 5B tokens and a vocabulary of about
4.7M words.
The experiments run on En$Fr and En!De are different
among them and are aimed at showing different properties
of this method. In fact, with En$Fr we want to investi-
gate mainly the effectiveness of our approach at a word level,
while with En!De we move to a combined approach with
BPEs because of the higher inflection of German.
The experimental results are listed in Table 1. For all the lan-
guage directions we have run a word-level baseline (Baseline
word-level) and a BPE baseline (BPE). Then, we have ex-
perimental runs using the three merging methods only in the
source side. As the mix-ctrl shows better results in general,
we have run experiments using this merging method both in
source and target sides (Mix Ctrl Bi), and also adding BPE
embeddings in German and French (Mix Ctrl Bi BPE). We do
not report results by initializing the NMT word embeddings
with the external embeddings because we do not observe any
significant variation with respect to the word-level baseline.

3https://nlp.stanford.edu/projects/glove/

All the translations are evaluated on the de-tokenized and
cased output, using the multi-bleu.perl script available in the
Moses toolkit [31].

5.1. IWSLT En$Fr

Our first group of experiments was run on the En$Fr lan-
guage pair and is aimed at verifying the improvement given
by the external embeddings in a word-level setting.
For both language directions we have trained a word-level
baseline using 80K words in source and 40K in target for
En!Fr and 40K per language in the opposite direction. In
this task we have about 210K in-domain (TED talks) parallel
sentences.
We compare our systems with a word-level baseline and a
BPE baseline. In the En!Fr direction, listed in the first two
columns of Table 1 the mix controller and sum are quite com-
parable, while the gate is clearly worse. Comparing with the
word-level baseline we get improvements up to +1.8 BLEU
points with mix ctrl in tst2014. Adding the external embed-
dings to the decoder improves by another BLEU point for
test2013 but the improvement is negligible for 2014, while
by using target external embeddings and BPEs in French the
improvement is of 0.8 BLEU points in both test sets. This
last method produces results comparable with the BPE base-
line.
In the Fr!En direction, listed in the two following columns
of Table 1, the improvement obtained by the source-side ex-
ternal embeddings is up to +1.7 BLEU scores with mix ctrl,
but adding them in the target side does not provide any sig-
nificant improvement. For this direction, the BPE system is
always the best performing, but in tst2014 is comparable with
all the versions of mix-ctrl.

EnDe EnFr FrEn
Type 2013 2014 2013 2014 2013 2014
Internal 290 391 254 430 538 583
External 147 206 163 275 2715 3300
Both 34 34 57 131 194 200

Table 2: Unknown words in the source side. The external
embeddings helps to reduce the unknown words but their
number is low from the beginning.

5.2. IWSLT En!De

In En!De the training set consists of about 190K parallel
sentences. For the increased difficulty of the target language,
we introduce the BPE segmentation in the target side. We
run a word-level baseline with a vocabulary of 40K words
per side. The first comparison is with another baseline which
uses BPE-segmented words on the target side. Then, we run
the three experiments with the external embeddings, and fi-
nally a stronger system that uses subwords in both sides. We
consider 16K merge BPE rules. The baseline using target-
side BPEs is from +4.5 to +6 BLEU points stronger than
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Table 3: Unknown words generated by different systems.
EnDe EnFr FrEn

Type 2013 2014 2013 2014 2013 2014
Word bl 3402 4885 281 301 395 393
Mix ctrl 0 0 449 514 431 463
Mix ctrl bi 2522 3484 466 537 422 445

the word-level baseline (last two columns of Table 1), and
adding the external embeddings in the source improves by
further +0.5 to +1 BLEU points. These results are compa-
rable with the ones obtained using BPE segmentation in both
source and target side, and our mix-ctrl system obtains the
best result in tst2014.
Using external embeddings in the target side together with
BPEs produces a deterioration of performance with respect
to the mix-ctrl system. If we combine this result with the low
number of BPE merging rules (16K), we may suppose that is
not possible to learn good embeddings for small sub-words
from large monolingual data because of the high ambiguity
of each token. But, this hypothesis needs further investiga-
tion.

6. Analysis

In this section, we show some phenomena occurring during
training and translation with our methods, in order to better
understand their impact. In fact, the experiments provided us
with results that are definitely stronger than the word-level
baseline, but the comparison with BPE needs further investi-
gation.

6.1. Learning curves

A comparison of the learning curves (Fig. 3) shows a big ini-
tial advantage for the baseline. The mix controller arrives to
similar validation scores only at epoch 10. The mix sum and
mix gate systems (not shown) are even slower than mix con-
troller.
Despite the better starting of the word-level baseline, it
reaches a plateau faster than the other systems and to a lower
score. The curves in Fig. 3 have been computed for En!De,
but a similar trend is observed for the other directions, too.
It is interesting to notice how the small score difference in
the validation (Fig. 3) becomes much larger in test (Table 1),
although the test is performed in a slightly different setting.
After 5 epochs, the mix-ctrl system is not able to produce an
intelligible translation, while the word-level system reached
the 70% of its quality after the same number of samples. This
suggests that the external embeddings are difficult to work
with, and we suppose that our merging method, consisting
of one single mapper for all the vectors, contributes to slow
down the training process.

