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Abstract

This work describes the statistical machine translation
(SMT) systems of RWTH Aachen University developed for
the evaluation campaign of International Workshop on Spo-
ken Language Translation (IWSLT) 2016. We have par-
ticipated in the MT track for the German→English lan-
guage pair employing our state-of-the-art phrase-based sys-
tem, neural machine translation implementation and our joint
translation and reordering decoder. Furthermore, we have ap-
plied feed-forward and recurrent neural language and trans-
lation models for reranking. The attention-based approach
has been used for reranking the n-best lists for both phrase-
based and hierarchical setups. On top of these systems, we
make use of system combination to enhance the translation
quality by combining individually trained systems.

1. Introduction
We describe the statistical machine translation (SMT) sys-
tems developed by RWTH Aachen University for the eval-
uation campaign of IWSLT 2016. We participated in the
machine translation (MT) track in the Talk and MSLT task
for the German→English language pair. The combination
of multiple machine translation systems has proven to be
highly effective on this task. The individual engines include
state-of-the-art neural machine translation (NMT), phrase-
based translation (PBT) and the joint translation and reorder-
ing (JTR) systems. Each of these is a sound system includ-
ing preprocessing, translation and postprocessing. As a final
step, we combine all of these systems using our system com-
bination implementation.

The preprocessing used in this work is described in Sec-
tion 2. In Section 3 we describe the translation software and
setups we have made use of. It is split up into the description
of our NMT (Section 3.1), PBT (Section 3.3) and JTR sys-
tem (Section 3.3). Section 3.4 describes the applied language
models and Section 3.5 the long short term memory (LSTM)
language and translation models used in rescoring. Section
3.6 explains the system combination pipeline applied on top
of the individual systems. Our experiments for each track are
summarized in Section 4 and we conclude with Section 5.

2. Preprocessing

In this section we briefly describe our preprocessing pipeline,
which is equal to our IWSLT 2015 German→English prepro-
cessing pipeline [1].

2.1. Categorization

We worked on the categorization of the digits and written
numbers for the translation task. All written numbers were
categorized. As the training data and also the test sets con-
tain several errors for numbers in the source as well as in
the target part, we put effort into producing correct English
numbers. In addition, ’,’ and ’.’ marks were inverted in most
cases, as in German the former mark is the decimal mark and
the latter is the thousand separator.

2.2. Compound Splitting and POS-based Word Reorder-
ing

We reduced the source vocabulary size for the
German→English translation and split the German com-
pound words with the frequency-based method described
in [2]. To reduce translation complexity, we employed the
long-range part-of-speech based reordering rules proposed
by [3]. In this regard, we did no further morphological
analysis in our preprocessing pipeline.

3. SMT Systems

For the IWSLT 2016 evaluation campaign, state-of-the-art
neural machine translation, phrase-based and joint transla-
tion and reordering systems have been utilized. GIZA++ [4]
is employed to train word alignments. The systems are evalu-
ated case-sensitive on the BLEU [5], TER [6] and CharacTER
[7] measures. The TED.dev2010 and TEDX.dev2012
development sets are used for optimization. Based on prelim-
inary results, our impression is that the TED.dev2010 set
is closer related to the TED talks and the TEDX.dev2012
to the MSLT task [8].



3.1. Neural Machine Translation System

A main component of our provided system is a neural ma-
chine translation system (NMT) similar to [9]. We use an
implementation based on Blocks [10] and Theano [11, 12].

The decoder and encoder word embeddings are of size
620, the encoder uses a bidirectional layer with 1000 LSTMs
[13] to encode the source side. A layer with 1000 LSTMs
is used by the decoder. The data is converted into subword
units using byte pair encoding with 20000 operations [14].
During training a batch size of 50 is used. The applied gradi-
ent algorithm is AdaDelta [15].

