
Improving Neural Machine Translation on
resource-limited pairs using auxiliary data of a

third language

Ander Martı́nez ander.martinez.zy4@is.naist.jp

Yuji Matsumoto matsu@is.naist.jp

Graduate School of Information Science, Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara, 630-0192, Japan

Abstract
In the recent years interest in Deep Neural Networks (DNN) has grown in the field of Natural

Language Processing, as new training methods have been proposed. The usage of DNN has

achieved state-of-the-art performance in various areas. Neural Machine Translation (NMT)

described by Bahdanau et al. (2014) and its successive variations have shown promising results.

DNN, however, tend to over-fit on small data-sets, which makes this method impracticable for

resource-limited language pairs. This article combines three different ideas (splitting words

into smaller units, using an extra dataset of a related language pair and using monolingual

data) for improving the performance of NMT models on language pairs with limited data. Our

experiments show that, in some cases, our proposed approach to subword-units performs better

than BPE (Byte pair encoding) and that auxiliary language-pairs and monolingual data can help

improve the performance of languages with limited resources.

1 Introduction

In the recent years interest in Deep Neural Networks (DNN) has grown in the field of Natu-

ral Language Processing (NLP), as new training methods (Blunsom and Kalchbrenner, 2013;

Sutskever et al., 2014) have been proposed. The encoder-decoder approach for Neural Machine

Translation (NMT) consists in encoding the source sentence into an intermediate vector repre-

sentation and then generating (decoding) the target sentence from this representation. Cho et al.

(2014) is an example of this approach.

The NMT approach of jointly training alignment and translation models described by Bah-

danau et al. (2014) and its successive variations have shown promising results. Its attention

mechanism deals with the problem of having a fixed length vector for sentences of varying

length by encoding the source sentence into a set of vectors, one vector for each of the tokens

in the source sentence.

NMT doesn’t need complex feature engineering, which is convenient when dealing with

resource-limited languages. However, a large parallel corpus is still needed in order to get

competitive performance and avoid overfitting. As an example, Bahdanau et al. (2014) and

Jean et al. (2015) use a dataset of about 12 million parallel sentences.

Two main problems arise when using a small dataset for training a MT model.

One of those problems is that the vocabulary exposed by a small dataset is inherently small.

Also, even if a word shows up in the data it may occur too few times for learning a reliable

representation. One strategy for minimizing this problem is subdividing words into subword

units, like syllables. Doing so reduces the total vocabulary size and increases the hit-rate of

each symbol in the dataset. This has been explored in Sennrich et al. (2015b).

Another problem concerns large NMT models. When the number of parameters is too

large compared to the data size, the model may optimize for memorizing all or a large part of

the dataset instead of modeling the translation; overfitting in practice. A solution to this problem

is to reduce the model size to better match the amount of data. However, many relevant features

may not be modeled with a smaller number of parameters. Another approach is to artificially

increase the number of samples by counterfeiting or using data of a third language.

This research explores how much of an improvement using auxiliary parallel sentences

from a third language to the target language (A → T) in modeling MT from of a resource-

limited language pair (S → T) brings. We also explore the effect of using an auxiliary language

on the decoder side.

For the case of phrase-based Statistical Machine Translation, similar ideas have been ex-

plored before with varied results. For example, for closely related pairs (Nakov and Ng, 2012)

or through lexical triangulation (Crego et al., 2010; Dholakia and Sarkar, 2014). For NMT, a

couple of authors have also explored this possibility. Dong et al. (2015) modeled translation

to different targets from a common source with shared representation. Firat et al. (2016) also

explored the case of a common target language for different source languages. Both papers

claimed to get higher translation quality over individually trained models. A comparison to

these papers follows in Section 2.

In order to assist the learning of the target language pair, MT for the auxiliary pair is

trained jointly. We argue that doing so prevents the language pair with the small dataset from

overfitting and leads to more robust models. This problem could also be addressed through

Transfer Learning, as explored in Yosinski et al. (2014) and Zoph et al. (2016), but that approach

falls outside the scope of this article.

A third solution to parallel data scarcity is using monolingual data in addition in order to

make the Language Model (LM) at the target side stronger. A strong LM at the decoder can

increase performance, as already tried by Sennrich et al. (2015a).