6.2. Impact of unknown words

In Table 2 we have summarized the number of out-of-
vocabulary (OOV) words in the source side. For each test
set, we show their number for the internal and external vo-
cabularies, and the number of words that are unknown to
both. Although the external vocabulary size is much big-
ger, as the external embeddings are trained on out-domain
data the number of unknown words is higher than in the in-
ternal vocabulary. As expected, when the source language is
English the number of OOVs is quite small in both vocabu-
laries, but when we use French, it becomes really high in the
external vocabulary. This can explain the reduced improve-
ment obtained by the system using our method in Fr!En,
where the improvement over the baseline is always less than
+2 BLEU points.
Now, we focus on the unknown words generated during
translations, for which we expected a reduction due to the
improved representation. Surprisingly, as it is listed in Ta-
ble 3, we get more unknown words with our method when
we use external embeddings in the source than with the word-
level baseline. On the other hand, the contribution of adding
them in the target side seems to be language dependent. In
fact, it slightly increases in En!Fr and slightly decreases in
Fr!En.
In EN!DE, the number of generated UNK tokens is ex-
tremely high, and this is the main reason why adding BPEs
in the target side greatly increases the BLEU score.
The reported results are computed with the output files con-
taining the “UNK” tokens, but by removing them we get a
negligible BLEU score variation. By looking at translation
examples (Table 4) we can notice that our approach gener-
ates “UNK” when the word-level generates words that are
similar to the target, but wrong. This can be combined with
the clearer alignment produced by using words instead of
sub-words in order to effectively replace these tokens with
an effective translation.

6.3. Example Translations

In Table 4 we present some examples of translations to un-
derstand what actually happens in our model. In most of
the sentences we have read, the translations were basically
one the rephrasing of the others, thus the BLEU scores often
depend on the number of reference words chosen by the sys-
tems, even if the paraphrasing would produce a good trans-
lation. Sometimes there are significant differences between
the systems, as we can see in the examples.
In the first example, the word-level baseline did not trans-
late ”are hearing”, which is translated instead by all the other
systems, but with a different tense with respect to the ref-
erence. Going from mix-ctrl to mix-ctrl-bi, we notice that
“de la vingtaine” disappears, thus there is no reference to the
“twentysomethings”. In this case the BPE system performs
worse, maybe because of a wrong segmentation that makes
it translate something that is not in the source.

_____________________________________________________________
Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

102



Table 4: Examples of translations
src but this isn ’t what twentysomethings are hearing .
ref mais ce n’ est pas ce que les jeunes adultes entendent .

word-level mais ce n’ est pas ce que les jeunes de la vingtaine .
mix-ctrl mais ce n’ est pas ce que les jeunes de la vingtaine sont en train d’ entendre .

mix-ctrl Bi mais ce n’ est pas ce que les jeunes sont en train d’ entendre .
BPE mais ce n’ est pas ce que les gens de twitymer sont en train d’ entendre .

src [...] but if we remove this boundary , the only boundary left is our imagination .
ref [...] mais si on supprime cette limite , la seule qu’ il nous reste est notre imagination .

word-level [...] mais si nous supprimons cette frontière , la seule frontière à gauche est notre imagination .
mix-ctrl [...] mais si nous retirons ces limites , la seule frontière gauche est notre imagination .

mix-ctrl Bi [...] mais si nous retirons cette frontière , la seule frontière est devenue notre imagination .
BPE [...] mais si nous enlevons cette frontière , la seule frontière reste est notre imagination .

src Egyptologists have always known the site of Itjtawy was located somewhere near the pyramids of the two kings [...] .
ref les égyptologues avaient toujours présumé qu’ Itjtawy se trouvait quelque part entre les pyramides des deux rois [...] .

word-level Nous avons toujours connu le site de Londres , situé quelque part prés des pyramides des deux rois [...]
mix-ctrl les UNK ont toujours connu le site de la UNK était situé quelque part près des pyramides des deux rois [...].

mix-ctrl Bi UNK a toujours connu le site de la UNK se situait vers les pyramides des deux rois [...]
BPE les Egyptologistes ont toujours connu le site de Itjtawy a été situé quelque part près des pyramides des deux rois [...]

In the second example, the baseline chose the wrong mean-
ing of “left”, and the same error is kept by mix-ctrl that also
changes “cette limite” to “ces limites”, transforming it into
a plural. Mix-ctrl-bi does not have the problem of the plural
and adds “est devenue”, which is not a translation of “left”,
but produces a nice paraphrasing. The BPE system instead
uses a wrong verb tense that results in a non-fluent phrase.
In the third example, we have two words unseen during train-
ing, one is “Egyptologists”, the other is “Itjtawy”. Here, the
baseline translate the site of “Itjtawy” with “Londres”, the
French name for London, while our approaches choose the
“UNK” token. The BPE system, instead, is capable to trans-
late it correctly. For what concerns “Egyptologists”, the mix-
ctrl system produces the article for the correct person fol-
lowed by UNK, while the other two word-level approaches
chose the wrong person. Compared with the baseline, the
mix-ctrl has “Egyptologists” in its source external vocabu-
lary. The BPE system produces an almost perfect translation
for that word (the correct form would be “Égyptologistes”),
even though it is not the one present in the reference. How-
ever, all the systems fail in producing a fluent translation for
the whole sentence.
These examples show that the external embeddings can add
meaning to the internal word vectors, but there seem to be
some nasty interferences among very close word vectors that
can lead to wrong translations.

7. Conclusions

We have presented a method for leveraging embeddings
trained with an external monolingual tool into NMT. Our
method produces consistent improvements over a word-level
baseline, and has similar performance with a BPE system,
while keeping translation at word-level.

The experimental results show that this approach, though
limited, can open the way to a new approach for leverag-
ing monolingual data into NMT, but it needs to go beyond
the training of only the embeddings. As a future work we
want to explore methods for pre-training larger models with
monolingual data and integrate them in NMT for improving
the word representations while overcoming the limitations
we have highlighted.
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