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TMI-07

11th International Conference on Theoretical and
Methodological Issues in Machine Translation

Notes from the Programme Chair

The first International Conference on Theoretical and Methodological Issues in
Machine Translation took place in upstate New York in 1985. More than 20 years
later, we are pleased to be holding the 11" Conference in the series in Skovde,
Sweden, from 7—9 September 2007.

As Programme Chair, | was absolutely thrilled that we received 63 submissions to the
conference. From this, following a huge amount of hard work by the Programme
Committee (listed on the next page), this has been whittled down to the programme
that stands before you, consisting of 17 oral presentations, and 12 posters and
demonstrations. As is traditionally the case at TMI, we have papers on a wide range
of subjects, including statistical MT, example-based MT, rule-based MT, hybrid MT,
MT evaluation, open source MT, alignment, inducing bilingual lexical information,
parallel and comparable corpora, as well as multilingual applications.

In addition, we have two renowned keynote speakers in Anna Sagvall-Hein (Uppsala)
and Hermann Ney (RWTH Aachen). Finally, we have a panel session chaired by
Steven Krauwer (Utrecht) entitled Is MT in Crisis? which promises to be both fun and
informative.

There are a number of people | would like to thank. Firstly, this conference would not
be happening at all without the enormous effort provided by Barbara Gawronska and
her team in Skdvde. We would especially like to thank the School of Informatics for
having the Proceedings printed for us. Secondly, my heartfelt thanks go to the
members of the Programme Committee, who, as usual, did sterling work over and
above what might have reasonably been expected from them. Thirdly, as you all know
we decided a long time ago to co-locate the conference temporally with MT Summit
XI, so | would like to thank Bente Maegaard and Viggo Hansen for their support in
making this possible, and for supporting the discounted registration rates for both
conferences. Finally, | would like to thank my students Karolina Owczarzak, Yanjun
Ma, John Tinsley and Sara Morrissey for their help in preparing the website,
proceedings and letters of support to enable attendees to travel.

We have an excellent programme assembled. | hope you enjoy what you hear.

Andy Way.
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Invited Talks

Rule-based and Statistical Machine Translation with a Focus on Swedish

Anna Sagvall Hein
Professor of Computational Linguistics,
Department of Linguistics and Philology
Uppsala University
P.O. Box 635
SE-751 26 Uppsala
Sweden

anna@lingfil.uu.se

In the talk, I will discuss the pros and cons of rule-based (RBMT) versus statistical
machine translation (SMT). In particular, I will present data from running one system
of each kind, Convertus and Pharaoh, on a corpus of automotive service literature
from Scania CV AB. Translation goes from Swedish to English. The focus will be on
the different kinds of errors that are typical of the two approaches, and how the errors
may be identified and corrected. Some of them are language-independent whereas
others are typical of the language pair in focus.

In addition, data from running Pharaoh on Europarl involving Swedish in relation to
Danish, English, German, French, Spanish, Dutch, Portuguese, ltalian, Greek and
Finnish will be brought into the discussion, and from running Convertus on a corpus
of university syllabi from Uppsala University. In the Europarl case, an RBMT system
trained for the domain was not available, and in the syllabus case, a parallel corpus for
the domain was not available. This seems to be the typical case in a situation where
MT is needed. The choice between an RBMT and an SMT approach is constrained by
what is available in terms of corpora for an SMT system, and language resources for
an RBMT system. | will conclude by discussing how the two approaches may be
combined.
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Statistical MT from TMI-1988 to TMI-2007:
What Has Happened?

Hermann Ney
Professor of Human Language Technology and Pattern Recognition,
RWTH Aachen University
Ahornstr. 55
DE-52056 Aachen, Germany

ney@informatik.rwth-aachen.de

When Peter Brown of IBM research presented a statistical approach to French—
English MT at TMI 1988 at CMU, the audience was shocked because this approach
was a slap in the face for the then received MT theories. At the time of TMI 2007,
nearly two decades later, the statistical approach seems to be the mainstream approach
in MT research.

Since the first approach to statistical MT had been worked out by IBM for French—
English translation, many attempts have been made to push the state of the art and to
improve the translation accuracy.

Statistical MT systems are now able to translate across a wide variety of language
pairs and translation tasks. The statistical approach forms the basis for many recent
and ongoing large-scale MT projects like the EU-funded TC-Star project and the US-
DARPA-funded GALE project. In both projects, statistical MT is extended from text
input to speech input.

Today, a typical state-of-the-art statistical MT system has the following four
components:

1. Training: For each sentence pair in the training data, an alignment matrix is
computed, typically by using the set of IBM-1 to IBM-5 alignment models and
a Hidden Markov model.

2. Phrase extraction: From the alignment matrices of all training sentence pairs,
source-target fragments are excised and used to define the so-called phrase
tables.

3. Definition of the log-linear model: For each source-target phrase pair in the
phrase table, so-called scoring functions are defined. Based on the training
data, these scoring functions compute a probabilistic score of the hypothesis
that the source fragment and the target fragment under consideration are
translations of each other. These scoring functions are complemented with a
word and/or phrase re-ordering model. All these scoring functions are
combined in a so-called log-linear model. The weight of each scoring function
is tuned for optimal translation quality or a related criterion.

4. Generation or search: For the given source sentence, the goal is to select the
target sentence with the highest probabilistic score in the log-linear model. To
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this purpose, the search algorithm has to generate and score hypotheses along
various dimensions: unknown segmentation of the source sentence, unknown
target phrases and unknown order of these phrases in the target sentence.

This talk will review the details of these components and the progress that the field
has made so far and will also compare the statistical approach with example- and
memory-based approaches.



Panel Session: Is MT in Crisis?

Moderated by:

Steven Krauwer
Professor of Computational Linguistics
ELSNET/University of Utrecht,
Trans 10,
NL-3512 JK Utrecht,
The Netherlands

steven@krauwer.nl

Some people maintain that MT is in deep crisis and has been so for many years.
Others maintain that the crisis is just in the eye of the beholder and that MT is more
flourishing than ever. Still others point to the fact that one man’s (e.g. MT’s) crisis is
another man’s (e.g. Translation Tools’ or MT Evaluators’) opportunity.

If you don’t know the answer to this question you should attend the panel session,
where five high-level experts will give you the real and ultimate answer. If you do
know the answer you should attend to check whether the experts got it right, and to
contradict them if necessary.
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An Assessment of Language Elicitation without the Supervision of
a Linguist

Alison Alvarez, Lori Levin, Robert Frederking {[nosila|lsl|ref]@cs.cmu.edu}
Jill Lehman {jill@kidaccess.com}
Language Technologies Institute
Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, Pennsylvania

ABSTRACT

The AVENUE machine translation
system is designed for resource poor
scenarios in which parallel corpora are
not available. In this situation,
parallel corpora are created by
bilingual consultants who translate an
elicitation corpus into their languages.
We have described the elicitation
corpus in other publications. This
paper is concerned with evaluation of
the elicitation corpus: is it suitably
designed so that a bilingual consultant
can produce reliable data without the
supervision of a linguist? We
evaluated two translations of the
English elicitation corpus, one into
Thai and one into Bengali. Two types
of evaluation were conducted: an error
analysis of the translations produced
by the Thai and Bengali consultants,
and a comparison of Example Based
MT trained on the original translations
and on corrected translations.

1 INTRODUCTION

MT systems can be learned from large
parallel corpora or they can be produced
by humans writing rules. A few
researchers have investigated whether, in
the absence of human rule writers and
corpora, an MT system can be learned
from linguistically naive human
consultants (McShane and Nirenburg,
2003, McShane et al. 2002; Probst, 2005).
Two approaches have been taken. The
Boas system (McShane et al, 2002) trains

the consultants in linguistic terminology
and then asks them whether their language
has, for example, nominative case or dual
number. Our work relies on having the
consultant translate a list of sentences, or
“elicitation corpus”, that is like a
fieldworker’s questionnaire. Each
sentence is designed to elicit a specific
morphosyntactic property of the language.
For example, we compare the translation
of A tree fell and Two trees fell to see if
verbs agree with subjects in number.

Our approach relies on the
consultant getting the point of each
example, with minimal use of linguistic
terminology (see below). But this
approach can easily fail to produce data
that is useful for training an MT system.
For example, the consultant may speak a
language that does not normally use
articles, but may feel compelled to
translate the English words the and a,
resulting in a corpus and that translation
may not accurately reflect the normal
syntax of his or her language.

As part of a U.S. government
project called REFLEX, we produced an
elicitation corpus of 3124 English
sentences, which the Linguistic Data
Consortium (LDC) is translating into a
number of languages, beginning with Thai
and Bengali.

This paper is concerned with an
evaluation of our elicitation corpus. Two
types of evaluation are provided. First, we
provide an error analysis of two human
translations of the elicitation corpus.
Second, we compare an Example Based
MT (EBMT) system trained on original
human-produced translations and on



srcsent: We baked cookies.
context: We = 5 men;

((actor ((np-function fn-actor) (np-general-type pronoun-type)(np-person person-first)
(np-identifiability identifiable) (np-pronoun-exclusivity inclusivity-neutral)
np-number num-pl) (np-biological-gender bio-gender-male)(np-animacy anim-human)
(np-specificity specific)(np-pronoun-antecedent antecedent-not-specified) (np-distance
distance-neutral)))

(undergoer ((np-function fn-undergoer)(np-person person-third)(np-identifiability unidentifiable)
(np-number num-pl)(np-specificity non-specific)(np-animacy anim-inanimate)
(np-biological-gender bio-gender-n/a)(np-general-type common-noun-type)
(np-pronoun-exclusivity inclusivity-n/a)(np-pronoun-antecedent antecedent-n/a)
(np-distance distance-neutral)))

(c-polarity polarity-positive) (c-v-absolute-tense past) (c-v-lexical-aspect activity-

accomplishment)(c-general-type declarative-clause)(c-my-causer-intentionality intentionality-

n/a)(c-comparison-type comparison-n/a)...

Figure 1: A source language sentence, its context field and its abridged feature structure.

corrected translations in order to see the
extent to which the errors of a
linguistically naive translator affect
translation quality. We will conclude by
discussing the implications of using
linguistically naive consultants as a
resource for building MT systems.

2 Background

The AVENUE project has two
related foci: building MT systems in low-
resource scenarios, and making robust,
hybrid MT systems using combinations of
deep linguistic knowledge and statistical
techniques. The hybrid system is a
statistical transfer system (Lavie et al.
2004), which makes use of transfer rules
as well as a statistical decoder. The rules
can be written by hand, or learned
automatically (Probst 2005). The
AVENUE system also includes an EBMT
system (Brown 1996), in order to use any
pre-existing parallel texts that do happen
to be available.

One hypothesis of the AVENUE
work for low-resource scenarios is that
MT systems can be learned from small
amounts of data if the data is highly
structured (Lavie et al. 2003). The
elicitation corpus is therefore designed to
produce highly structured data. Each

sentence is designed to elicit a specific
morphosyntactic property of the language,
and sentences are organized into minimal
pairs (e.g., A tree is falling and A tree fell)
to compare the effects of changing one
grammatical feature at a time. Probst
(2005) describes automatic rule learning
from elicited data.

A small sample of elicitation
sentences is included in the list below. A
more detailed description of the elicitation
corpus can be found in Alvarez et al,
(2006).

*  Mary is writing a book for John.

*  Who let him eat the sandwich?

*  Who had the machine crush the
car?

* They did not make the policeman
run.

*  Our brothers did not destroy files.

* He said that there is not a manual.

*  The teacher who wrote a textbook
left.

* The policeman chased the man
who was a thief.

*  Mary began to work.

Each sentence in the elicitation
corpus is associated with a set of feature-
value pairs, which represent the meaning
elements that may be reflected in the



morphosyntax of the language. Figure 1
shows an example of an elicitation
sentence and its feature structure.

As mentioned above, the
elicitation corpus was translated into Thai
and Bengali. The structural differences
between Thai and Bengali make them
excellent choices for our first elicitation
corpus assessment. Bengali is a synthetic
Indo-European language spoken in India
and Bangladesh. It has rich system of
tense and aspect. Thai is a highly analytic
language with a complex pragmatic
system and gender marking. It is the
national language of Thailand and is a
member of the Tai-Kadai language family.

In our analysis of corpus
translations, we found 1064 elicitation
errors in the Thai Corpus and 359 in the
Bengali corpus. An elicitation error is
any translation mistake that would lead to
an incorrect characterization of a
language. A discussion of these types of
mistakes can be found in section 4.

We also wanted to see to what
degree these translation errors in the
corpus would harm an MT system learned
from the data. For a variety of reasons, it
was not practical to train our statistical
transfer system on this data. We therefore
assessed the impact of these elicitation
errors by training two EBMT systems on
our Thai data. One trained on our original
unsupervised corpus and the other trained
on a corpus corrected of elicitation errors.
This evaluation is described in section 6.

3 Related Work

Two other projects that we know
of formulate grammars based on elicited
data. In addition to the Boas system
mentioned above, which attempts to train
naive informants to provide linguistic
information, the Grammar Matrix (Bender
and Flickinger, 2005) collects facts like
the existence of subject-verb agreement
from a field worker and then automatically
produces an HPSG grammar for the
language. Both of these use knowledge
that a trained human has put into technical

linguistic form. In contrast, our approach
analyzes translations of elicitation corpus
sentences, and the underlying feature
structures they represent, to derive the
linguistic facts about the language
automatically.

3 The Corpus and Support Materials

Our elicitation corpus is a
monolingual corpus of 3124 English
sentences. We designed it to be translated
into any human language. Each sentence
in the untranslated corpus is made of three
main components. First, we start with a
feature structure that represents the
elements of meaning that will be in the
elicitation sentence. This structure has
separate fields each representing head-
bearing phrases. Each field contains a list
of features and values that represent the
pieces of meaning underlying the source
language sentence. By features we mean
morphosyntactic phenomena, for example,
person, number or tense (Alvarez et al
2006).