We perform experiments that are analogous to the ones described in Firat et al. (2016) with

focus on the more resource-limited pairs and use their results as a baseline for comparison.

This article has the following sections: Section 2 summarizes previous related work; in

Section 3, the proposed approach is described; Section 4 presents some experiments with their

results and analysis; finally, in Section 5, we draw some conclusions.

2 Related work

2.1 Neural Machine Translation
The Neural Machine Translation method proposed in Bahdanau et al. (2014) on which this work

is based is briefly described in this section.

NMT models, like SMT models, are trained to maximize the conditional log-probability

of every translation in the training set Y (i) w.r.t. their corresponding source sentence X(i) and

model’s parameters θ.

θ∗ = argmax
θ

∑
i:Y (i)∈Y

log p(Y (i)|X(i), θ). (1)

In order to compute the probability of a translation, the sequence x = (x1, . . . , xT) is first

encoded into a sequence of annotations h = (h1, . . . , hT), by a bidirectional recurrent neural

network.

ht = [�ht;�ht] = [f1(xt, �ht+1); f2(xt,�ht−1)], (2)

where f1 and f2 are both Gated Recurrent Units (GRU) as described in Cho et al. (2014).

This annotations are used by the decoder to estimate the probability of the translation,

one word at a time, based also on the previous words in the sentence. A convex sum of the

annotations, cτ , is computed each time according to their contribution to the upcoming word.

The weight of each annotation is computed in the following way:

cτ =

Tx∑
i=1

ατ,ihi, (3)

ατ,i =
exp{a(hi, zτ−1, Ey[ỹτ−1])}∑Tx

j=1 exp{a(hj , zτ−1, Ey[ỹτ−1])}
, (4)

where zτ−1 is the previous hidden state of the decoder GRU and Ey[ỹτ−1] is the word embed-

ding of the previously produced word. During training, the embedding of the expected previous

word is used instead. The function a scores the relevance of the annotation in the current con-

text. It is defined as a projection of the sum of the projections of each of its parameters.

A softmax layer can be applied on a projection of cτ , zτ and the embedding of the previous

work to compute the probability of each candidate word in the target vocabulary.

p(yτ |y<τ , x) ∝ exp{q(yτ−1, zτ , cτ)}. (5)

When generating translations of new sentences beam-search is used based on the trained

probability model.

The hidden state of the decoder zτ is updated with respect to the convex sum cτ , as de-

scribed in Cho et al. (2014).

zτ = g(yτ−1, zτ−1, cτ). (6)

In this article, the part of the network that produces h is referred as encoder and the rest of

the network as decoder. In articles by other authors, the parameters used exclusively to compute

ατ may not be considered part of the decoder.

2.2 Subword-units
Out-of-vocabulary words and low word hits are an inherent problem to small datasets. Instead

of using words as translation unit, sub-word elements can be used. By doing so, we get more

symbols from the same dataset and thus a bigger percentage of all possible symbols will appear

and the number of appearances of each of these symbols will become higher. Also, by making

the symbols shorter the number of possible symbols also reduces.

Sennrich et al. (2015b) tried using subword units for improving translation of rare words.

For doing so, they first applied BPE (Byte pair encoding) (Gage, 1994) to the word list at the

character level. BPE consists in replacing the most common symbol pairs with a new symbol

consecutively until the symbol table has a certain size. They didn’t merge symbols across words.

In order to have more similar subword units at the source and target languages, they

transliterated the Cyrillic characters into Latin characters and trained the merging jointly. This

works for the use case explored in that article of translating proper names and other words that

can be mapped phonetically. However, it doesn’t match well with morphemes (the smallest

meaningful unit of a language), which are usually short, and it minimizes word hits, which isn’t

desirable in the case of small datasets.

They tried two vocabulary sizes: one of 60,000 words and another one of 90,000 words for

the joint case.

2.3 Multilingual Neural Machine translation
The idea of jointly training additional language pairs to improve the translation quality of a

model has already been tried.

The method explained in Dong et al. (2015) consists in translating to a set of languages

from English using the same English encoder for each pair. They only investigate the case

where the source language is shared. This approach mainly improves the quality of the encoder

side as it studies more datapoints, but the quality of the decoder doesn’t improve that much

because its amount of data remains the same.