We train multiple neural networks with slightly different
settings and use them to create four ensembles. The differ-
ences between the networks are two different kinds of pre-
processing, one as described in Section 2 and the other is
equal to our IWSLT 2013 system [16]. The main reason for
combining NNs based on two different preprocessings is the
performance benefit of complementary translation models in
system combination. In addition, we use various methods
to provide the alignment computation with supplementary
information, linguistic coverage, word fertility, context de-
pendency, context gating and guided alignment [17, 18, 19].
Some networks are trained with a dropout of 20%, where
others are trained for a few additional iterations on the TED
or QED data, respectively.

Two ensembles have been created using the preprocess-
ing described in Section 2 and all available bilingual data,
while the remaining two use the IWSLT 2013 system [16].
In both cases, the first ensemble is created by choosing the
networks and the number of training iterations based on its
performance measured in BLEU on the TED.dev2010 set,
in order to perform well on the TED talk task. On the other
hand, the second ensemble is created based on the networks’
performance on the TEDX.dev2012 set, which seems to
be more similar to the the MSLT task. In total, this results in
four different ensembles.

3.2. Phrase-based System

Our phrase-based decoder (PBT) is the implementation of
the source cardinality synchronous search (SCSS) procedure
described in [20] in RWTH’s open-source SMT toolkit, Jane
2.31 [21], which is freely available for non-commercial use.
We use the standard set of models with phrase translation
probabilities and lexical smoothing in both directions, word
and phrase penalty, distance-based reordering model, n-gram
target language models and enhanced low frequency feature
[22]. The parameter weights are optimized with MERT [23]
towards the BLEU metric. Additionally, we make use of a hi-
erarchical reordering model (HRM) [24], a high-order word
class language model (wcLM) [25], a joint translation and re-
ordering (JTR) model (cf. Section 3.3), whose integration is
described in [1], and reranking using neural network models
(cf. Sections 3.1 and 3.5).

1http://www-i6.informatik.rwth-aachen.de/jane/

3.3. Joint Translation and Reordering System

This system combines the flexibility of word-level models
with the search accuracy of phrase candidates. It incorpo-
rates the joint translation and reordering (JTR) model [26], a
language model (LM) and two lexical models for smoothing
purposes. Phrases annotated with word alignments are uti-
lized in SCSS decoding to hypothesize many-to-many trans-
lation candidates.

3.3.1. Training and Marginalization

A JTR sequence ( f̃ , ẽ)Ĩ
1 is an interpretation of a bilingual

sentence pair and the word alignment. Thus, the proba-
bility p( f J

1 ,e
I
1,b

I
1) can be estimated as the joint probability

p(( f̃ , ẽ)Ĩ
1). We abbreviate the history ( f̃ , ẽ)i−1

i−n+1 by hi:

p( f J
1 ,e

I
1,b

I
1) = p(( f̃ , ẽ)Ĩ

1) =
Ĩ

∏
i=1

p(( f̃ , ẽ)i|hi). (1)

The Viterbi alignments are obtained using GIZA++ and con-
verted together with the bilingual sentence pairs into JTR
sequences. The JTR model p(( f̃ , ẽ)i|hi) is estimated with
interpolated modified Kneser-Ney smoothing [27] using the
KenLM toolkit [28]. We extend the joint model by JTR con-
ditional models for both translation directions: p( f̃i|ẽi,hi)
and p(ẽi| f̃i,hi). The source conditional probability is com-
puted from the joint probability:

p( f̃i|ẽi,hi) =
p(( f̃ , ẽ)i|hi)

∑
f̃

p(( f̃ , ẽi)|hi)
. (2)

In order to compute the target marginal probability
∑ f̃ p(( f̃ , ẽi)|hi), its corresponding ARPA file is generated by
processing the ARPA file for the joint probability iteratively
for all m-grams for m = 1, . . . ,n. The source marginals are
generated analogously.

3.3.2. Translation Candidate Extraction

It is crucial to provide the phrases with word alignment anno-
tations, as the models applied in search operate on the level
of words. We extract all many-to-many phrases that are con-
sistent with the word alignments from the bilingual sentence
pairs using the refined method proposed in [29].