Next, we annotated each feature
structure with an English sentence that
would represent the features and values in
its underlying structure. Because our
feature structures are intended to cover the
majority of morphosyntactic features that
exist in human language, our English
sentence may not adequately represent all
of the features in the feature structure. For
example, given the sentence “We baked
cookies”, some languages would translate
it differently based on whether the actor
was dual, plural, male or female.

If a linguist were to administer
this corpus it would be possible for the
language consultant to ask clarification
questions. However, for the REFLEX
project, the LDC administered the
translation of our corpus with a single
translator per language and with no
supervision from our team. We had no
contact with the translators during
translation of the elicitation corpus and
were not present to answer questions. To
clear up confusion about how we wanted



the corpus sentences to be translated we
used “context fields”. The context field
supplements our English elicitation
sentences with information not easily
represented in the English sentence itself,
but represented in the feature structure.

Our feature structures by
themselves are complicated and would be
difficult for someone without linguistic
training to understand. However, a context
field and a source sentence together
embody all of the information in their
corresponding feature structure. Thus, we
were able to hide the feature structure and
give the translators just the elicitation
sentence and context.

2a. Sentence: You wrote.

Context: You = five men
Translation: antum katabtum

72b Sentence: You wrote.
Context: You = two men
Translation: antumaa katabtumaa

2% Sentence: You wrote.
Context: You = five men
Translation: escribieron

Sentence: You wrote.
2d. Context: You = two men
Translation: escribieron

Figure 2: Context information isn’t always
incorporated into target language translations. The
two sentences translated into Modern Standard
Arabic (2a and 2b) are translated differently based
on the number of people ‘You’ represents.
However, the Spanish translations remain the
same in 2c and 2d. This example and further ones
can be found in our translator guide (Alvarez et
al. 2007).

For further clarification, we wrote
a translator guide with examples and
explanations to steer the native speakers
toward translations that would reveal the
language features of the target language.

When we talk about revealing
language features, we mean the

morphosyntactic characterization of a
language. That is, we want to be able to
learn how language features are
grammaticalized in a target language or if
they are manifested at all. In our case, we
strove to get the most natural sounding
translation that would let us learn about
the features of a language. This means
that not every feature will be translated
into our target elicitation language. This is
an acceptable outcome as it is just as
important to know what features are not
grammaticalized in a language as those
that are. For example, a Spanish speaker
would translate the plural second person
pronoun the same whether ‘you’
represented 2 or 5 people. However, in
Modern Standard Arabic the two
sentences would translate differently
depending on whether the pronoun
represented 2 or 5 people. Thus, the
context field may play into the translation
of one language, but not into another.
Because we designed our corpus to be
used with any language a translator may
be faced with, context fields will contain
information that that may or may not be
able to be utilized by the language
consultant. One of the tasks of our
translator guide was to help the translator
learn where to draw this line. The next
section will examine the extent to which
the guide achieved this goal and the extent
to which we were able to acquire
successful translations.

4 Elicitation Corpus Translation
Assessment

We assessed our translations using
methods similar to those used by field
linguists (Longacre 1964). That is, we
analyzed sentences by comparing them to
one another in order to pick out translation
patterns. However, the consequences of
unsupervised translation cut both ways for
us. Thus, while the translator was unable
to get clarification directly from us, we
were unable to get clarification directly
from the translator. A linguist in the field
would be able to ask the language



Thai Elicitation Errors

Bengali Elicitation Errors

Source Sentence 845 79.41% Source Sentence 0 0.0%
Over-Translation Over-Translation

Context Over- |57 5.35% Context Over-|24 6.68%
Translation Translation

Under-translation 88 8.48% Under-translation 5 1.39%
Mistranslation 68 6.39% Mistranslation 76 21.17%
Grammar 6 0.19% Grammar and | 254 70.75%
Mistakes Spelling Mistakes

Total 1064 100% Total 359 100%

Figure 3: Total elicitation errors for the Thai and Bengali translations of the elicitation corpus.

consultant about the meaning of individual
words and morphemes, but without this
resource we were forced to compensate
with dictionaries, grammars and language
learning materials in order to confirm
correct translations. In cases where we
were unable to account for every in a
sentence we consulted with local native
speakers to assess the meaning of
unknown phenomena.

Based on this analysis, we were
able to assess all of our Thai and Bengali
translations and keep track of elicitation
errors. By our standards, most sentences
were translated in a way that would make
them useful as a resource for learning
about a target language. However, some
sentences contained constructions that
diminished the utility of the translation
and would provide spurious information
about the grammaticalization of the target
language. Below you will find a
classification of these errors and their
consequences. For full results of these
error types for Bengali and Thai see the
tables in figure 3.

4.1 Context Over-translation

The elicitation corpus’s context
fields are designed to provide additional
information that may or may not be used
as clarification when translating a
sentence. Referring back to figure 2, the
distinction between dual and plural
pronouns causes a difference in translation

for the Arabic translation, but not for the
Spanish. The information in the context
field is not incorporated because the
Spanish translations would be the same
whether ‘You’ referred to two, five or a
hundred people. The distinction between
dual and plural pronouns is Spanish is not
grammaticalized. However, if the
translator is determined to use the
information in the context field it is
possible for them to translate the sentences
into the Spanish equivalent of ‘You two
wrote’ or ‘You five wrote’, or even ‘You
two men wrote’ and ‘You five men
wrote’. While grammatical, the excess
information does not clarify the
translation, and furthermore, it adds
information not found in the source
sentence. Thus, if the over-translated
source and target sentences were to be fed
to a word alignment system or a statistical
machine translation system we would see
‘You wrote’ aligned with the Spanish
equivalent of ‘You two wrote’. This
increases the chance of generating
incorrect translations and will reduce the
quality of the translation system.

Furthermore, this error type can
lead to translations that are awkward. The
goal of our corpus is to elicit translations
as they exist in their target language
naturally.

An example of this elicitation
error can be found in (a) in figure 4. The
Bengali instance over-translates the distant
past tense. In Bengali, the simple past




a. Context Over-translation

Bengali target:

ST FEF WaTE SISt FLFEF T fofve.

transliteraton: BAiJAYYAaa KAYYAeKA SAPAVIRTAaaHA AAGAe
BAANUKAiIMAKAe BAIGAuLAi DAICAVIRCHAILA.

gloss: Bijoya a-few moment-plural before
Bankim-acc books-plural give/third-person/progressive

source: Bijoya was giving Bankim books.

context: Translate this sentence as if the incident it refers to happened minutes ago.

b. Source Sentence Over-translation
Thai target: W2L AV Vhib 16 & AT

transliteration:  pdo chaai kon nan
gloss: man person that
srcsent: The man was happy.

context:

c. Under-translation

Thai target: W21H AL Wb 22 G LN VAT AL Vo

Transliteration:  pdo chaai kon nan
gloss: man person that
srcsent: The man will criticize the girl.

kwaam sook

happy
dtam-ni dek pdo ying kon nan
reprimand girl person that

context: Translate this as if the speaker heard this information from a rumor.

d. Mistranslation

Thai target: 7! DL VWL WIVANE A
Transliteration: rfa rop toong yaa
gloss: fence  around pasture

srcsent: The fence around the pasture collapsed.
context:

e. Spelling and Grammar Mistakes

pang ta-laai long

down

Bengali target: 7T GT ST 31 =01 Ao

Transliteration: MAHiLaaTTi  Ye GAuDAaaMAe NAYYA KATHAaa
BALAiTAeCHAe.

gloss: woman-def what  store negative statement

talk/third-person/progressive
srcsent: The woman who is not in the store is talking.
context:

Figure 4: This figure catalogs examples of our five types of elicitation errors. They are discussed in the text.

tense of an action remains the same
whether it occurred seconds, days or years
ago. The Bengali translation for sentence
(a) now means ‘Bijoya was giving Bankim
books a few moments before.” if translated
back into English. This translation does
not match the meaning of the source
sentence or its feature structure.

4.2 Source Sentence Over-translation

Source sentence over-translations
occur when the translator over-specifies
the translation in order to match the source
sentence at the sacrifice of fluency or
natural sounding translations.  For
example, in example b. found in figure 4
the Thai translator attempted to add
definiteness to his/her translation by
including the Thai demonstrative ‘nan’,
which translates as ‘that’ in English.

There are two problems that arise




with this elicitation error. First, Thai
doesn’t mark definiteness explicitly, and
certainly not with a demonstrative word.
Secondly, the source and target language
sentences have slightly different
meanings. The original source sentence is
‘The man was happy,” but the translation
means ‘That man was happy’. A more
appropriate translation would have been
‘pdo chaai kon mee kwaam sook’ or ‘Man
is happy’. While the ideal translation
leaves the definiteness as ambiguous, it
gives us a natural, reasonable translation,
and, more importantly, gives us
information about what features in the
source sentence remain unmarked in the
translation sentence.

Source sentence over-translation
differs from context over-translation in
one key way. In the case of source over-
translation there is no information
included in the target sentence that is not
found in the source sentence. However,
with context over-translation the target
sentence includes information found in the
source sentence that should remain
unspecified in the translation. So, source
sentence over-translations include too
many features from the source and context
over-translation includes too many from
the context.

For the Thai elicitation corpus,
source sentence over-translation was the
most prevalent elicitation error found, but
it is relatively rare in the Bengali corpus.
This can be explained by how closely each
language is related to English. Like
English, Bengali is an Indo-European
language. In addition it marks
definiteness and number just as English
does. However, Thai leaves both of these
features unmarked morphosyntactically.
In fact, out of the 845 Thai over-
translation errors over 578 were made
over specifying definiteness, identical
mistakes that were repeated over and over
again. This feature couldn’t be over-
translated in Bengali because it is marked
morposyntactically just as in English. This
explains the total of zero source sentence
over-translations for Bengali.

4.3 Under-translation

Under-translation occurs when
information from the context or source
sentence is not translated into the target
sentence. Thus, under-translation is an
elicitation error caused by leaving
something out. For example, substituting
the word for ‘person’ for that of ‘woman’
or ‘man’ eliminates the feature of gender
that would otherwise be evident in a
sentence.

However, most under-translations
are not that obvious. Under-translations
can be difficult to find compared to over-
translation. In our case, we discovered
over-translations just by glossing
sentences and double-checking those we
discovered with a native speaker. In
addition, we relied on language grammars
and language typology charts
(comparative tables indicating the
morphosyntactic characteristics of many
languages) to help discover this error.

The only under-translations we
found were related to source marking.
According to Iwasaki and Ingkaphirom
(2005), evidentiality is marked in Thai
analytically, especially in cases of
hearsay. Our Thai translator, however,
made no distinction between sentences
describing events directly observed by the
speaker and those heard from a rumor or
gathered from evidence. Each sentence is
translated grammatically, but omitting a
key word that would give us insight into
the categorization of information sources.

This elicitation error is rare, but
having translators look at sentences within
a narrative might mitigate this error,
especially with regard to evidentiality.

4.4 Mistranslation

Mistranslations occur when the
target sentence means something different
from the source sentence. This means that
the feature structure representing the
meaning of the first sentence would be
different than that of the target sentence



feature structure.

For example, one of the most
common mistranslations involves
mistaking the aspect represented by the
source sentence. For example, a habitual
source sentence might be translated as
present progressive. Another example
would be the Thai translation (d) in figure
4. A past tense English sentence was
translated as a present tense Thai sentence.
Thus the Thai translation would be
translated back into English as ‘The fence
around the pasture collapses.” There is a
natural, fluent way to translate the Thai
sentence in the past tense, thus it is likely
that the translator made a mistake and
translated using the wrong tense.

One reason for the occurrence of
this error might be that some of our
English source sentences appear to be too
ambiguous or have overly subtle
distinctions. This might leave the
translator to interpret the sentence to the
best of his/her abilities and that
interpretation might not match up with
what we expect to elicit. Compounding
this is the fact that some of our sentences
are awkward, unclear or absent of a
narrative. Of course, some of this may be
attributed to human error. Out of several
thousand sentences some mistakes can be
expected.

4.5 Spelling and Grammar Mistakes

This elicitation error covers the
spelling mistakes and grammar mistakes
that happen within the corpus. Also
included in this category are sentences that
are faithful translations, but are
ungrammatical in the target language. A
certain degree of human error can be
expected; the frequency of this type of
mistake will depend on the education level
of the translator.

However, large numbers of these
elicitation errors could point to larger
difficulties with translations. A portion of
our Bengali elicitation corpus contains a
number of recurring mistakes that are
unlikely to have been made by a native

speaker.

For example, the Bengali sentence
(e) in figure 4 is an ungrammatical way to
represent a relative clause in Bengali. In
reality this sentence would have to be
translated with two separate clauses which
can be taken to mean the following as an
English equivalent: ‘The woman who is
angry, she is talking’. It is possible that
the translator was trying too hard to stick
to the structure of the English translation,
but the Bengali sentence as it stands is not
correct Bengali in any dialect.

Further mistakes were made with
regard to using inanimate markers on
animate noun phrases and the use of
classical Bengali in inappropriate
contexts. The common Bengali name
‘Bankim’ was even spelled incorrectly for
a portion of the corpus. Both of our native
speaker consultants agreed that
translations involving these mistakes were
unlikely to have been made by a native
speaker.

These mistakes were the most
popular for the Bengali corpus and
accounted for 254 total errors, or 70.75%.
In comparison, the Thai corpus only
contained a total of 6 spelling and
grammar mistakes.

S5 Suggestions for Improving the
Elicitation Error Rate

The cause of these elicitation
errors could come from three places.

First, our documentation may not
be clear enough. It could be lacking in
examples or be lacking in clarity. We
were hindered because we were forced to
use translation examples from an
assortment of languages, none of which
are the language of the translators, to
illustrate our arguments. However, the
translators seemed to have understood the
documentation and followed its directions.
They made few mistakes with regard to
the context field and only over interpreted
it in 57 out of 3124 sentences for Thai and
24 out of the same number for Bengali.
Even the error of source over-translation,



while widespread, did not occur 100% of
the time in places where it could have
appeared. For Thai, it seems that our Thai
translator was torn between delivering
natural translations and delivering ones
that conformed as closely as possible to
the English source sentence. In light of
this, we will be adding further examples to
the documentation to clarify this, the most
prevalent translation error.