The model described by Bahdanau et al. (2014) has 85,967,240 floating point parameters

when using a vocabulary size of 30,000 at both ends. Of these parameters 32.95% are related

to the encoder and 67.05% to the decoder and soft-alignment system. This suggests that the

decoder will overfit more easily under data-scarce conditions.

Another article investigating the use of additional language pairs is Firat et al. (2016). They

train five language pairs in both directions, which makes ten individual models. For each of the

six languages, the same encoder and decoder parameters are used when repeated in a pair and

the parameters of the attention mechanism (function a in Equation (4) in this article) are shared

for all pairs.

In the encoder, the hidden states, called annotations, obtained from the forward and back-

ward RNN are projected into a new vector. This allows for the annotations to be more language-

independent, as it doesn’t make a difference whether a feature is extracted by the network iter-

ating over the source sentence forwards or backwards.

hn
t = Wn

adp[
�ht;�ht] (7)

For each of the language pairs, they feed a minibatch to the corresponding model and

update its weights accordingly; one language-pair at a time.

They obtained significant improvement for small datasets and when the repeated language

(English) was in the decoder.

They applied this method to datasets of varying sizes, starting on 100K parallel sentences

for English-French translation and 210K for German-English.

2.4 Monolingual data
Sennrich et al. (2015a) introduced a method for integrating pre-trained LMs with NMT models

in order to improve the translation quality. In their Deep-Fusion approach, they trained a LM

on monolingual data and a NMT model on parallel data, and then integrated the LM prediction

before the Softmax layer to contribute in the selection of the next word.

The LM was based on the RNNLM (Deoras, 2011) approach using GRUs in the decoder,

which in effect, is very similar to the model described in Section 2.1 but without the attention

mechanism. That is, the decoder only depends on one monolingual y sentence, without any

encoder. The equivalents to Equations 5 and 6 are:

p(yτ |y<τ) ∝ exp{q(yτ−1, z
LM
τ)}. (8)

zLM
τ = g(yτ−1, z

LM
τ−1). (9)

In order to integrate this LM with the Translation Model (TM), they first scale the hidden

state of the LM and then concatenate it to the hidden state of the TM before computing the

softmax. The scale factor gτ for the LM is given by:

gτ = σ(vTg z
LM
τ + bg), (10)

where vg and bg are learned weights and bias, respectively. After merging, the equivalent to

Equation 5 is

p(yτ |y<τ , x) ∝ exp{q(yτ−1, zτ , z
LM
τ , cτ)}. (11)

The model from Bahdanau et al. (2014) already trains something close to a LM from the

parallel data, as can be seen in Equation 5. This approach increases the complexity of the model,

as two states for two decoders need to be updated for every timestep.

3 Proposed solution

The method proposed here consists in jointly training various models with shared parameters;

either the encoder or the decoder parameters. By jointly training the models they will co-adapt

and benefit from each other. In the experiments we only explore the possibility of using one

extra auxiliary language, either as the source language or as the target language, in addition

to the intended source and target languages. More than one extra language could be used in a

similar fashion.

In addition to using parallel data from an auxiliary language we also experiment with using

monolingual data to obtain improved results.

We used subword units instead of words as the translation unit as a method to deal with

large vocabulary sizes and differences in morpheme-per-word ratios (synthetic vs isolating).

3.1 Subword units
We pre-processed the data to split words into subword units for training.

Any word in the dataset was split into a number of subword units equal to its number of

vowels. Each of the subword units consists of a vowel with all its surrounding consonants.

Numbers aren’t split. Word-boundary marks were included into the subwords. As an example,

the sentence ”the 54 polychromatic mats” is split into the sequence [” the ”, ” 54 ”, ” pol”,

”lychr”, ”chrom”, ”mat”, ”tic ”, ” mats ”].

The motivation behind this approach is that the subword-units generated by this approach

are similar in shape to syllables and syllables map relatively well to morphemes in many lan-

guages. By using these short subword-units the model could learn some kind of morphological

derivation.

In our experiments we used a vocabulary size of 30k symbols. Using only these symbols

would result in too many out-of-vocabulary symbols. In order to alleviate this problem we tried

to fit the infrequent symbols into the vocabulary by trimming one consonant at a time from the

beginning or the end of the symbol until they matched a symbol in the vocabulary. We didn’t

trim consonants from word-boundaries and when for the inner symbols we trimmed from the

side with more consonants. This reduced the number of unknown symbols considerably but

didn’t eliminate them. Note that sometimes excessive trimming can happen to the point that the

original word cannot be restored, but this is still preferable to an unknown symbol.