In order to have translation candidates that are more
adaptive to the source sentence, we follow the approach of
[30] and concatenate up to three continuous candidates dur-
ing extraction. The resulting discontinuous candidates al-
low to skip up to two sequences of source words. Target
sequences have to be continuous.

3.3.3. Log-Linear Features

The general domain and in-domain 5-gram JTR joint mod-
els [26] are responsible for estimating the translation and re-
ordering probabilities in mutual context. Additionally, gen-
eral domain JTR conditional models are included into the

http://www-i6.informatik.rwth-aachen.de/jane/
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Figure 1: An example of multiple phrasal segmentations
taken from the common crawl corpus. The JTR sequence
is indicated by blue arcs. The distinct phrasal segmentations
are shown in red and shaded green colour.

log-linear framework. To avoid a high overlap with the JTR
joint model, they include no context beyond phrasal bound-
aries. The scores are computed offline and stored in the trans-
lation table, which also includes the relative frequencies of
the translation candidates. The LMs are estimated as n-gram
models with interpolated modified Kneser-Ney smoothing,
as described in Section 3.4. Because the JTR models are
trained on Viterbi aligned word-pairs, they are limited to the
context provided by aligned word pairs as well as sensitive to
the quality of the word alignments. To overcome this issue,
we incorporate IBM 1 lexical models for both directions. A
deep bidirectional translation model is applied in rescoring
1000-best lists for the system optimized on the dev2010
corpus, see Section 3.5.

The heuristic features used by the decoder are an en-
hanced low frequency penalty [22], a word bonus, a penalty
for unaligned source words and a symmetric word-level dis-
tortion penalty. Thus, different phrasal segmentations have
the same reordering costs if they are equal in their word
alignments. The decoder also incorporates gap, open gap
and gap distance penalties [31]. All parameter weights are
optimized using MERT [23] towards the BLEU metric.

3.3.4. Decoding

Search is performed synchronously to the source cardinal-
ity [20]. For each hypothesis expansion, the corresponding
word alignment is retrieved from the translation candidates
table and used to generate the JTR sequence and to com-
pute the lexical, reordering and gap penalty scores. The JTR
model and the LM scores are computed using KenLM. The
corresponding histories are stored in the search states. The
last aligned source position of each hypothesis expansion is
also stored, since it is needed for the computation of future
reordering and gap costs as well as the JTR reordering to-
ken. States are recombined when they are equal in the source
coverage, last aligned source position, LM and JTR model
histories. As illustrated in Figure 1, several segmentations of
the same sentence pair can be equal in their word alignments.
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Figure 2: System A: the large building; System B: the large
home; System C: a big house; System D: a huge house; Ref-
erence: the big house.

During decoding, this is an issue, as most of the search graph
would be filled with numerous hypothesis expansions that
share equal word alignments and translations. Therefore, if
two states are to be recombined, we first check whether they
are equal in their JTR sequences and accordingly delete one
of them to avoid duplicates.

3.4. Backoff Language Models

The PBT and JTR systems use three backoff language mod-
els that are estimated with the KenLM toolkit [28] and in-
tegrated into the decoder as additional features in the log-
linear combination. They include a large general domain 5-
gram LM, an in-domain 5-gram LM and a 7-gram word class
language model (wcLM). All of them use interpolated modi-
fied Kneser-Ney smoothing. For the general domain LM, we
first select 1

2 of the English Shuffled News, French Shuffled
News and both the English and French Gigaword corpora
by the cross-entropy difference criterion described in [32].
The selection is then concatenated with all available remain-
ing monolingual data and used to build the language model.
The in-domain language model is estimated on the TED data
only. For the word class LM, we train 200 classes on the tar-
get side of the bilingual training data using an in-house tool
similar to mkcls. With these class definitions, we apply the
technique shown in [25] to compute the wcLM on the same
data as the general-domain LM.