Secondly, it is possible that some
of the elicitation corpus sentences are
unwieldy and difficult to translate.
Magnifying this awkwardness is the fact
that our sentences are without discourse
context. That is, the sentences might
benefit from appearing as part of a larger
narrative or a story. Other sentences, such
as those exploring locative features might
benefit from pictures or other visual aids
to clarify the meaning of each locative
construction. Field linguists often use
pictures or stories to clarify their
elicitation sentences, so it might be of
benefit to us to do the same.

Lastly, it is possible that our
corpus is foo unsupervised. A short period
of training for the translators would be a
way to catch and correct common types of
elicitation errors. Though the point of this
corpus is to perform unsupervised
elicitation, it could be beneficial to
administer a short pre-test with detailed
feedback. This strategy could be a way to
catch the most common elicitation
mistakes. Our most common elicitation
errors were really one mistake repeated
many times. As we said in section 4.2,
our Thai translator over-translated
definiteness 578 times. Eliminating just
this mistake reduces the elicitation error
by 68.4%. Caught early, these easily
correctable mistakes could dramatically
improve our chances of getting the
translations we desire.

6 Elicitation Errors and Machine
Translation

To further assess the impact of
elicitation errors found within

unsupervised elicitation corpora, we
trained two EBMT systems (Brown, 1996)
to compare the results between one trained
on our unsupervised data and one trained
on the same data cleaned of elicitation
errors. This corrected corpus will
represent an ideal corpus translated under
the supervision of a linguist.

Of the two corpora available, we
chose to work with Thai rather than
Bengali. This is because the errors for the
Bengali corpus were too extensive to be
corrected by a non-native speaker.
Additionally, the errors in the Thai corpus
were repetitive and less resource intensive
to correct. Furthermore, the lack of
morphology and the stable orthography
made Thai the clear choice for a machine
translation system trained on such a small
corpus without segmentation.

We translated from Thai to
English. The system trained only on about
2900 sentences from our elicitation
corpus. The training sets used by our two
EBMT systems used corresponding
sentences for training data. This means
that if a specific sentence from the
uncorrected corpus were to be added to
the training set, its corrected counterpart
would be added to the set of training data
for our corrected elicitation corpus.

Of the remaining 200 sentences,
100 were using for tuning the systems and
100 were used for testing. The test
sentences in both cases were from the
corrected corpus, since we want to test
against gold standard translations. We
also used a pre-trained English language
model to aid in output generation.

Our results are displayed in the
table below:

EBMT BLEU Results
Uncorrected Thai 0.499
Corrected Thai 0.552

There is a 9.6% difference
between the scores of the two systems.
The Bleu scores are high due to the short
sentences in our test set and the
redundancy throughout our corpus.



Because we trained and tested only on the
source and target sentences without their
contexts there will be a number of
sentences with duplicates in the corpus.
Sentences that are found both in the
training and target sets are assured perfect
matches from the EBMT system and
contributed to the high Bleu scores.

However, we are more interested
in the difference between the two scores
than in the performance of the systems
themselves. The 9.6% difference is
significant, but the uncorrected data
system was still in a comparable range
with the one trained on corrected data.

7 Conclusion

While there were numerous
elicitation errors occurring with both the
Thai and Bengali elicitation corpora, these
errors were not so serious that they would
render sentences useless for learning about
a language, especially for human
analyzers.

Elicitation errors also significantly
affected the performance of the EBMT
system. However, despite this, the Bleu
score declined by less than 10%,
providing some evidence that the
uncorrected translations would still be
able to train a usable system.

We will conduct further
experiments to gauge the effect of
elicitation errors on larger sets of training
data. We will also investigate methods for
recovering from noise in our training data,
when it is not systematic.
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Combining translation models in statistical machine translation
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Abstract

Originally, statistical machine trans-
lation was based on the use of the
"noisy channel" approach. However,
many of the current and successful
statistical machine translation sys-
tems are based on the use of a di-
rect translation model or even on
the use of a log-linear combination
of serveral direct and inverse trans-
lation models. An attempt to jus-
tify the use of these heuristic systems
was proposed within the framework
of maximum entropy.

We present a theoretical justifica-
tion under the decision theory frame-
work. This theoretical frame en-
tails new methods for increasing the
performance of the systems combin-
ing translation models. We propose
new and more powerful translation
rules that also fit within this the-
oretical framework. The most im-
portant theoretical properties devel-
oped in the paper are experimentally
studied through a simple translation
task.

1 Introduction

Machine Translation (MT) deals with the
problem of automatically translating a sen-
tence (f) from a source language! (F*) into a

LF* is the set of all possible strings with a finite
length on the lexicon F.

Ismael Garcia-Varea
PRHLT Group
UCML

ivarea@info-ab.uclm.es

Francisco Casacuberta
PRHLT Group
uUupPVv
fcn@dsic.upv.es

sentence (e) from a target language (E*). Ob-
viously, these two languages are supposed to
have a very complex set of rules involved in the
translation process that cannot be properly
enumerated into a computer system. Accord-
ing to this, many authors have embraced a sta-
tistical approach to the MT problem, where
the only source of information is a parallel cor-
pus of source-to-target translated sentences.

Brown et al. (1993) approached the prob-
lem of MT from a purely statistical point
of view. In this approach, the MT problem
is analysed as a classical pattern recognition
problem using the well-known Bayes’ classifi-
cation rule (Duda et al., 2000). Therefore, sta-
tistical machine translation (SMT) is a classi-
fication task where the set of classes is the set
of all sentences of the target language (E*),
ie. every target string (e € E*) is regarded
as a possible translation for the source lan-
guage string (f). The goal of the translation
process in statistical machine translation can
be formulated as follows: a source language
string f is to be translated into a target lan-
guage string €2. Then the system searches the
target string (&) with maximum a-posteriori
probability p(e|f):

& = arg max{p(elf)} (1)

ecE*
where p(e|f) can be approached through
statistical model.
has proved to be the optimal

a direct translation

Eq. (1)

*We will refer to p(e|f) as a direct statistical trans-
lation model and to p(f|e) as an inverse statistical
translation model.
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decision/classification rule under some as-
sumptions and is called the optimal Bayes’
classification rule (obviously assumes that
the actual probability distribution p(e|f) is
known). Applying the Bayes’ theorem to
Eq. (1), the following rule is obtained:

e = argmax{p(e) - p(fle)} (2)

ecE*

Eq. (2) implies that the system has to search
the target string (&) that maximises the
product of both, the target language model
p(e) and the inverse string translation model
p(fle). Thus, the Bayes’ classification rule
provides the inverse translation rule (ITR),
which is also called “the fundamental equa-
tion of SMT”. Again, this rule is optimal if
the actual models are known. Nevertheless,
using this rule implies, in practice, changing
the distribution probabilities as well as the
models through which the probabilities are ap-
proached. This is exactly the advantage of
this approach, as it allows the modelling of
the direct translation probability (p(e|f)) with
two models: an inverse translation model that
approximates p(fle); and a language model
that approximates p(e).

This approach has a strong practical draw-
back: the search problem?. This search is
known to be an NP-hard problem (Knight,
1999; Udupa and Mayji, 2006). However, sev-
eral search algorithms have been proposed in
the literature to solve this ill-posed problem
efficiently (Brown and others, 1990; Wang and
Waibel, 1997; Yaser and others, 1999; Ger-
mann and others, 2001; Jelinek, 1969; Garcia-
Varea and Casacuberta, 2001; Tillmann and
Ney, 2003).

In order to alleviate this drawback, many
of the current SMT systems (Och et al., 1999;
Och and Ney, 2004; Koehn et al., 2003; Zens et
al., 2002) have proposed the use of the direct
translation rule (DTR):

(3)

€ = argmax{p(e) - p(e[f)}
ecE*

which can be seen as an heuristic version of
the ITR (Eq. (2)), where p(f|e) is substituted

3The method for solving the maximisation (or the
search) of the optimal € in the set E*, i.e. argmax, g«

by p(e|f). This rule allows an easier search
algorithm for some of the translation models.

Although the DTR has been widely used, its
statistical theoretical foundation has not been
clear for long time, as it seemed to be against
the Bayes’ classification rule if an asymmetric
model* is used for modelling the translation
probability. Other authors (Andrés-Ferrer et
al., 2007) have provided an explanation of
its use within decision theory. In this work,
we expand that theory to other translation
models and other loss functions, providing a
general framework to combine translation sys-
tems.

Some of the current SMT systems (Och and
Ney, 2004; Marino et al., 2006) use a log-linear
combination of statistical models to approxi-
mate the direct translation distribution:

exp [2%21 Amh (£, e)}
Serexp | Sl Anl(F. )|

where h,, is a logarithmic statistical model
that approximates a probability distribution
(i.e. translation or language probabilities).

The paper is organised as follows: section 2
summarises the Bayes’ decision theory. Sec-
tion 3 tackles SMT under the decision theory
framework. Finally, section 4 demonstrates in
practice the theoretical ideas explained in the
paper. Conclusions are condensed in the sec-
tion 5.

plelf)~

(4)

2 Bayes Decision Theory

A classification problem such as the SMT
problem can be seen as an instance of a Deci-
sion Problem (DP). From this point of view,
a classification problem is composed of three
different items:

1. A set of Objects (X') the system might ob-
serve and has to classify (i.e., translate).

2. A set of classes (Q = {w1,...,wc}) in
which the system has to classify each ob-
served object x € X.

“Given two sentences e and f from the target and
source language: a symmetric model assigns the same
probability to p(e|f) and to p(f|e); and an asymmetric
model does not.
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3. A Loss function (1(wy|x,w;)). This func-
tion evaluates the loss of classifying an
observed object x in a class, wy € €,
knowing that the optimal class for the ob-
ject x is w; € Q.

Therefore, when an object x € X is ob-
served in a classification system, the system
chooses the “correct” class from all possible
classes (€2). The term “correct” is used in the
sense of the action that minimises the loss in
which the system could incur if it makes an er-
ror, according to the loss function. For reasons
of simplicity, the 0-1 loss function is usually
assumed, i.e.:

O W = wj (5)

(el i) {1 otherwise

This loss function does not penalise the cor-
rect class, nevertheless it does not distinguish
between the importance of classifying an ob-
ject in a specific wrong class or in another
wrong class. Therefore, the penalty of clas-
sifying the object x in the class w; or wj is the
same. This is only sensible in some small and
simple cases. For example, if the set of classes
is large, or even infinite (but still enumerable),
then it is not very appropiate to penalise all
wrong classes the same. Note that in this case
it is impossible to define a uniform distribu-
tion over the classes. This implies that there
are classes that have a very small probabil-
ity, and then it does not make sense to define
a uniform loss function for those classes. In-
stead, it is better to penalise the zones where
the probability is high.

In order to build a classification system the
classification function must be defined, say
¢ : X — Q. The class provided by the classifi-
cation function may not be the correct class.
Thereby, the classification function yields an
error or risk, the so-called Global Rusk,

R(c) ZEx[R(C(X)IX)]Z/XR(C(X)IX) p(x)dx
(6)
where R(wg|x) (with wp = ¢(x)) is the Con-
ditional Risk given x, i.e. the expected loss of
classifying in the class determined by the de-

cision function. This Conditional Risk is ex-
pressed as follows:

R(wilx) = Y Hwrlx,w;) p(w;|x)
w; €N

(7)

The well-known Bayes’ classification rule
is the rule that minimises the Global Risk.
Moreover, as minimising the Conditional Risk
for each object (x) is a sufficient condition to
minimise the Global Risk, without loss of gen-
erality we can say that the optimal Bayes clas-
sification rule is the rule that minimises the
Conditional Risk, i.e.:

¢(x) = argmin R(w|x)
we

(8)

Loss functions that are more appropriate than
the 0-1 can be designed. If we only assume
that the loss of correctly classifying an object
is 0, then a very general loss function is ob-
tained:

0 Wi = Wj
Wwr|x,wj) = { !

€(x,wy,wj) otherwise

In the case of Eq.(9), the optimal Bayes’ clas-
sifier is given by:

(10)
Note that in order to perform the search for
the optimal class ¢(x) it is necessary to find
the class wy, for which the sum over all the re-
maining classes w; is mimimun. This requires
a computation time®of O(|Q2|?). This cost can
be prohibitive in some problems. For instance,
in machine translation, the set of classes is ex-
ponential with the length of the sentence. In
this case, having to compute the sum for each
class is a practical problem that can ruin the
advantages obtained by using a more appro-
priate loss function.

In this sense, there is a particular set of loss
functions of the form of Eq. (9), that preserves
the simplicity of the optimal classification rule
for the 0-1 loss function. If wy is the class pro-
posed by the system and w; is the correct class

®Note that we are assuming that the cost of evalu-
ating e(x,wy,w;) and p(w;|x) is costant in time
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that the system should choose (wy, is expected
to be equal to w;) the following loss function
l(wk|x,w;) preserves this simplicity:

0 = wj
SRS
otherwise

Wwg|x,wj) = {

€(x, wj)

where €(+) is a function depending on the ob-
ject (x) and the correct class (w;) but not de-
pending on the wrong class proposed by the
system (wg). This function must verify that
ijeQ p(wj|x) €(x,w;) < oo; and it evaluates
the loss function when the system fails.

In such cases, it can be easily proved that
the Conditional Expected Risk is:

R(wk(x) = S(x) — p(wglx) e(x,wr)  (12)

where S(x) ijegp(wj\x) e(x,w;) and
S(x) < oo, i.e. the weighted sum over all
possible classes converges to a finite number
which only depends on x. Therefore, €(-) is
restricted to functions that hold the previous
finiteness property.