The subword units are merged after translation before computing the BLEU score in order

to be comparable to other authors’ results. The subword units are merged using a simple regular

expression of the form ”s/([:consonant:]+) \1/\1/g”.

We notice two problems with this approach. For languages with long consonants clusters

like Czech the vocabulary size will grow faster. We observed this problem with German when

compared to English. The number of out-of-vocabulary symbols in our datasets can be seen in

Table 1.

The other problem is related to sound changes. For languages with a lot of sound changes,

like consonant gradation in Finnish, morphological changes can produce a different symbol,

which increases the need of data. As an example, the word poika will use the symbols poik
and ka but in genitive it changes to pojan resulting in poj and jan , two different symbols.

This approach produces more symbols for each sentence than the BPE approach. As an

example, Firat et al. (2016) got 43.67M Finnish tokens from a 2.03M sentence dataset, i.e. 21.5

symbols per sentence, while our method produces 52.0 symbols. For English and German they

got 26.9 and 28.3 respectively, while we get 47.9 and 45.2. This increased number of symbols

helps specially with small datasets and languages with many one-syllable morphemes.

3.2 Auxiliary language parallel data
We train a model on an auxiliary language pair which shares one of its languages with the target

language pair together with the main model. Both models, the target translation model and the

auxiliary translation model, are trained to minimize the Negative Log Likelihood (NLL) on their

corresponding datasets. In order to train both of them jointly, for each of them, the mean NLL

and the gradients with respect to each parameter are computed on a minibatch. The weighted

sum of these gradients are further used by ADADELTA (Zeiler, 2012) to update the weights.

To prevent one of the models’ updates from outweighing the other’s, gradients of shared

parameters are scaled based on their previous d costs, in such a way that the weakest model’s

gradients get promoted. The intuition behind this is that, if they are generalizing correctly,

the main model and the auxiliary model should produce similar costs, as they are defined in a

similar fashion. If a model performs better than the other we can decelerate its optimization

while accelerating the other to balance them properly. The auxiliary model has less risk of

overfitting, as it trains on a bigger dataset. Therefore, if the main model produces costs similar

to those produced by the auxiliary model it is generalizing better than when the cost function

evaluates lower. The parameters that are not shared by the two models are not scaled.

The scale factor at epoch t for the gradient’s of the auxiliary model sauxt and the target

model stgtt are computed as follows:

sauxt =

(
1

2
− 1

1 + e(μ
tgt
t −μaux

t)s

)
l +

1

2
, (12)

stgtt = 1− sauxt ; (13)

where s and l are hyperparameters that control the steepness and he range of the function,

respectively. μtgt
t and μaux

t are the mean of the last d costs for the target model and the auxiliary

model, calculated as follows:

μm
t =

t∑
j=t−d

Jm
j , (14)

where m ∈ {tgt, aux} and Jm
j is the cost computed by model m at timestep j. The pseudo-

code for this algorithm can be seen in Algorithm 1 and the shape of Equation 12 in Figure

1.

We group sentences of similar length in minibatches so that each minibatch contains

roughly the same number of symbols (in our experiments, no more than 4000 symbols per

batch). Therefore, minibatches of longer sentences contain less sentence pairs. Because each

minibatch can contain a different number of sentences and different number of words per sen-

tence, averaging over words is necessary. Our cost function averaged the cost of every word in

a sentence in every sentence in a minibatch. The cost of a word was measured as Negative Log

Likelihood,

Jm
t (Xt, Yt) =

1

Nt

Nt∑
i=1

⎛
⎝ 1

length(Y
(i)
t)

length(Y
(i)
t)∑

j=1

− logPθ(Y
(i,j)
t |Xt)

⎞
⎠, (15)

Figure 1: Equation 12 with parameters s = 5 and l = 0.9

where Xt and Yt are the source and translation sentences in the minibatch at timestep t, Nt is

the number of sentence pairs in the minibatch and length(Y
(i)
t) is the length in symbols of the

the translation i at timestep t.
In Figure 2 we can see how the costs from the German-English and the French-English

models descend at the same pace. The s hyperparameter was set to 50. The weighted sum of

these gradients are further used by ADADELTA Zeiler (2012) to update the weights.