3.5. Recurrent Neural Network Models

The PBT system applies reranking on 1000-best lists using a
recurrent LM. The recurrency is handled with the long short-
term memory (LSTM) architecture [33] and we use a class-
factored output layer for an increased efficiency as described
in [34]. In addition, we apply a deep bidirectional word-
based translation model (RNN-BTM) described in [35]. The
neural networks are trained using 2000 word classes and
equivalent to the general-domain language models used in
the IWSLT 2014 and IWSLT 2015 evaluations [36, 1]. The
in-domain bilingual data is used for training the RNN-BTM.
We use 200 nodes in the forward and backward projection
layers, the first hidden layers for both forward and backward
processing and the second hidden layer, which joins the out-
put of the directional hidden layers. The neural networks



Table 1: Results of the individual systems for the German→English MT task.

TED.tst2010 TED.tst2014 TEDX.tst.2014 MSLT.dev2016
# System Opt. BLEU TER CTER BLEU TER CTER BLEU TER CTER BLEU TER CTER

1 NMT 2013 5best TED 34.3 45.0 43.4 32.3 48.4 47.6 25.2 56.9 55.3 36.9 43.9 39.6
2 NMT 2016 8best TED 34.6 44.7 42.8 33.7 47.4 46.7 24.7 59.3 54.9 39.0 41.9 36.2
3 NMT 2013 5best TEDX 34.2 44.7 43.4 32.3 47.9 47.7 25.7 56.0 55.1 37.9 42.4 39.2
4 NMT 2016 8best TEDX 33.4 44.9 43.6 32.6 47.1 47.5 26.4 55.4 54.7 40.8 39.3 34.8
5 PBT TEDX 30.5 49.0 45.5 29.4 51.6 49.9 25.2 56.5 54.1 38.6 39.9 35.3
6 PBT + JTR TEDX 31.7 47.1 45.1 30.4 50.1 49.4 26.3 54.8 55.9 39.8 38.5 34.9
7 PBT + LSTM LM + NMT TEDX 31.8 47.2 44.6 30.8 49.6 48.4 27.1 53.9 52.9 41.6 36.4 32.2
8 JTR TEDX 31.8 46.8 45.9 30.6 49.7 49.5 26.0 54.0 56.7 38.9 38.7 36.5
9 PBT + JTR + NMT TED 33.1 46.7 44.1 32.1 49.6 48.0 25.9 56.1 54.1 39.9 40.2 36.4

10 JTR + LSTM BTM TED 32.2 47.5 45.4 30.8 50.3 49.5 24.6 56.8 55.7 37.6 40.7 37.6
11 JTR + LSTM BTM (updated) TED 32.2 47.3 45.3 30.9 50.1 49.5 24.9 56.2 55.5 37.8 40.4 37.3
12 NMT syscomb 1-4 - 34.3 44.4 42.7 33.4 47.1 46.7 26.2 56.4 54.1 40.3 40.8 36.9
13 TED syscomb 1-4, 5, 7, 8 - 35.0 44.1 42.7 34.2 46.5 46.9 27.6 53.1 55.6 42.9 37.6 36.9
14 MSLT syscomb 1-4, 9, 10 - 34.7 44.1 42.9 33.8 46.7 46.9 27.9 53.2 54.3 43.0 37.6 35.4

The NMT ensembles are depending on the mark selected to perform good on the TED or MSLT task and use either
the 2013 or 2016 preprocessing (pp). The TED syscomb (#13) is our final system for the TED talk task and the
MSLT syscomb (#14) for the MSLT task. The updated JTR system (#11) is submitted as a contrastive system, as
it performs better than the previously optimized JTR system (#10) which is part of our system combination (#14).
Optimization TED means that the TED.dev2010 set was used to optimize the model weights using MERT for
PBT and JTR or to select the models for the NMT ensembles. TEDX means TEDX.dev2012 was used. CTER
stands for CharacTER.

were implemented using the RWTHLM toolkit2.

3.6. System Combination

System combination is applied to produce consensus trans-
lations from multiple hypotheses which are obtained from
different translation approaches. The consensus translations
outperform the individual hypotheses in terms of translation
quality. A system combination implementation developed at
RWTH Aachen University [37] is used to combine the out-
puts of different engines.