As a result, the classification rule is very
similar to the optimal Bayes’ classification
rule for the 0-1 loss function and simplifies to

the following equation (Andrés-Ferrer et al.,
2007):

¢(x) = argmax {p(w|x) e(x,w)}
wel

(13)

It is worth noting that the computational
time® needed to sovle the search of the op-
timal class in Eq. (13). is O(|9]).

In conclusion, for each loss function there
exists a different optimal Bayes’ classification
rule, specifically using a loss function like the
one in Eq. (11) yields one of the simplest op-
timal classification rules, Eq. (13).

3 Statistical Machine Translation

SMT is a specific instance of a classification
problem where the set of possible classes is
the set of all the possible sentences that might
be written in a target language, i.e. {2 = E*.

5Note that we are assuming that the cost of evalu-
ating e(x,w;) and p(w;|x) is costant in time

Likewise, the objects to be classified”are sen-
tences of a source language, i.e. f € F*.

In a SMT system, the Bayes’ classification
rule is Eq. (2). As stated above, this classifi-
cation rule can be obtained by using the 0-1
loss function:

&= &(f) = argmax {p(wilf)}  (14)

wr €N

where wp = e,. This loss function is not
particularly appropriate when the number of
classes is huge as occurs in SMT problems.
Specifically, if the correct translation for the
source sentence f is e;, and the hypothesis of
the translation system is eg; using the 0-1 loss
function (Eq. (5)) has the consequence of pe-
nalising the system in the same way, indepen-
dently of which translation (ej) the system
proposes and which is the correct translation
(e;) for the source sentence (f).

3.1 Quadratic loss functions

Equation (9) produces search algorithms
which have a quadratic cost depending on
the size of the set of classes. As stated
above, machine translation can be understood
as a classification problem with a huge set of
classes. Hence, these loss functions yield diffi-
cult search algorithms. There are some works
that already have explored this kind of loss
functions (Ueffing and Ney, 2004; R. Schliiter
and Ney, 2005).

The more appealing application of this loss
functions is the use of a metric loss func-
tion (R. Schliiter and Ney, 2005).
stance, in machine translation one widespread
metric is the WER (see Section 4 for a defini-
tion), since the loss function in Equation (9)
depends on both, the proposed translation
and the reference translation, the WER can
be used as loss function (Ueffing and Ney,
2004). Nevertheless, due to the high complex-
ity, the use of these quadratic and interesting
loss functions, is only feasible in constrained
situations like n-best lists (Kumar and Byrne,
2004).

For in-

"In this context to classify an object f in the class
wy, is a way of expressing that ej is the translation of
f.
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Another interesting loss function would be
the one obtained by introducing a kernel as
the loss function in Equation (9):

0 = e
l(ek|f,ej) = o e]. (15>
Kn(ek,e;) otherwise
with
Kn(ek, ej) = Z ‘ej’u‘ek‘u (16)

ucekn

where |e|, stands for the number of occur-
rences of the sequence of n words u inside the
sentence e (Cortes et al., 2005).

3.2 Linear loss function

Equation (11) produces search algorithms
which have a linear cost depending on the size
of the set of classes. For instance, a more suit-
able loss function than the 0-1 loss, can be
obtained using Eq. (11) with €(f,e;) = p(e;):

0 e, =e;

p(ej) )

l(exlf,e;) = { otherwise

This loss function seems to be more appropri-
ate than the 0-1. This is due to the fact that
if the system makes an error translating a set
of source sentences, this loss function tries to
force the system to fail in the source sentence
(f) whose correct translation®(e;) is one of the
least probable in the target language. Thus,
the system will fail in the least probable trans-
lations, whenever it gets confused; and there-
fore, the Global Risk will be reduced.

In addition, it is easy to prove (using
Eq. (13)) that this loss function leads to the
Direct Translation Rule in Eq. (3). Then, the
DTR should work better than the I'TR, from
a theoretical point of view.

Nevertheless, the statistical approximations
employed for modelling translation probabil-
ities might not be symmetric, as is the case
with IBM Models (Brown and other, 1993).
Thus, the model error, could be more impor-
tant than the advantage obtained from the use

8ere lies the importance of distinguishing between

the translation proposed by the system (ex) and the
correct translation (e;) of the source sentence(f).

of a more appropriate loss function. There-
fore, it seems a good idea to use the direct
rule in the equivalent inverse manner so that
the translation system will be the same and
then these asymmetries will be reduced. By
simply applying the Bayes’ theorem to Eq. (3),
we obtain the equivalent rule:

€ = arg max {p(e)2p(f|e)} (18)

ecE*
The difference between the Eq (3) and Eq (18)
can be used to measure the asymmetries of the
translation models.
An alternative function to the proposed in
Eq (17) is the loss function in Eq. (11) with

E(f, ej) == p(f, ej):

0 — ¢,
l(ek\f, ej) = ok ej. (19)
p(f,e;) otherwise
which leads to:
é = argmax {p(f,e)p(e[f)}  (20)

ecE*

Equation (20) is able to provide several op-
timal classification rules depending on which
approximation is used to model the joint
probaility (p(f,e)). The most important rule
produced by this function is the Inverse and
Direct translation rule (IDTR), which is ex-
pressed by the following equation:

¢ = argmax {p(e)p(f[e)p(e[f)}  (21)

ecE

The interpretation of this rule is a refinement
of the direct translation rule. In this case, if
the system makes a mistake it is done in the
least probable pairs (f, e) in terms of p(e,f).

More interesting loss functions can be ob-
tained using information theory. For instance,
we can penalise the system by the remaining
information. That is, if we knew p(e), then
the information associated with a target sen-
tence e; would be —log(p(e;)). The remain-
ing information, or the information that the
system has learnt when it fails is given by
—log(1 — p(e;)). Hence, the system can be
penalised with this score:

(ex|f,e;) = 4 Ok =
R —log(1 —p(f,ej)) otherwise
(22)
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Figure 1: The information of the contrary

event, or the remaining information.

Figure 1, shows the remaining information of a
probability function. Note that the remaining
information has a singularity at 1, i.e. if the
system has not been able to learn a sure event,
which has probability of 1, then the loss is
infinity. Note that this loss can be defined for
any probability such as p(e) or p(x,e).

Some works (Och and Ney, 2004; Marino et
al., 2006), explore the idea of using maximum
entropy models to design a translation system,
obtaining in this way a translation rule of the
form of:

M
€ = arg max Z Amhm (£, €) (23)
ecE* T

where h,, is a logarithmic statistical model
that approximates a probability distribution
(i.e. translation or language probabilities).

The Eq (23) can be analysed from a Bayes’
decision theory frame. Into this scope, what
the log-linear systems are doing is to use the
loss function in Eq (11) with:

M
e(f.e)=ple|f) [ fm(f. )  (24)
m=1

where f,,(f,e) = explh,,(f,e)].

From the decision theory, the log-linear
models learn the best loss function among a
family of loss functions. This family is defined
by a vector of hyperparameters ()\{VI E

M
{p<erf>1 [T fnt.e)™
m=1

\m} (25)

In order to perform the optimisation, firstly
the f,, functions (usually an exponential func-
tions of probability distributions) are esti-
mated using maximum likelihood (or some
other estimation technique). Secondly, the
ME algorithm (Berger et al., 1996) is used to
find the optimal weights or hyperparameters
Ai, i.e., the ME algorithm is used to find the
optimal loss function among all the possible
functions in the family.

Some works explore the idea of using these
hyperparameters to reduce the evaluation er-
ror metric, such as the BLEU (Papineni et
al., 2001). For instance, in Och (2003), some
improvements were reported when estimating
the hyperparameters A in accordance with the
evaluation metric.

4 Experimental Results

The aim of this section is to demonstrate with
practical results, how to use the theory stated
in the work to improve the performance of
a translation system. Obtaining a state-of-
art system is out of scope of this paper. In
this way, the previously stated properties will
be analysed in practice with a simple trans-
lation model. In other works, some of the
loss functions presented here has been anal-
ysed using state-of-art models, phrase-based
models, (Andrés-Ferrer et al., 2007)

Before starting the section we need to de-
fine two new concepts (Germann and others,
2001). When a SMT system proposes a wrong
translation, this is due to two reasons: the
suboptimal search algorithm which has not
been able to compose a good translation; or
the model which is not able to make up a
good translation (and so is unable to find it).
Then we will say that a translation error is
a search error (SE) if the probability of the
proposed translations is less than the refer-
ence translation; otherwise we will say that
it is a model error, i.e. if the probability of
the proposed translations is greater than the
reference translation.

We use the IBM Model 2 (Brown and
other, 1993) and the corresponding search al-
gorithms to design the experiments of this
work. That choice was motivated by several
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reason. Firstly, the simplicity of the transla-
tion model allows to obtain a good estimation
of the model parameters. Secondly, there are
several models that are initialised using the
alignments and dictionaries of the IBM model
2. Finally, the search problem can be solved
exactly using dynamic programming for the
DTR.

In order to train the IBM Model 2 we
used the standard tool GIZA++ (Och, 2000).
We re-implemented the algorithm presented
in (Garcia-Varea and Casacuberta, 2001) to
perform the search process in translation for
the ITR. Even though this search algorithm
is not optimal, we set the parameters to min-
imise the search errors, so that all the errors
should be model errors. In addition we im-
plemented the corresponding version of this
algorithm for the DTR and for the I&DTR.
All these algorithms were developed by dy-
namic programming. For the [&DTR, we im-
plemented two versions of the search: one
guided by the direct model (a non-optimal
search algorithm, namely I&DTR-D) and the
other guided by the inverse translation model
(which is also non-optimal but more accurate,
namely [&DTR-I). Due to the length con-
straint of the article, the details of the algo-
rithms are omitted.

We selected the Spanish-English TOURIST
task (Amengual et al., 1996) to carry out
the experiments reported here. The Spanish-
English sentence pairs correspond to human-
to-human communication situations at the
front-desk of a hotel which were semi-
automatically produced. The parallel corpus
consisted of 171,352 different sentence pairs,
where 1K sentences were randomly selected
from testing, and the rest (in sets of exponen-
tially increasing sizes: 1K, 2K, 4K, 8K, 16K,
32K, 64K, 128K and 170K sentences pairs) for
training. The basic statistics of this corpus
are shown in Table 1. All the figures show the
confidence interval at 95%.

In order to evaluate the translation quality,
we used the following well-known automati-
cally computable measures:

1. Word Error Rate (WER):Word Error

Rate is the minimum number (in %) of

Test Set Train Set
Spa Eng Spa Eng
sentences 1K 170K
avg. length 12,7 12.6 129 13.0
vocabulary 518 393 688 514
singletons 107 90 12 7
perplexity  3.62 2.95 3.50 2.89
Table 1: Basic statistics of the Spanish-

English TOURIST task.

deletions, insertions, and substitutions
that are necessary to transform the trans-
lation proposed by the system into the
reference translation.

2. Sentence Error Rate (SER): Sentence Er-
ror Rate is the number (in %) of sentences
that differs from the reference transla-
tions.

3. BiLingual Ewvaluation Understudy
(BLEU): it is based on the n-grams of
the hypothesized translation that occur
in the reference translations. In this
work, only one reference translation per
sentence was used. The BLEU metric
ranges from 0.0 (worst score) to 1.0 (best
score) (Papineni et al., 2001):

Figure 2 shows the differences in terms of
the WER among all the mentioned forms of
the DTR: “IFDTR” (Eq. 18), “DTR” (Eq. 3),
and “DTR-N” (Normalised Length version of
DTR). Note the importance of the model
asymmetry in the obtained results. The best
results were the ones obtained using the in-
verse form of the DTR. The normalised ver-
sion was developed due to the fact that the
IBM Model 2 (in its direct version) tries to
provide very short translations. This be-
haviour is not surprising, since the only mech-
anism that the IBM Model 2 has to ensure
that all sources words are translated is the
length distribution. The length distribution
usually allows the model to ommit the transla-
tion of a few words. Nevertheless, the “DTR”
and “DTR-N” performed worse than the ITR
(Table 2).
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Figure 2: Asymmetry of the IBM Model 2
measured with the respect to the WER for the
TOURIST test set for different training sizes.
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Figure 3: WER results for the TOURIST test
set for different training sizes and different
classification rules.
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Figure 4: SER results for the TOURIST test
set for different training sizes and different
classification rules.

Model WER SER BLEU SE T
I&DTR T 10.0 49.2 0.847 13 34
I&DTRD 106 51.6 0.844 9.7 2
IFDTR 105 60.0 0837 2.7 35
ITR 107 581 0.843 1.9 43
DTR N 179 741 0750 0.0 2
DTR 303 924 0535 0.0 2

Table 2: Translation quality results with dif-
ferent translation rules for TOURIST test set
for a training set of 170K sentences. Where T
is the time expressed in seconds.

Figure 3 shows the results achieved with
the most important rules. All the I&DTR
obtain similar results to the ITR. Neverthe-
less, the non-optimal search algorithm guided
by the direct model (“I&DTR-D”) was an or-
der of magnitude faster than the more accu-
rate one (“I&DTR-I") and the ITR. The in-
verse form of the DTR (“IFDTR”) behaved
similarly to these, however improve the results
reported by DTR. Therefore, there are no
significant differences between the rules anal-
ysed in terms of WER. However, the execution
times were significantly reduced by the direct
guided search in comparison with the other
searches. Table 2 shows these execution times
and the figures with the maximum training
size. Although the different search algorithms
(based on loss functions) do not convey a sig-
nificant improvement in WER. Note that the
loss function only evaluates the SER, i.e. the
loss function minimises the SER, and does not
try to minimise the WER. Thus, changing the
loss function, does not necessarily decrease the
WER.

In order to support this idea, Figure 4 shows
the analogous version of Figure 3 but with
SER instead of WER. It should be noted
that as the training size increases, there is
a difference in the behaviour between the
ITR and both I&DTR. Consequently, the use
of these rules provides better SER, and this
difference becomes statistically significant as
the estimation of the parameters becomes
better. In the case of the inverse form of
the DTR (“IFDTR”), as the training size in-



creases, the error tends to decrease and ap-
proximate the ITR error. However, the dif-
ferences are not statistically significant and
both methods are equivalent from this point
of view.