3.3 Monolingual data
Monolingual data can be leveraged in a similar way to auxiliary data. We input monolingual

sentences as both, input and expected output, in the manner of an auto-encoder (e.g. De→De).

In contrast with the data from an auxiliary pair the model for the monolingual data is

trained after the target model has converged. The encoder and the decoder are trained separately.

First the non-shared part (either encoder or decoder) is trained until convergence and then the

rest of the model is trained using Equation 12 to scale the updates.

We used different parameters for Equation 12 for the auxiliary language-pair data and the

monolingual data.

This kind of model, similar to an auto-encoder, is expected to quickly memorize a copying

mechanism from source to target. The method here described can slow down this memorization.

4 Evaluation

4.1 Data and Methods
The datasets used in the experiments are similar to some described in Firat et al. (2016). We

performed two sets of experiments: one for the case where the auxiliary language is in the

source (De+Fr → En) side and the other one for the case where the auxiliary language is in

the target side (En → Fi+Fr). In both cases French is the auxiliary language. The parallel

data is from the datasets available for WMT’15 for each language pair. We randomly picked

100k and 200k sentences for the En-Fi case and 210k and 420k sentences for the De-En case.

The development and test sets are for En-Fi were newsdev-2015 and newstest-2015
respectively; and for De-En, newstest-2013 and newstest-2015 respectively.

All the sentences were tokenized using the tokenize.perl script included

in Moses and then cleaned using the scripts normalize-punctuation.perl,

remove-non-printing-char.perl and deescape-special-chars.perl. In-

Algorithm 1 Training

1: procedure TRAIN

2: costs aux, costs tgt← ([] , [])
3: b← 0.5
4: while not done do
5: Mtgt,Maux ← getNextMinibatches()
6: Jtgt, Jaux ← (costTgt(θtgt,Mtgt),costAux(θaux,Maux))
7: for θi ∈ (θtgt ∪ θaux) do
8: if θi ∈ (θtgt ∩ θaux) then
9: gtgt ← ∂

∂θi
costTgt(θtgt,Mtgt)

10: gaux ← ∂
∂θi

costAux(θaux,Maux)
11: g ← b · gaux + (1− b) · gtgt
12: else if θi ∈ θtgt then
13: g ← ∂

∂θi
costTgt(θtgt,Mtgt)

14: else
15: g ← ∂

∂θi
costAux(θaux,Maux)

θi ← applyADADELTA(θi, g)

16: push Jtgt onto costs tgt
17: push Jaux onto costs aux
18: if |costs aux| > d then shift costs aux

19: if |costs tgt| > d then shift costs tgt

20: (μaux, μtgt) ← (mean(costs aux), mean(costs tgt))

21: b←
(

1
2 − 1

1+e(μtgt−μaux)s

)
l + 1

2

stead of space separated words, we used the subword units described in Section 3.1 with a

vocabulary size of 30k symbols. Unlike the BPE subword method used in Firat et al. (2016)

our method allows for UNK symbols. The amount of these symbols and other statistics of the

datasets can be seen in Table 1.

Twelve models were trained, three on each of the four described datasets. We first trained

four models using only the described subword approach, without any additional data. Then, we

also trained four models using the auxiliary data. Finally, we further train the models from the

previous step using the monolingual data in addition to the main and auxiliary datasets.

All the models had the same number of parameters in their encoders and decoders.

We evaluate the performance of the trained models based on their BLEU score using the

multi-bleu.perl script from Moses. We merged the subword tokens into words before

evaluation and computed the score on lowercase text.

4.2 Implementation

The code1 for the proposed method was implemented in Python using Theano (2016). It runs on

a single GPU computing the cost and gradients for each language pair one at a time. This could

be parallelized using an extra GPU to speed the training up. We used three different models of

GPU for training: GeForce GTX 980 Ti, Tesla K40m and GeForce GTX TITAN X.