The first step in system combination is the generation of
confusion networks (CN) from I input translation hypothe-
ses. We need pairwise alignments between the input hy-
potheses. The alignments are obtained by METEOR [38].
The hypotheses are then reordered to match a selected skele-
ton hypothesis regarding the order of words. We generate I
different CNs, each having one of the input systems as the
skeleton hypothesis. The final lattice is the union of all I-
many generated CNs. Figure 2 depicts an example of a con-
fusion network with I = 4 input translations. The decoding
of a confusion network is finding the shortest path in the net-
work. Each arc is assigned a score of a linear model combi-
nation of M different models, which include a word penalty,
a 3-gram LM trained on the input hypotheses, a binary pri-
mary system feature that marks the primary hypothesis and a
binary voting feature for each system. The binary voting fea-

2https://www-i6.informatik.rwth-aachen.de/web/
Software/rwthlm.php

Table 2: Comparison to last years German→English MT task
submission.

TED test 2010 TEDX test 2014
System BLEU TER CTER BLEU TER CTER

2015-Submission 31.9 47.6 45.5 26.2 54.7 54.6
TED-system 35.0 44.1 42.7 27.6 53.1 55.6
MSLT-system 34.7 44.1 42.9 27.9 53.2 54.3

ture for a system outputs 1 if the decoded word origins from
that system and 0 otherwise. The different model weights for
the system combination are trained with MERT.

4. Experimental Evaluation

The performance of the individual MT systems is summa-
rized in Table 1. The NMT ensembles show a strong per-
formance, especially on the TED data sets. The best NMT
ensemble outperforms the best PBT system by 1.5 BLEU on
TED.tst2010. On the TEDX data sets, our strongest PBT
system was able to beat the strongest NMT ensemble by 0.8
BLEU on MSLT.dev2016.

All NMT systems profited from combining multiple
networks into ensembles, the strongest single network for
TED.tst2010 scored 1.9 BLEU worse then the best en-
semble. For MSLT.dev2016 the improvement of using an
ensemble was 1.7 BLEU.

https://www-i6.informatik.rwth-aachen.de/web/Software/rwthlm.php
https://www-i6.informatik.rwth-aachen.de/web/Software/rwthlm.php


The performance of the JTR decoder (#8) is on par with
the PBT system that also includes the JTR model (#6) on the
TED and TEDX sets, but applying NMT in rescoring on top of
the PBT system outperforms the JTR decoder. Including the
JTR system into the system combinations provided valuable
additional information, showing that count-based and neural
models complement each other.

Combining the different ensembles using the system
combination did not show improvements over the strongest
single NMT system, but combining NMT, PBT, and
JTR gave an overall improvement of 0.4 BLEU for the
TED.tst2010 and 1.4 BLEU for the MSLT.dev2016
sets. This underlines that system combination work best
when applied on systems that significantly differ from each
other.

It is worth noting that even though the BLEU score im-
proves for all system combinations, sometimes the TER and
CharacTER do not. On the MSLT.dev2016 test set, the
TER score drops by 1.2 and the CharacTER score drops by
3.2 points, system #7 to system combination #14. Improve-
ments in TER can often be explained by shorter translations:
For the single system (#7), the average translation length is
97.7% of the reference length, whereas the system combina-
tion (# 14) output has an average length of 99.2% in compar-
ison to the reference.

5. Conclusion
In comparison to last year’s submission, we have moved
from using phrase-based and hierarchical systems towards
NMT systems combined with PBT and JTR systems.
Last year’s system combination is improved by 3.1 BLEU
for the TED.tst2010 set and by 1.7 BLEU on the
TEDX.tst2014 set as shown in Table 2.

Our best performing single system for the TED task is
an ensemble of 8 NMT networks. For the MSLT task, we
achieve our best results without system combination by us-
ing a PBT system with a LSTM language model and a NMT
system in rescoring. Using a system combination of multiple
different systems results in a significant boost of 1.4 BLEU
for the TED and MSLT task on top of the best single system.
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