In conclusion, there are two sets of rules:
the first set is made up of IFDTR and ITR,
and the second is composed by the two ver-
sions of the I&DTR. The first set reports
worse SER than the the second set. How-
ever, the I&DTR guided with the direct model
(“I&DTR-D”) has many good properties in
practice.

5 Conclusions

The analysis of the loss function is an appeal-
ing issue. The results of analysing different
loss functions range from allowing to use met-
ric loss functions such as BLEU, or WER,;
to proving the properties of some outstanding
classification rules such as the direct transla-
tion rule, the inverse translation rule or even
the maximumn entropy rule. For each dif-
ferent function €(f,e;,ey) in the general loss
function of Eq. (9), there is a different optimal
Bayes’ rule. The point of using one specific
rule is an heuristic and practical issue.

An interesting focus of study is the use of
metrics such as BLEU, or WER;; as the loss
function. Nevertheless due to the high com-
plexity, it is only feasible on constrained situ-
ations like n-best lists.

This work focuses on the study of loss func-
tions that have a linear complexity and that
are outstanding due to historical or practi-
cal reasons. In this sense, we have provided
a theoretical approach based on decision the-
ory which explains the differences and resem-
blances between the Direct and the Inverse
Translation rules. This theoretical frame pre-
dicts an improvement (in terms of SER), an
improvement that has been confirmed in prac-
tice.

In order to increase performance, we should
find the best loss function with the form in
Eq (9) or with the form in Eq (11). As future
work, we will develop this idea into detail un-
der the scope of functional optimisation. We
also intend to analyse the practical behaviour

of other loss functions such as the loss func-
tions in Eq.(15) or the remaining information
loss function.

Acknowledgements

This work has been supported by the EC
(FEDER), the Spanish MEC under grant
TIN2006-15694-C0O2-01 and the Valencian
“Conselleria d’Empresa, Universitat i Ciéncia”
under grant CTBPRA /2005/004.

References

J.C. Amengual, J.M. Benedi, M.A. Castano,
A. Marzal, F. Prat, E. Vidal, J.M. Vilar, C. De-
logu, A. di Carlo, H. Ney, and S. Vogel. 1996.
Definition of a machine translation task and
generation of corpora. Technical report d4, In-
stituto Tecnoldgico de Informética, September.
ESPRIT, EuTrans IT-LTR-0S-20268.

J. Andrés-Ferrer, D. Ortiz-Martinez, I. Garcia-
Varea, and F. Casacuberta. 2007. On the use
of different loss functions in statistical pattern
recognition applied to machine translation. To
appear in Pattern Recognition Letters.

A. L. Berger, Stephen A. Della Pietra, and V. J.
Della Pietra. 1996. A maximum entropy ap-
proach to natural language processing. Com-
putational Linguistics, 22(1):39-72, March.

P. F. Brown and other. 1993. The mathematics of
statistical machine translation: Parameter esti-
mation. Computational Linguistics, 19(2):263—
311.

P. F. Brown et al. 1990. A Statistical Approach to
Machine Translation. Computational Linguis-
tics, 16(2):79-85.

Corinna Cortes, Mehryar Mohri, and Jason We-
ston. 2005. A general regression technique for
learning transductions. In ICML °05: Proceed-
ings of the 22nd international conference on
Machine learning, pages 153-160, New York,
NY, USA. ACM Press.

Richard O. Duda, Peter E. Hart, and David G.
Stork. 2000. Pattern Classification. John Wi-
ley and Sons, New York, NY, 2nd edition.

I. Garcia-Varea and F. Casacuberta. 2001. Search
algorithms for statistical machine translation
based on dynamic programming and pruning
techniques. In Proc. of MT Summit VIII, pages
115-120, Santiago de Compostela, Spain.

19



U. Germann et al. 2001. Fast decoding and opti-
mal decoding for machine translation. In Proc.
of ACLO1, pages 228-235.

F. Jelinek. 1969. A fast sequential decoding algo-
rithm using a stack. IBM Journal of Research
and Development, 13:675-685.

Kevin Knight. 1999. Decoding complexity in
word-replacement translation models. Compu-
tational Linguistics, 25(4):607-615.

P. Koehn, F. J. Och, and D. Marcu. 2003. Statis-
tical phrase-based translation. In Proceedings
of the Human Language Technology and North
American Association for Computational Lin-
guistics Conference (HLT/NAACL), Edmon-
ton, Canada, May.

S. Kumar and W. Byrne. 2004. Minimum bayes-
risk decoding for statistical machine transla-
tion.

J.B. Marino, R. E. Banchs, J.M. Crego, A. de Gis-
pert, P. Lambert, J. A. R. Fonollosa, and
M. R. Costa-jussa. 2006. N-gram-based ma-
chine translation. In Computational Linguis-
tics, pages 527-549.

F.J. Och and H. Ney. 2004. The Alignment Tem-
plate Approach to Statistical Machine Trans-
lation . Computational Linguistics, 30(4):417—
449, December.

F. J. Och, Christoph Tillmann, and Hermann Ney.
1999. Improved alignment models for statistical
machine translation. In Proc. of the Joint SIG-
DAT Conf. on Empirical Methods in Natural
Language Processing and Very Large Corpora,
pages 2028, University of Maryland, College
Park, MD, June.

F. J. Och. 2000. GIZA++:  Train-
ing of statistical translation models.
http://www-1i6.informatik.rwth-aachen.
de/\"och/software/GIZA++.html.

F. J. Och. 2003. Minimum error rate training
in statistical machine translation. In ACL 03:
Proceedings of the 41st Annual Meeting on As-
sociation for Computational Linguistics, pages
160-167, Morristown, NJ, USA. Association for
Computational Linguistics.

Kishore A. Papineni, Salim Roukos, Todd Ward,
and Wei-Jing Zhu. 2001. Bleu: a method for
automatic evaluation of machine translation.
Technical Report RC22176 (W0109-022), IBM
Research Division, Thomas J. Watson Research
Center, Yorktown Heights, NY, September.

V. Steinbiss R. Schliiter, T. Scharrenbach and
H. Ney. 2005. Bayes risk minimization using
metric loss functions. In Proceedings of the Eu-
ropean Conference on Speech Communication
and Technology, Interspeech, pages 1449-1452,
Lisbon, Portugal, September.

Christoph Tillmann and Hermann Ney. 2003.
Word reordering and a dynamic program-
ming beam search algorithm for statistical ma-

chine translation. Computational Linguistics,
29(1):97-133, March.

Raghavendra Udupa and Hemanta K. Maji. 2006.
Computational complexity of statistical ma-
chine translation. In Proceedings of the Con-
ference of the Furopean Chapter of the Asso-
ciation for Computational Linguistics (EACL),
pages 25-32. Trento, Italy.

N. Ueffing and H. Ney. 2004. Bayes decision rules
and confidence measures for statistical machine
translation. In EsTAL - Espa for Natural Lan-
guage Processing, pages 70-81, Alicante, Spain,
October. Springer Verlag, LNCS.

Ye-Yi Wang and Alex Waibel. 1997. Decoding
algorithm in statistical translation. In Proc. of
ACL’97, pages 366-372, Madrid, Spain.

A. Yaser et al. 1999. Statistical Machine Trans-
lation: Final Report. Technical report, Johns
Hopkins University 1999 Summer Workshop
on Language Engineering, Center for Language
and Speech Processing, Baltimore, MD, USA.

R. Zens, F.J. Och, and H. Ney. 2002. Phrase-
based statistical machine translation. In Ad-
vances in artificial intelligence. 25. Annual
German Conference on Al volume 2479 of Lec-
ture Notes in Computer Science, pages 18-32.
Springer Verlag, September.

20



Support Vector Machine Based Orthographic Disambiguation

Eiji ARAMAKI

Takeshi IMAIT

Kengo Miyo Kazuhiko Ohe

University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
aramaki@hcc.h.u-tokyo.ac. jp

Abstract

Orthographic variation can be a
serious problem for many nat-
ural language-processing applica-
tions. Japanese in particular con-
tains orthographic variation, be-
cause the large quantity of translit-
eration from other languages causes
many possible spelling variations.
To manage this problem, this pa-
per proposes a support vector ma-
chine (SVM)-based classifier that
can determine whether two terms
are equivalent. We automatically
collected both positive examples
(sets of equivalent term pairs) and
negative examples (sets of inequiv-
alent term pairs). Experimental re-
sults yielded high levels of accuracy
(87.8%), demonstrating the feasibil-
ity of the proposed approach.

1 Introduction

Orthographic variation can be a serious prob-
lem for many natural language-processing
(NLP) applications, such as information
extraction (IE), question answering (QA),
and machine translation (MT). For exam-
ple, many example-based machine transla-
tion (EBMT) (Nagao, 1984) methods, such
as (Somers, 1999; Richardson et al., 2001;
Sumita, 2001; Carl and Way, 2003; Aramaki
and Kurohashi, 2004; Nakazawa et al., 2006),

utilize a translation dictionary during bilin-
gual text alignment. Also, several statisti-
cal machine translation (SMT)(Brown et al.,
1993) methods set initial translation param-
eters using a translation dictionary. When
consulting a dictionary, a system must dis-
ambiguate orthographic variation.

The following terms are an example of
Japanese orthographic variation, correspond-
ing to the term “Awvogadro’s number”:

1. 0000000
(A VO GA DO RO SU),

2. 000000
(A BO GA DO RO SU).

Although both terms are frequently used
(term (1) resulted in 25,700 Google hits and
Term (2) resulted in 25,000 Google hits!),
translation dictionaries contain only one of
the terms, resulting in low levels of accuracy
with dictionary-based bilingual text align-
ment.

This paper focuses on Japanese ortho-
graphic disambiguation.  Japanese ortho-
graphic variance is closely related to translit-
eration, because transliteration relies on pro-
nunciation, the great differences between the
sounds made in Japanese and in Western lan-
guages (mainly English) results in a variety of
possible spellings.

Researchers have already proposed meth-
ods to solve this problem. For ex-
ample, Knight(1998) developed a back-
transliteration method using a probabilistic

1We got the results on May 14, 2007.
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PR RO
(ABO GA DO RO SU)

Orthographic-
disambiguation

7O RO ”
(A VO GA DO RO SU)pac¥

o

Avogadro’s number

Figure 1: Transliteration and Orthographic Variation.

model. Goto et al.(2004) also developed a
probabilistic model, which takes into account
surrounding context. Lin and Chen(2002) de-
veloped a perceptron learning algorithm for
back-transliteration. ~While these methods
differ, they all share the same goal: being
able to back-transliterate a given term into
another language.

By contrast, this paper proposes a new task
schema: given two Japanese terms, the sys-
tem determines whether they are equivalent.
Figure 1 illustrates our task schema; a for-
eign term can be transliterated into Japanese
in several ways. While previous methods
can yield suitable back-transliteration for a
term, our system determines whether a pair
of Japanese terms originates from the same
foreign word. We expect our task-setting is
more direct and practical for many applica-
tions, such as dictionary consulting in MT,
IE, and so on.

For this process, our proposed method uses
a machine learning technique (support vec-
tor machine, hereafter SVM (Vapnik, 1999)),
which requires the two following types of data:

1. Positive examples: a term pair, which
are spelled differently, but have the same
meaning; and,

2. Negative examples: a term pair, which
are spelled differently and have differing
meanings.

While previous methods have utilized only
positive examples, our proposed method also

[72]

o

_|
>N —N>

g <

I Diff
Pre-context

Post-context

Figure 2: An Example of DIFF, PRE-
CONTEXT and POST-CONTEXT.

CO N PYU U TA

Bl o >vea1-—-5 MR
L

B> a1-—5 |- K
CO N PYU U

TAi A
Pre-context Diff Post-context

Figure 3: Another Example of DIFF, PRE-
CONTEXT and POST-CONTEXT.
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incorporates negative examples. Both ex-
amples can be generated automatically from
translation dictionaries using spelling similar-
ity and heuristic rules.

Experimental results yielded high accuracy
(87.8%), demonstrating the feasibility of the
proposed approach.

Although we investigated the performance
in the medical terms, the proposed method
does not depend on the target domain.

Section 2 of this paper describes how train-
ing data are built. Section 3 describes the
learning method, and Section 4 presents the
experimental results. Section 5 discusses re-
lated work, and Section 6 presents our con-
clusions.

2 Automatic Example Building

This section describes how training data are
built; Section 2.1 discusses positive examples,
and Section 2.2 discusses negative examples.
Note that the latter is a novel task.

2.1 Positive Examples

Our method uses a standard approach to ex-
tract positive examples. The basic idea is that
orthographic variants should (1) have similar
spelling, and (2) share the same English trans-
lation.

The method consists of the following two
steps:

STEP 1: First, using two or more trans-
lation dictionaries, we extract a set of
Japanese terms with the same English
translation.

STEP 2: Then, for each extracted
set, we generate possible two term
pairs (term, and term,), and calcu-
late the spelling similarity between them.
Spelling similarity is measured using the
following edit-distance based similarity
SIM (termy,term,):

SIM (term,,term,) =

EditDistance(term,, term,) x 2

len(term,) + len(termy)

where len(term,) is the length (the number
of characters) of term,, len(term,) is the
length (the number of characters) of terms,,
EditDistance(term,,term,) is the minimum
number of point mutations required to change
term, into term,, where a point mutation is
one of: (1) a change in a character, (2) the
insertion of a character, and (3) the deletion
of a character. For details, see (Levenshtein,
1965).

Any term pair with more than a threshold
(T'H) similarity is considered a positive exam-
ple 2.

2.2 Negative Examples

As mentioned in Section 1, generating nega-
tive examples is a novel process in this field.

One simple way is to select two words from
a dictionary randomly. However, such a sim-
ple method would generate a huge quantity
of meaningless examples. Therefore, as in our
collection of positive examples, we collected
only term pairs with similar spellings.