We used a vocabulary size of 30k symbols for each language. All the hidden layers had

1,000 units. The embeddings for the each symbol were 620 dimensions long. The attention

vectors from the bidirectional RNNs where projected into 1,000 dimension vector as described

1Code available at https://github.com/basaundi/amta2016

role sentence pairs symbols UNK

src tgt src tgt

en-fi

train 100k 4.7m 5.2m 11.6k (0.2%) 39.6k (0.7%)

train 200k 9.3m 10.4m 23.3k (0.2%) 78.6k (0.7%)

development 1500 54.2k 60.6k 904 (1.7%) 986 (1.6%)

test 1370 45.4k 51k 940 (2.1%) 858 (1.7%)

en-fr auxiliary 4m 222.3m 262.6m 783.6k (0.3%) 747.7k (0.4%)

fi monolingual 8m 399.5m 3.6m (0.9%)

de-en

train 210k 10m 9.5m 350.2k (3.5%) 90.2k (0.9%)

train 420k 20.1m 19m 700.3k (3.5%) 180.3k (0.9%)

development 3000 115.5k 105.6k 3641 (3.2%) 1120 (1.1%)

test 2169 80k 75.3k 2801 (3.5%) 1330 (1.8%)

fr-en auxiliary 4m 267.4m 227.2m 1m (0.4%) 862.3k (0.4%)

de monolingual 8m 357m 5.2m (1.5%)

Table 1: Statistics of the corpora used in the experiments. The symbols are subword tokens as

described in this article.

Size BPE Firat SW +Aux +Aux +Mono

En → Fi
100k 3.93/3.42 3.21/4.2 4.17/3.89 3.81/3.74 4.54/3.99

200k 5.21/4.79 4.16/5.71 5.28/4.70 5.15/5.08 5.63/5.32

Table 2: BLEU scores for the Finnish development and test datasets (separated by /). SW is

our new subword-unit method, +Aux is using subwords and English-French auxiliary data and

+Aux +Mono is using subwords with auxiliary and monolingual data.

in Equation 7.

The models are optimized using ADADELTA Zeiler (2012) with the ρ parameter set to 0.95.

We clipped all the gradients to an L2 norm of 1 after weight-summing them as described in

Section 3.2.

During training, a minibatch from each used dataset was fed to the corresponding compu-

tational graph. Sentences of similar length were grouped together in minibatches of no more

than 40k symbols. Therefore, minibatches of longer sentences contained less sentences than

those with shorter sentences.

We trained the models for a week and kept the one that performed best on the development

set. For the models using monolingual data, we first trained the model on the corresponding

training and auxiliary datasets. Then, we further trained the model using also the auxiliary data

and monolingual data stopping after the third drop of performance on the development data.

This happened quite fast, as the model memorizes the copy mechanism easily.

We used different values for hyperparameters s and l in Equation 12 for those parameters

shared with the auxiliary language-pair model (saux = 50 and laux = 1) and those parameters

shared with the monolingual model (smono = 30 and lmono = 0.9). For both cases the number

of previous costs d used for the running average was 30.

4.3 Results and analysis
The results for the experiments are summarized in Tables 2 and 3. For German, we can see that

the results from Firat et al. (2016) for their original approach using the same dataset were better

for the same target dataset in all cases. They didn’t try English-Finnish translation with small

datasets.

Size Single † Firat † SW +Aux +Aux +Mono

De → En
210k 14.27/13.20 16.96/16.26 15.85/14.24 16.61/15.39 16.66/15.30

420k 18.32/17.32 19.81/19.63 18.72/17.10 18.58/17.17 18.62/17.26

Table 3: BLEU scores for the German development and test datasets (separated by /). SW is

our new subword-unit method, +Aux is using subwords and auxiliary data and +Aux +Mono
is using subwords with auxiliary and monolingual data. † Results from Firat et al. (2016).

When compared to the results from the single language-pair model using BPE, we can see

that our approach for the subword units worked well with German. The performance gap is

bigger with the smaller dataset. Our approach produces more symbols for the same dataset,

which means there is more data for training. However, guessing the right word also becomes

harder because more subwords need to be decoded correctly in order to get one correct word.

This difference should be more noticeable for languages with longer words. In Table 5, we can

see that many subwords were guessed correctly by the different models but didn’t form the right

word.