Another problem is a balance of the exam-
ple quantity. In the preliminary experiments,
the number of negative examples was about
three times as the number positive examples,
leading to a negative bias.

Therefore, we investigated the Google hits
of each term pair by using a query, such as “
oooobooo oobooor.

Then, we utilize only negative examples
with many Google hits, and reject low-hits ex-
amples, because of the following two reasons:

1. Popularity: We expect that a more
popular term pair is more informative.

2. Reliability: We hypothesize that an
orthographic pair rarely appears in one
document, because one document usually
has an orthographic consistency. There-
fore, we can expect that if two terms co-
occur in one document, they are not or-
thographic variants, ensuring reliability
for negative examples.

The detailed steps are as follows:

2We set TH = 0.8.
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STEP 1: First, using two or more trans-
lation dictionaries, we extract a set of
Japanese terms with different English
translations.

STEP 2: Then, for each extracted set, we
generate possible pairs, and calculate the
spelling similarity between them. Any
term pair exceeding a threshold (T'H)
similarity is considered a negative exam-
ple candidate.

STEP 3: Finally, we investigate the Google
hits for each candidate. We only use the
top K-hits candidates as negative exam-
ples3.

3 Leaning Method

Application of the method described in Sec-
tion 2 yields training data, consisting of triple
expressions < term,,term,,+1/ — 1 >, in
which “+1” indicates a positive example (or-
thographic variants), and “1” indicates a
negative example (different terms). Table 1
provides some examples.

The next problem is how to convert train-
ing data into machine learning features. We
regard the different parts and context (win-
dow size £1) as features:

1. Dirr: differing characters between two
translations;

2. PRE-CONTEXT:
DirrF; and

previous character of

3. POST-CONTEXT: subsequent character of
DIFF.

Figure 2 provides examples of these fea-
tures. Since the different part is a gray
area (“VO@ O ) and “BO(0 )”), we consider
DIFF to be “VO:BO (0 O:0)” itself, PRE-
CONTEXT to be “A (O0)” in a dotted box,
and POST-CONTEXT to be “GA (O )” also in
a dotted box.

Figure 3 provides another example; the in-
sertion/deletion of a character can be consid-

ered the Diff using ¢, such as “:A (:D )”.

3In the experiments in Section 4, we set K =
21,380, which is equal to the number of positive
examples.

In addition, the start () or end ()

of a term can be considered a character.

Note that both PRE-CONTEXT and PoST-
CONTEXT consist of one character pair, while
the DIFF can be a pair of n : m characters
(n>0,m >0).

In learning, we can use a back-off technique
to prevent problems related to data sparse-
ness. As a result, each different point utilizes
the following four features:

e Diff + Pre-context + Post-context
o (1-back-off-a) Diff + Pre-context
o (1-back-off-b) Diff 4+ Post-context
o (2-back-off) Diff

Figure 4 presents some examples.

4 Experiments

4.1 Test-set

To evaluate the performance of our system,
we manually built a test-set as follows:

First, we extracted 5,013 similar spelling
term pairs, that have more than (STM > 0.8),
from two dictionaries (Nanzando, 2001b),(Ito
et al., 2003).

Then, for each pair, we annotated whether
it is an equivalent pair (orthographic variants)
or not (different terms).

Finally, we randomly extracted 883 pairs
form it. We regard it as a test-set. The
test-set consists of 312 positive examples and
571 negative examples. The others (4,130
examples) are used for training in compar-
ative methods (BYHAND and COMBINA-
TION mentioned in Section 4.3).

4.2 Training-set

By using the proposed method (in Section
2), we automatically built a training-set from
two translation dictionaries (Japan Medi-
cal Terminology English-Japanese(Nanzando,
2001a) and 25-thousand-terms Medical Dic-
tionary(MEID, 2005)). As a result, we got
a training-set, consisting of 68,608 examples
(21,380 positive examples and 47,228 negative
examples).
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P/NF

Term,

Term.

+1

gooooooo
(YO O DO PI RA SE TTO; iodopyracet)

ooooogo
(YO O DO PI RA SE TO; iodopyracet)

+1 oooooogd goooogo
(MA I KU RO ME E TA A; micrometer) (MAIKU RO ME E TA; micrometer)
+1 oooooood goboobooo
(A N PU RI FA T A; amplifier) (AN PU RI FA T YA A; amplifier)
+1 ooboooo gooboobogoo
(O SI RO SU KO O PU; oscilloscope) (O SSI RO SU KO O PU; oscilloscope)
gobogooogo gbooooboobooo
+1 (DOUKONPURAIAN SU; (DOU TE KIKONPURATIA N SU;
dynamic compliance) dynamic compliance)
gooooooo oboooogo
+1 (SINTO O ATUSEISYO KKU; (SIN TO O A TU SYO KKU;
osmotic shock) osmotic shock)
gopooooobo goooooogo
+1 (MA A RU BU RU GU U I RU SU; (MA RU BU RU GU U I RU SU;
Marburg virus) Marburg virus)
gooooobooo goobogo
+1 (DO O RU TO N NO HO O SO KU; (DO RU TO N NO HO O SO KU;

Dalton law)

Dalton law)

BOOO
(BITI GA TA KA N E N; hepatitis B)

cooo
(SIT GA TA KA N E N; hepatitis C)

gogo
(TO RA N SU; trance)

gooooo
(TO RA N JI SU TA; transistor)

-1 good p ooog C

(BI TA MI N PI I vitamin P) (BI TA MI N SI I; vitamin C)
-1 goooo gooood

(KA DO MI U MU; cadmium) (KA RU SI U MU; calcium)
-1 oobooo goood

(A RU KO O RU; alcohol) (GU RU KO O SU; glucose)
-1 ooooo ooooo

(ME RA TO NI N; melatonin) (SE RA TO NI N; serotonine)
-1 oooo oooo

(KU RO O N; clone) (KU RA A RE; curare)
-1 goood goooo

(KE TO N SE I SE I; ketogenesis) (ME TA N SE I SE I; methanation)
-1 goood goooo

(RI'T DO SI SU U; Reid index) (RI BI'T SI SU U; Livi index)
-1 oooo gooo

(TO MA CHI N; tomatine) (HE MA CHI N; haematin)
-1 goood googao

(BA RU U N HO; balloon method)

(RA GU U N HO; lagoon method)

Table 1: Some Examples of Training-set.

* “4+1” indicates positive examples, and “-1” indicates negative examples.
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Figure 4: An Example of Features.

4.3 Comparative Methods

we compared the following methods:

1. EDITDISTANCE(TH): an edit-
distance-based method, which regards
an example with a spelling similarity
SIM (term,,term,) > TH as an ortho-
graphic variants. The performance of
this method changes, depending on T'H.

2. BYHAND: a SVM-based method,
trained by manually annotated corpus,
consists of 4,130 examples.

3. AUTOMATIC: a SVM-based method,
trained by an automatically build
training-set.

4. COMBINATION: a SVM-based
method, trained by both BYHAND
corpus and AUTOMATIC corpus.

For SVM learning, we used TinySVM* with
a linear kernel®.

4.4 Evaluation

To evaluate our method, we used three mea-
sures, precision, recall and accuracy, defined

“http://chasen.org/ taku/software/TinySVM/

SAlthough we tried a polynomial kernel and an
RBF kernel, their performance are almost equal to a
linear kernel.

as follows:
. # of pairs found and correct
Precision = - ,
total # of pairs found
# of pairs found and correct
Recall = .
total # of pairs correct
# of pairs correct
Accuracy = — )
total # of pairs in test-set
4.5 Results

First, we checked the performance of ED-
ITDISTANCE(TH) in various TH values.
Figure 5 presents the results. While the pre-
cision is basically proportional to the spelling
similarity (T'H), it drops down in the high
TH (TH = 0.96), indicating a highly similar
spelling term pair not always have to be the
orthographic variants.

Table 2 presents the performance of all
methods. AUTOMATIC did not obtain a
higher accuracy than BYHAND, the com-
bination of them is the highest accuracy,
demonstrating the basic feasibility of our ap-
proach. The precision-recall graph (Figure 6)
also shows the advantage of COMBINATION

4.6 Error Analysis

We investigated the errors from COMBINA-
TTON, and found that many errors came from
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a verbal omission, which is different phe-
nomenon from transliteration.

For example, a test-set has the following
positive example:

1. 0ooooooooo
(calcium channel; KA RU SI U MU CHA
NE RU),

2. 0000000000000
(calcium ion channel; KA RU SI U MU
I O N CHA NE RU).

Because a term “jon” is without saying infer-
able in this case, it can be omitted. Capturing
such an operation requires a very high level of
understanding of the meaning of the terms.

To focus on a transliteration problem, we
manually removed such examples from our
test-set, and built a sub-set of it, consisting
of only transliterations. The result is shown
in Table 3. The accuracy of COMBINATION
is higher than 90%.

It is difficult to compare this accuracy to
that of the previous studies because (1) their
corpus were different from ours and (2) pre-
vious studies focused on back-transliteration.
However, we can say that the present accu-
racy is, at least, not behind from the previ-
ous researchers (64% by (Knight and Graehl,
1998) and 87.7% by (Goto et al., 2004)). We
expect that the present accuracy is practical
in many applications.

Finally, we investigate the differences be-
tween AUTOMATIC and BYHAND results
(the AUTOMATIC accuracy is much lower
than the BYHAND by 8.5 points in Table
2). One of the reasons is dictionary specific
styles, such as numerous expression variants

(“8,8, ®),VIILviii, VIIL viii,/\ (Japanese number expression)”)7

hyphenation variants (“-—=,="") and so
on. Because the BYHAND training-set and
the test-set came from the same dictionaries,
BYHAND already knows such variants are
meaningless differences. However, AU-
TOMATIC, wusing different dictionaries,
sometimes suffered from unseen number
expression/hyphenation variants.

Note that in transliteration accuracy (in
Table 3), their accuracies (BYHAND and AU-
TOMATIC) are not so different.

100

Accuracy, Precision & Recall (%)

—— Accuracy —0- Precision ~— Recall

Figure 5: TH and EDITDISTANCE Perfor-

marnce.

% » BYHAND
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ?‘

85

.o COMBINATION

80

wr EDITDISTANCE |

Recall

70

65

60

AUTOMATIC

55
50 55 60 65 70 75 80 85 90

Precision

Figure 6: Precision and Recall.
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Table 2: Results

methods Precision Recall Accuracy
EDIT-DISTANCE(0.91) 67.2%(164,/244) 52.6% (164/312) 70.9% (626/883)
BYHAND 70.4%(276/392) 88.4% (276/312) 82.7% (731/883)
AUTOMATIC 65.7%(177/269) 56.7% (177/312) 74.2% (656/883)
COMBINATION 82.9%(258/311) 82.6% (258/312) 87.8% (776/883)

* The performance in EDIT-DISTANCE(0.91) showed the highest accuracy in various TH values.

Table 3: Results of a sub-set (Transliteration Only)

methods Precision Recall Accuracy
BYHAND 67.7%(122/180) 91.0%(122/134) 80.3% (286/356)
AUTOMATIC 77.3%(109/141) 81.3% (109/134) 83.9% (299/356)

COMBINATION  90.6%(117/129)

90.7% (117/134)

91.9% (327/356)

5 Related Works

As noted in Section 1, transliteration is the
field most relevant to our work, because many
orthographic variations come from borrowed
words. Our proposed method differs from pre-
vious studies in the following three ways: (1)
task setting, (2) negative examples, and (3)
target scope.

5.1 Task Setting

Most previous studies have involved finding
the most suitable back-transliteration of a
term.

For example, given an observed Japanese
string o by optical character recognition
(OCR) software, Knight and Graehl (1998)
finds a suitable English word w. For this
process, they developed a probabilistic model
that decomposed a transliteration into sub-
operations as follows:

P(w)P(e|w)P(jle)P(k|j)P(olk),

where P(w) generates written English word
sequences, P(e|lw) pronounces English word
sequences, P(jle) converts English sounds
into Japanese sounds, P(k|j) converts
Japanese sounds to KATAKANA writing,
and P(o|k) introduces misspellings caused by
OCR.

While this method is phoneme-based, Bilac
and Tanaka(2004) combined phoneme-based
and graphme-based transliteration. Goto et

al.(2004) proposed a similar method, utilizing
the surrounding context.

Such methods are not only applicable to
Japanese; it can also be used for Arabic(Stalls
and Knight, 1998; Sherif and Kondrak, 2007),
Chinese(Li et al., 2007), Persian(Karimi et al.,
2007).

The task-setting involved in our method
differs from previous methods. Our method-
ology involves determining whether two terms
in the same language are equivalent, making
our task-setting more direct and suitable than
previous methods for many applications, such
as dictionary consulting in MT and informa-
tion retrieval.

Note that Yoon et al.(2007) also proposed
a discriminative transliteration method, but
their system determines whether a target
term is transliterated from a source term or
not.

5.2 Negative Examples

Our task setting requires negative examples,
consisting of term pairs with similar spellings,
but different meanings.

previous research involved
only positive examples. For example,
Masuyama et al.(2004) collected 178,569
Japanese transliteration variants (positive ex-
amples) from large corpora. However, they
paid little attention to negative examples.

By contrast,
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5.3 Target Scope

As mentioned above, orthographic variation
in Japanese results mainly from translitera-
tion. However, our target includes several dif-
ferent phenomena, such as verbal omissions
mentioned in Section 4.6. Although the accu-
racy for omissions is not enough, our method
addresses it easily, while previous methods are
unable to handle this kind of phenomenon.

6 Conclusion

In this paper, we proposed a SVM-based or-
thographic disambiguation method. We also
proposed a method for collecting both posi-
tive and negative examples. Experimental re-
sults yielded high levels of accuracy (87.8%),
demonstrating the feasibility of the proposed
approach.
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Abstract

This paper presents a generative prob-
abilistic dependency model of parallel
texts that can be used for statistical ma-
chine translation and parallel parsing.
Unlike syntactic models that are based
on context-free dependency grammars,
the dependency model proposed in this
paper is based on a sophisticated notion
of dependency grammar that is capable
of modelling non-projective word order
and island constraints, the complement-
adjunct distinction, as well as deletions
and additions in translations.

1 Introduction

Dependency grammar has attracted much atten-
tion in computational linguistics in recent years.
In statistical machine translation, several re-
searchers have proposed SMT systems that are
based on dependency grammars, including (Fox,
2005; Quirk et al., 2005; Ding, 2006; Smith and
Eisner, 2006; Hall and Némec, 2007). However,
the dependency-based SMT systems that have
been proposed in the literature are almost uni-
formly based on projective (usually context-free)
dependency grammars, ie, grammars that disal-
low the kind of crossing dependencies shown in
Figure 1 and explained in section 3.

From a linguistic point of view, the projec-
tivity assumption is unfortunate because non-
projectivity is a high-frequent phenomenon that
manifests itself in long-distance phenomena such
as topicalization, scrambling, and extraposition.

AR NS

subj mod mod pred nobj pobj vobj pobj nobj subj rel vobj
It was as hard a defeat to take as any he had experienced
land land land land land land land land land land land

A
[SRUIV S ENENRYNE
Figure 1: Authentic example with a doubly non-
projective dependency tree and corresponding

surface structure. Dependency and landing edges
for non-projective nodes are shown with dashes.

Eg, in the dependency treebanks for Slovene, Ara-
bic, Dutch, Czech, and Danish, 0.4-5.4% of all
dependencies are non-projective, and 11.2-36.4%
of all sentences contain a non-projective depen-
dency (Nilsson et al., 2007). Since it is difficult to
model non-projective word orders correctly with
projective syntax models, and such errors often
result in meaning-disturbing translation errors,
non-projectivity is more important than its rela-
tively small contribution to precision and recall in
monolingual parsing suggests. (Buch-Kromann,
2006, sections 1.4, 2.4, 4.2) gives a more com-
prehensive list of linguistic constructions that are
difficult to model within a projective setting.

Within a monolingual setting, there are many
dependency frameworks that account for most
of these phenomena, including Word Grammar
(Hudson, 2007), Functional-Generative Descrip-
tion (Sgall et al., 1986), Weighted Constraint De-
pendency Grammar (Schroder, 2002), Extensible
Dependency Grammar (Debusmann et al., 2004),
and Discontinuous Grammar (Buch-Kromann,
2006). But, as far as we know, none of these de-
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pendency frameworks have so far provided a lin-
guistically well-motivated non-projective depen-
dency framework for parallel texts, and done so
within a probabilistic setting. This is a gap that
we hope to fill with the present paper.

The paper is structured as follows. In section
2, we describe how machine translation and par-
allel parsing can be viewed as optimization prob-
lems within a generative probabilistic dependency
model of parallel texts. In section 3, we de-
scribe our notion of parallel dependency analyses
and how they are used to control word order. In
section 4, we introduce our notion of translation
units. In section 5, we describe our generative
probabilistic dependency model of parallel texts.
In section 6, we briefly outline some ideas for how
grammar induction can be carried out within our
framework. Section 7 presents our conclusions.

2 Statistical dependency-based
translation and parallel parsing

From an abstract point of view, a parallel prob-
abilistic dependency grammar can be viewed as
a probability measure P(A) on the space A of
all conceivable parallel dependency analyses. In
this setting, machine translation and parallel pars-
ing can be reduced to the problem of optimizing
P(A) with different side conditions.

In translation, we know a source text ¢t and
need to find the most probable parallel depen-
dency analysis, Trans(t), that matches ¢. That is,
we must find:

Trans(t) = arg max P(A)
AEA
Y (A)=t

where Y (A) denotes the source text associated
with A, and Y'(A) the target text. Once we have
computed Trans(t), it is easy to compute the op-
timal translation by extracting the target text from
Trans(t) by means of Y”.!

Similarly, in parallel (synchronous) parsing —
which is essential for turning a parallel corpus

'In the SMT literature, the translation ¢’ of ¢ is of-
ten defined as the target text ¢’ that maximizes P(t'|t) =
Do denst v (A)=t,y' (A= P(Alt). From a linguistic point
of view, there is no solid argument for preferring one defi-
nition over the other, and by looking for the optimal paral-
lel analysis rather than the optimal target text, we avoid the
computationally difficult problem of calculating the sum.

into a parallel dependency treebank — we know
a source text ¢ and a target text ¢/, and need to
find the most probable parallel dependency anal-
ysis, Parse(t,t'), that matches the given source
and target texts ¢, ¢’. That is, we must find:

Parse(t,t') = arg max P(A).
AcA
Y(A)=t
Y/ (A)=t'

In our generative probability model, we assume
that a parallel dependency analysis .4 consists of
a source text analysis D, a target text analysis D’,
and a word alignment W. We will factor:

P(A) = P(D,D',W) = P(D) - P(D',W|D)

and model the monolingual source analysis prob-
ability P(D) and the translation probability
P(D',W|D) separately. Note that unlike the
probability model in phrase-based SMT (Koehn
et al., 2003), where the source text is generated
from the target text, our probability model fol-
lows the natural direction of translation. This is
also the approach used in the probability model
by (Smith and Eisner, 2006), but for projective
rather than non-projective dependency grammars.
The asymmetry between source and target lan-
guage in our model is sensible from a linguis-
tic point of view, since it is well-known among
translation scholars that translations tend to dif-
fer significantly from normal texts in the target
language. This asymmetry means that our trans-
lation model resembles a transfer-based system in
important respects. However, unlike traditional
transfer systems, the model does not require the
parallel parser or translation system to make a
hard choice about the source language analysis
before deciding on a target language analysis.
Several problems must be solved in order to
build a functioning parallel parser or machine
translation system that uses these ideas to cir-
cumvent the linguistic limitations of projective
dependency grammars: we must (a) formulate a
linguistically sensible notion of parallel depen-
dency analyses and parallel probabilistic depen-
dency grammars; (b) specify a method for induc-
ing such grammars from parallel corpora and/or
parallel dependency treebanks; and (c) identify
computationally efficient optimization algorithms
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for translation and parallel parsing that normally
succeed in finding optimal or near-optimal trans-
lations and parallel parses. This paper focuses
on (a), and largely ignores (b) and (c). More
information about our solution to (b) and (c)
is presented in (Buch-Kromann, 2007a; Buch-
Kromann, 2007b). Our analyses are based on the
dependency framework Discontinuous Grammar
(Buch-Kromann, 2006).

3 Parallel dependency analyses

In a parallel dependency analysis A = (D, D',
W), each word alignment w < w’ in W is as-
sumed to encode a translational correspondence
between the word clusters w and w’ in the source
text and target text, ie, the word alignment en-
codes the intuition that the subset w of words in
the source text corresponds roughly in meaning
or function to the subset w’ of words in the tar-
get text. The translations may contain additions
or deletions, ie, w and w’ may be empty.

The monolingual dependency analyses D and
D’ are assumed to consist of dependency edges
linking the words in the text. Each dependency
edge d " g encodes a complement or adjunct
relation between a word g (the governor) and
a complement or adjunct phrase headed by the
word d (the dependent), where the edge label r
specifies the complement or adjunct dependency
role.” In our analyses, the dependencies in the
source analysis are required to form a tree (or
a forest), and similarly with the dependencies in
the target analysis. Moreover, our parallel depen-
dency analyses must be well-formed with respect
to translation units, in a sense that is described
briefly in section 4 and defined formally in (Buch-
Kromann, 2007a).

Figure 2 shows an example of this kind of anal-
ysis, based on the annotation conventions used
in the Copenhagen Danish-English Dependency
Treebank (Buch-Kromann, 2007a). In the exam-
ple, word alignments are indicated by lines con-
necting Danish word clusters with English word

Following standard dependency theoretic assumptions,
we assume: (a) complements are lexically licensed by their
governor, whereas adjuncts license their adjunct governor;
(b) in the functor-argument structure, complements act as
arguments of their governor, whereas adjuncts act as modi-
fiers; (c) a governor can have several adjuncts with the same
adjunct role, whereas complement roles must be unique.

subj mod mod vobj dobj pobj nobj

X skal nu  kun koncentrere sig om Y
X must however only concentrate self about Y

X has to concentrate only on Y

subj dobj vobj

NN,

mod pobj nobj

Figure 2: Parallel dependency treebank analysis
with word alignment and two monolingual depen-
dency analyses (with non-projective word order).

clusters, and dependencies are indicated by means
of arrows that point from the governor to the de-
pendent, with the dependency role written at the
arrow tip. For example, the Danish word cluster
“koncentrere sig” (“‘concentrate self””) has been
aligned with the English word “concentrate”, and
the English phrase headed by “on” is analyzed as
a prepositional object of the verb “concentrate.”

In order to model word order and island con-
straints, each word w in the source and target de-
pendency trees is assigned a landing site [, de-
fined as the lowest transitive governor of w that
dominates all words between w and [; a node w
that has [ as its landing site is called a landed node
of [, and the landing relation between w and [ is
encoded by means of a landing edge w 1204 [, If
the governor g and landing site [ of a word w do
not coincide (¢ # [), then the dependency edge
w «— g is called non-projective; otherwise, it is
called projective. In projective dependency gram-
mars, we always have ¢ = [. Figure 1 shows
an example of a dependency tree with two non-
projective dependency edges (‘to P°% hard’ and
‘as P°Y as”). The word “a” functions as the land-
ing site for both “hard” and “as” because it is the
lowest transitive governor that dominates all the
nodes between these two words and their respec-

3Dependency analyses differ from phrase-structure anal-
yses in that phrases are a derived notion: in a dependency
tree, each word has a derived phrase that consists of all the
words that can be reached from the word by following the
arrows. For example, the English word “concentrate” heads
the phrase “concentrate only on Y,” and the Danish word
“om” heads the discontinuous phrase “kun ... om Y.”
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tive governors.

It can be shown that the landing edges associ-
ated with a dependency tree always form a projec-
tive tree, called the surface tree. The projectivity
allows landing sites to control the global word or-
der by controlling the local relative word order of
their landed nodes — ie, landing sites have the
word ordering responsibility assigned to gover-
nors in projective dependency grammars.

The extraction path for a word w is de-
fined as the shortest path from the governor
g to the landing site [ of w. For example,
in Figure 1, the word “to” has extraction path
‘hard ™°d a’, and the second “as” (“asy”) has ex-
traction path ‘as; M4 hard ™°d a’. As argued by
(Buch-Kromann, 2006, p. 98), extraction paths
are useful for modelling island constraints in a
dependency-based setting. For example, the ad-
junct island constraint states that nothing may be
moved out of an adverbial adjunct, which corre-
sponds to the claim that an extraction path cannot
contain an adjunct edge of the form x < y where
1 is a verb.

4 Syntactic translation units*

In order to define our notion of syntactic trans-
lation units, we need to introduce the following
terminology. The definitions below apply to both
source and target words and dependencies. Two
words are said to be coaligned if they belong to
the same alignment edge. A dependency edge
d " _ gis called internal if d and g are coaligned,
and external otherwise. A word w is called sin-
gular if it fails to be coaligned with at least one
word in the other language. By an abuse of termi-
nology, we will say that a word d is a dependent
of an alignment edge w < w’ provided d is a de-
pendent of some word in w Uw’ and d is not itself
contained in w U w’. For example, in Figure 2, the
words “has”, “to”, and “skal” are coaligned, the
dependency ‘to 9°% has’ is internal, the depen-
dency ‘concentrate Y° to’ is external, the word
“nu” is singular, and the word “X” is a dependent
of the alignment edge “skal < has to”.

The translation unit corresponding to the word
alignment w «»w’ is defined as the subgraph
of the analysis A consisting of all nodes in

“This section is based on (Buch-Kromann, 2007a).

subj vobj dobj pobj nobj
x1 skal x2 koncentrere sig x1 om x1
x1 must x2 concentrate self x1 | about x1
x1' has to x2’ concentrate x1’ onxl’
subj dobj vobj pobj nobj

X kun Y

X only Y

X only Y

Figure 3: The six translation units derived from
the parallel dependency analysis in Figure 2.

wUw', all internal dependency and alignment
edges within w < w’, and all external dependen-
cies of w <> w' except for parallel and singular
adjuncts, where the external dependents are re-
placed with argument variables zi,...,x, and
xh,...,x!,. Figure 3 shows the six translation
units that can be derived from the parallel depen-
dency analysis in Figure 2 in this way. Each trans-
lation unit can be interpreted as a bidirectional
translation rule: eg, the first translation unit in
Figure 3 can be interpreted as a translation rule
stating that a Danish dependency tree with termi-
nals “z; skal z3” can be translated into an En-
glish dependency tree with terminals “z} has to
x},” where the English phrases 2, 27, are transla-
tions of the Danish phrases x1, x2, and vice versa.

In order to have a meaningful interpretation as
a translation rule, a translation unit must have a
parallel set of source and target argument vari-
ables, and a well-formed source and target de-
pendency analysis, as defined formally in (Buch-
Kromann, 2007a). In general, parallel depen-
dency treebanks are not guaranteed to lead to
translation units that satisfy these requirements.
However, (Buch-Kromann, 2007a) has defined an
algorithm that can compute a minimal reduction
that is computed by merging word alignments in
a minimal way, in which the resulting transla-
tion units satisfy the requirements. As an exam-
ple of how this procedure works, Figure 4 shows
a head-switching example (left) borrowed from
(Way, 2001), and the corresponding minimal re-
duction (right) computed by the merging algo-

34



a2l

subj mod mod subj mod mod

Janzwemt toevallig graag | Jan zwemi toevallig , ~graag ;
Jan swims by-chancewillingly swims by-chance willingly

\
~
N
Jan happens to like to swi | Jan happens to like {0 swi

subj pobj vobj pobj vobj subj pobj vobj pobj vobj

Figure 4: A head-switching example (left) and the
associated minimal reduction (right).

rithm, with the original word alignments indi-
cated by means of the numbered boxes. We can
think of the original word alignments in the tree-
bank as lexical translation units (the smallest lex-
ically meaningful units of translation), and of the
merged word alignments as syntactic translation
units (the smallest syntactically meaningful units
of translation).