Using the auxiliary language pair helped for the German-English model with the small

dataset. The extra data didn’t help with the bigger dataset. Our guess is that one week wasn’t

enough for the model to benefit from all the data, as our method takes a lot of time to complete

one iteration when using a single GPU. The score on the development dataset was still growing

when the training was stopped. The performance for the model trained on the bigger dataset im-

proved when trained with the extra monolingual dataset. This improvement in the performance

could be an effect of the extra training time. In Table 4 we can see the translations generated by

the different models to a sample sentence.

For the English-Finnish models the auxiliary data helped only for the bigger dataset be-

cause the smaller dataset overfitted for Finnish before it could use any French data. Our results

are inferior to the results from the approach described by Firat et al. (2016) 2. The auxiliary

dataset helped better when the auxiliary language was in the encoder (i.e., the language in the

decoder was repeated).

In Figure 2 we can see how the NLL cost descended at the same pace for both German-

English and French-English effectively preventing the model from overfitting for the smaller

dataset. In our experiments we observe that the BLEU score on the validation set starts to

decrease when the cost goes under 1.0 when using our proposed subword units.

Introducing the monolingual data helped prevent the English-Finnish models from overfit-

ting but wasn’t very helpful for German. In Figure 3 we observe how, without the additional

data, the model over-fits and prepends an unnecessary adjective to the word Ukraine associated

to school and Ukraine. The incorrect translation means ”All children return to latter Ukraine”.

The proposed subword-units are able to generate new words that do not appear in the

training or auxiliary dataset by analogy. As an example, the word biometrically was guessed

correctly by the German-English model even though this word appears in the test set for the

first time and the English-Finnish model could generate the word liitoksen (liitos + GEN, of the

annexation).

5 Conclusion

We evaluated three different ideas that could help improve NMT for language pairs with limited

resources. We trained three models applying from one to the three of the ideas on four different

datasets and assessed them by measuring their BLEU scores on the same test-set.

2Computed using the code at https://github.com/nyu-dl/dl4mt-multi

Figure 2: NLL-per-word cost evolution for a model trained on a single language pair (de-en) and

one trained using an auxiliary language pair. The cost for the model trained without auxiliary

data sinks because of overfitting. For the other model, the costs of the target language-pair

(upper) and the auxiliary language-pair (lower) descend at the same pace.

The first idea was to use subword-units instead of words. The subword-units we applied

were intended to map better to single morphemes when compared to other methods as BPE. Our

experiments showed that these kind of subword-units can help with smaller datasets, getting a

+1.24 BLEU score improvement when compared to BPE for German-English translation when

trained on a 210k sentence pair dataset.

Using data form an auxiliary language-pair helped improve the performance for small

datasets (about 200k parallel sentences) but when the dataset was too small (100k parallel sen-

tences) and the auxiliary language was in the decoder side the model ended memorizing the

small dataset despite the extra data. Even though the extra data improved the performance the

solution by Firat et al. (2016) got better results for German-English translation.

The monolingual data helped prevent overfitting in the cases when the dataset in the de-

coder side was too small. The monolingual data didn’t help very much with German-English

translation. Our proposed solution increased considerably the time needed for each iteration

and thus the time for convergence.

In the future, we would like to rethink the subword-unit approach to represent better the

consonant-gradation and other small sound changes related to morpheme combination. Also,

faster GPUs may make our solution more feasible in the future.

Figure 3: Alignments for English-Finnish translations by the ”SW” (left) and ”+Aux+Mono”

models (right). The first model prepends the adjective ”jälkimmäiseen” (latter) to Ukraine and

omits the words eivät (not) and koulu (school).

source die premierminister indiens und japans trafen sich in tokio .

reference india and japan prime ministers meet in tokyo

subword 210k the prime minister of india and japan in tokyo in tokyo .

+aux 210k the prime ministers of india and japan met came in tokyo .

+aux+mono 210k the prime minister of india and japan came to tokyo .

subword 420k prime minister india and japan met in tokio .

+aux 420k the prime minister of india and japan joined in tokyo .

+aux+mono 420k the prime minister , india and japan , met in tokyo .

Table 4: Sample translations of the first German sentence in the test set produced by the different

models.

source the organisations have promised a career solution by the

end of autumn , but according to the latest estimation it

would be achieved this week .

reference järjestöt ovat luvanneet työuraratkaisun syksyyn mennessä ,

mutta tuoreimman arvion mukaan se syntyisi tämän viikon aikana .

subword 100k järjestöt ovat luvanneet erinomaisen urauden loppuun

saattamisen loppuun saakka , mutta myöhemmin tällä viikolla

toteutetulla arviolla voitaisiin saavuttaa tämän viikon kuluessa .

+aux 100k järjestöt ovat luvanneet suorituskeskustelun jälkeen

syksyn loppuun mennessä , mutta viimeisimpien arvioiden

mukaan tämä ehdotus voitaisiin .

+aux+mono 100k järjestöt ovat luvanneet tehtyä urakentamalla syksyn loppuun

mennessä , mutta viimeisimpänä arvUNKstana se olisi

saavuttanut tämän viikon kuluesss .

subword 200k järjestöillä on luvattu uralla uratkaisu vuoden loppuun mennessä ,

mutta viimeisimmän arvion mukaan se olisi saavutettavissa .

+aux 200k järjestöt ovat luvanneet saavutettavan uran loppuun mennessä ,

mutta viimeisten arvioiden mukaan tämä olisi mahdollista

saavuttaa tällä viikolla .

+aux+mono 200k järjestöt ovat luvanneet suoran ratkaisun syksyn loppuun mennessä ,

mutta viimeisin arvioitu olisi viime viikolla saavutettavissa .

Table 5: Sample translations into Finnish. Many subwords were guessed correctly but didn’t

form the correct word.

References

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to Align

and Translate. arXiv:1409.0473 [cs, stat]. arXiv: 1409.0473.

Blunsom, P. and Kalchbrenner, N. (2013). Recurrent Continuous Translation Models. Proceedings of the
2013 Conference on Empirical Methods in Natural Language Processing.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y.

(2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Trans-

lation. arXiv:1406.1078 [cs, stat]. arXiv: 1406.1078.

Crego, J. M., Max, A., and Yvon, F. (2010). Local lexical adaptation in Machine Translation through tri-

angulation: SMT helping SMT. In Proceedings of the 23rd International Conference on Computational
Linguistics (Coling 2010). Coling 2010 Organizing Committee.

Deoras, A. (2011). RNNLM - Recurrent Neural Network Language Modeling Toolkit. Microsoft Research.

Dholakia, R. and Sarkar, A. (2014). Pivot-based triangulation for low-resource languages. In Proc. AMTA,

pages 315–328.

Dong, D., Wu, H., He, W., Yu, D., and Wang, H. (2015). Multi-Task Learning for Multiple Language

Translation. In ACL.

Firat, O., Cho, K., and Bengio, Y. (2016). Multi-Way, Multilingual Neural Machine Translation with a

Shared Attention Mechanism. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages 866–875, San

Diego, California. Association for Computational Linguistics.

Gage, P. (1994). A New Algorithm for Data Compression. C Users Journal, 12(2):23–38.

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2015). On Using Very Large Target Vocabulary for

Neural Machine Translation. In Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1–10, Beijing, China. Association for Computational Linguistics.

Nakov, P. I. and Ng, H. T. (2012). Improving Statistical Machine Translation for a Resource-Poor Lan-

guage Using Related Resource-Rich Languages. Journal of Artificial Intelligence Research, 44. arXiv:

1401.6876.

Sennrich, R., Haddow, B., and Birch, A. (2015a). Improving Neural Machine Translation Models with

Monolingual Data. arXiv:1511.06709 [cs]. arXiv: 1511.06709.

Sennrich, R., Haddow, B., and Birch, A. (2015b). Neural Machine Translation of Rare Words with Sub-

word Units. arXiv:1508.07909 [cs]. arXiv: 1508.07909.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to Sequence Learning with Neural Networks.

In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances
in Neural Information Processing Systems 27, pages 3104–3112. Curran Associates, Inc.

Theano, D. T. (2016). Theano: A Python framework for fast computation of mathematical expressions.

arXiv:1605.02688 [cs]. arXiv: 1605.02688.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features in deep neural

networks? arXiv:1411.1792 [cs]. arXiv: 1411.1792.

Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method. arXiv:1212.5701 [cs]. arXiv:

1212.5701.

Zoph, B., Yuret, D., May, J., and Knight, K. (2016). Transfer Learning for Low-Resource Neural Machine

Translation. arXiv:1604.02201 [cs]. arXiv: 1604.02201.