In this paper, we will for simplicity as-
sume that each syntactic translation unit con-
sists of a single lexical translation unit. How-
ever, a more elegant and general account of head-
switching phenomena can be provided by decom-
posing syntactic translation units by means of
their original lexical translation units. Eg, in-
stead of using zwemt(™toevallig,"*graag) «
happens(P°Pto(**Pilike(Pto( Y°Piswim)))) as an
atomic lexical translation unit in the translation of
the example in Figure 4, we can decompose the
translation into several steps by first matching the
source analysis with the abstract syntactic transla-
tion template shown in Figure 5, and then decid-
ing on the choice of lexical translation units in a
target language top-down manner: ie, we first se-
lect “toevallig < happen(P°Pito)” as a translation
of “toevallig”, then “graag < like(P*®/to)”, and fi-
nally “zwemt < swim.”

5 A generative probabilistic dependency
model of parallel texts

We will now present a generative probabilistic
dependency model of parallel texts that models
complements, adjuncts, landing sites, local word
order, island constraints, and additions and dele-
tions during translation. The source dependency
model is a simplification of (Buch-Kromann,

Source match
H; = zwemt
Hy = toevallig

Y )

subj mod mod

x1 Hi H2 H3 Hj3 = graag
\ X Target match
H{ = swims

H}, , = happens(*"to)
Hj, , = like(""ito)

x1' H2a' H2b' H3d H3b' HY
subj pobj  vobj  pobj vobj

Figure 5: Syntactic translation template induced
from Figure 4, with source and target match.

procedure probabilistic graph generation

begin
recursively expand source root TOP (cf. Figure 7)
recursively translate source root TOP (cf. Figure 8)
return generated graph and probability

end

Figure 6: Our probabilistic graph generation pro-
cedure (a Markov process).

Top-down expansion of source node w;

S1. Identify landing site and relative word order
S2. Select complement frame

S3. Generate and recursively expand complements
S4. Generate and recursively expand adjuncts

Figure 7: The steps in the top-down expansion of
a source word w; in our generative probabilistic
dependency model.

2006, ch. 6) in that we ignore secondary depen-
dencies, gapping coordinations, antecedents, and
punctuation. We assume that the source and target
analyses have formal root nodes TOP and TOP’
(aligned with each other), and that all words in the
source and target text are transitive dependents of
the top nodes; in particular, the root of a sentence
in the source and target analysis is assumed to be
a root adjunct of the top node.

The generative procedure is modelled as a top-
down Markov process (Figure 6). The generative
procedure first creates the source tree by recur-
sively expanding TOP in steps S1-S4, and then
creates the target tree and the word alignments
by recursively translating TOP in steps T1-T5.
The individual steps in the source and target node
expansion are shown in Figures 7 and 8, and de-
scribed in detail below. In our dependency model,
the probability of a parallel dependency analysis
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Top-down translation of source node w;

T1. Identify landing sites and word order in target tunit
T2. Generate and recursively expand tunit arguments
T3. Identify deleted source adjuncts

T4. Generate and recursively translate parallel adjuncts
T5. Generate added target adjuncts

Figure 8: The steps in the top-down translation of
a source word w; in our generative probabilistic
dependency model.

Notation Meaning

w; ith word (source > 0, target < 0)
d; dependency role of ¢th word
cframe, complement frame at w;

aframe; adjunct roles at w;

gi governor of w;

l; landing site of w;

0; relative word order of w; at [;

path(w;, w; )| upwards path from node w; to transitive

gOVernor w;

Ti syntactic translation unit for w;

S source analysis for 7;

T; target analysis for 7;

Wy target root of ;

int; internal source nodes in 7;

int; internal target nodes in 7;

extadj; external adjuncts of 7;

added; added external target adjuncts of 7;
args; source arguments of 7;

Figure 9: The notation used to refer to the gover-
nor, landing site, word order, etc. of a source or
target node V.

A is computed by
P(A) = P5(TOP) - Pr(TOP)

where Ps and Pr are defined recursively by
Ps(wi) = PSl(wz’) s Ps4(’wi) and PT(ZUZ') =
Pri(w;) -+ Prs(w;), using the probabilities for
steps S1-S4 and T1-T5 defined below.

In the following, given a source or target node
w; (with source nodes having ¢ > 0, target nodes
1 < 0), we will use the notation shown in Figure
9. By an abuse of notation, we will use w; to de-
note the set of all relevant covariates associated
with w; when w; is expanded or translated; the
covariates may include any aspects of the struc-
ture that have been generated at the given point
in the generation, including (but not necessarily
restricted to) all relevant node features and de-
pendency roles of w;, l;, g;, etc. Determining the
right set of covariates for each of the distributions
in our model is an empirical question which we
will ignore in the rest of this paper.

5.1 Modelling source analyses

The steps S1-S4 are used to model node expan-
sion in source analyses. Steps S2—-S4 are similar
in spirit to the steps proposed by (Eisner, 1996;
Collins, 1997) for statistical dependency parsing,
whereas the submodel S1 for island constraints
and local word order is new.

S1. Identify landing site and word order

The first step in the source expansion of w; is
to choose a landing site /; among the transitive
governors of w;, and a linear ordering o; that in-
dicates the word order of w; at [; relative to the
previously landed nodes at /;.> For each possible
landing site [ and word order o, we want to quan-
tify how well-formed that choice of landing site
and word order is with respect to (a) island con-
straints expressed in terms of the extraction path
from g; to [, and (b) the local word order position
o assigned to wj at [.

As noted in section 3, an extraction can be
blocked by the presence of island edges in the ex-
traction path (eg, adjunct edges with verbal gover-
nors). Island edges can be detected statistically by
observing that if an edge = . y occurs less often
in extraction paths than in the treebank in general,
then the edge is likely to be an island edge, ie, the
blocking effect of an edge = "y for the word
w; can be modelled by means of:

. ( Pextpath(x g y|wl))
min | 1,
Pdeptree(gj <L y)

where the minimum ensures that non-island edges
cannot improve the global extraction probability.
Pexpath 18 the probability distribution of edges in
extraction paths, and Pyepyree 18 the probability dis-
tribution of edges in dependency trees. Ie, the rel-
ative probability E.,, ; of the extraction path pro-
duced by choosing [ as the landing site of w; is
expressed by:

P T .
b T i 1. FammzeZ i)

Pdeptree(x <L y)

(z " _y)e
path(g,l)

SFollowing (Buch-Kromann, 2006, pp. 276-277), we as-
sume that dependencies are generated in a predefined deriva-
tion order. Nodes that precede the current landed node in the
derivation order are called previously landed nodes.
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In order to model the probability of the local
word order position, we note that the choice of
local word order o for w; at [ can be modelled as
a process where wj is inserted at position o, and
the dummy node STOP is inserted at all other posi-
tions so that we can detect the absence of an obli-
gatorily present node. If we let Pyorder(w|cy,o) de-
note the probability of inserting word or dummy
word w as a landed node at a position o with
word order context ¢; ,, then the relative proba-
bility Oy, 1., of the choice of local word order o
for w; at [ is expressed by:

Owi,l,o = Pworder(w|cl7o) H Pworder(STOP|Cl,o/)

o'#o

(Buch-Kromann, 2006, section 6.2) has proposed
a local word order context that only includes the
neighbouring complements, the neighbouring ad-
juncts, the landing site, and a binary variable that
indicates whether the position is to the left or right
of the landing site. These covariates suffice to en-
code a wide range of local word order constraints,
such as “adverbials cannot be inserted between a
verb and an adjacent subject,” “a verb does not
allow two simultaneous complements on its left,”
and ““a finite verb requires a subject to its left,” but
in probabilistic rather than absolute terms.

With the relative probability of the extraction
path quantified by F,,, ; and the relative probabil-
ity of the local word order quantified by O, ; 0,
we can compute the probability of the actual
choice of l;, 0; by normalizing the probabilities,
ie by setting:

S O'Ll) l:.0;
PS](UJ@) — Wi sbg 1501, .
Zl,o Ewml ) Owul,o

As argued by (Buch-Kromann, 2006, section 7.3),
under linguistically reasonable assumptions about
island constraints and the number of comple-
ments and adjuncts that a word can have, a land-
ing site has a bounded number of landing posi-
tions, and a word has at most log n landing sites
where n is the number of words in the graph.
The sum can therefore be computed efficiently in
O(logn) time.

S2. Select complement frame

In step 2 of the source expansion, we must
choose a complement frame cframe; for w;. This

choice can be modelled by means of
Ps) (wz) = Piframe (Cframei|w;)

where Piframe (cframe|w)) is the probability of
generating the complement frame cframe at w;.

S3. Generate and expand complements

In step 3 of the source expansion, we must
choose a complement word w; for each comple-
ment role d; in cframe;, and expand the comple-
ment recursively. We model this by:

H Pcomp(wj|djaw;'k)PS(wj)
djEcframe;
where Peomp(w|d, w}) is the probability of gener-

ating the complement w for complement role d at

Ps3(w;) =

ws.

S4. Generate and expand adjuncts

In step 4 of the source expansion, we must gen-
erate the adjuncts of w; and expand them recur-
sively. We model this as a process where the gov-
ernor generates a list of adjunct roles aframe; at
w; one by one with probability Pjole(dj|w] ), un-
til the special adjunct role STOP is generated with
probability Pyoe(STOP|w]). As each adjunct role
d; is generated, we generate an adjunct word w;
with probability P,gj(w;|d;,w;) and expand w;
recursively, ie, the adjuncts of w; are generated
with probability:

Ps4(wi) - Parole(STOP’w;k)
I Puote(djlw)) Pag (w;ld;, wi) Ps(wy)

djEaframe;

5.2 Modelling the translation from source
analyses to target analyses

The steps T1-T5 are used to model the translation
from source analyses to target analyses. Probabil-
ity distributions for the target language are indi-
cated by means of primes. Eg, Pgy/(w;) denotes
the probability of the monolingual expansion step
S1 at the target word w;, but for the target lan-
guage rather than the source language.

6 Although we could have designed a model that can learn
statistical dependencies between different complement slots,
we use a simpler model where the complements are gener-
ated independently of each other. The simple model is justi-
fied by (Li and Abe, 1999), who report that the statistical de-
pendencies between complement roles are rather weak, and
therefore difficult to detect.
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T1. Identify landing site and relative word
order in target unit

In step T1, we must identify landing sites and
relative word order for the internal target nodes
int; in the syntactic translation unit 7; with source
root w;. If the target word order is assumed to be
completely independent of the source word order,
we can simply define:

Pri(w) = [ Per(w;)

) s agl
wj €int;

where int; is processed in the target language
derivation order.

However, languages tend to place discourse-
old material in the beginning of sentences, and
discourse-new material in the end. It therefore of-
ten makes sense to use the source word order as
a guide to target word order. This can be accom-
plished by including the relative ordering of the
source nodes corresponding to the target nodes
within the target word order context ¢ o

T2. Generate and translate tunit arguments

In step T2, we need to recursively translate the
source arguments args, of the translation unit 7.
For each w; € args; we select a translation unit
7; that matches the source analysis at w;. Like
in noisy-channel SMT, we must balance the ade-
quacy A and fluency F of our choice of 7; at wj,
ie, we must try to find a compromise between the
admissibility of 7; as a translation of the source
tree in 7; (adequacy) and the admissibility of the
target tree in 7; as a target subtree at the target
root wj: of 7; (fluency).

We can model the adequacy of 7; as a trans-
lation of the source tree at w; by means of the
probability:

A(wj, 75) = Punit(15|w})

where Pmnit(ﬂw;f) is the probability of translating
a source structure at w; by means of the matching
translation unit 7.

Similarly, we can model the fluency of the
source tree T} at the target root w; by means of
the probability:

F(wj7 Tj) = Pcomp’/adj’<wj"dj'7w;’)
- Py, (1))

where Peomp/jaqir denotes either Popy or Py,
depending on whether w;: is a complement or an
adjunct, and where Ps,34(7;) denotes the mono-
lingual target language probability of the target
dependency tree T; without any word order (ie,
steps S2'-S4’ only).

Like in noisy-channel SMT, we can compro-
mise between adequacy and fluency by weighing
them by means of the formula A* F'1=* for some
A € [0,1]. Setting A close to 1 results in trans-
lations with high adequacy and low fluency, and
vice versa when setting A close to 0. We can
therefore model the probability of choosing the
translation unit 7; to transfer the source tree at w;
by means of:

)17>\

A(wj,Tj))‘F(wj,Tj
Ptransfer(wj77j> = ZT A(wj,T)AF(U)j,T)l_)‘.

This allows us to model:

H Ptransfer(wja Tj)PT(wj)'

wjEeargs;

Pry(w;) =

T3. Identify deleted source adjuncts

In step T3, we need to decide for each external
source adjunct w; in extadj; whether w; should
be deleted in the translation (§; = 1) or trans-
lated into the target language (6; = 0). In gen-
eral, it is not a good idea to delete content words
in the translation. However, there are sometimes
mismatches in the translation, and there are also
some aspects of syntax, especially discourse par-
ticles and punctuation, that are language-specific
and consequently often ignored in the translation.
We will therefore include deletions in our model,
by defining:

Pry(w)) =[]  Pealdjlw))

w; Eextadj;

where Pyei(6; = 1|w}) is the probability of delet-
ing the adjunct w; in the translation.

T4. Generate and translate parallel adjuncts

For each non-deleted external source adjunct
wj in extadj; (ie, each w; where J; = 0), we need
to (a) select a target adjunct role d; and a target
adjunct governor g; within the target tree 7;, (b)
select a translation unit 7; that matches the source
analysis at w;, and (c) expand w; recursively.
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In step T4a, we want to quantify the probabil-
ity of the chosen target adjunct governor g;» and
role dj, given the corresponding source adjunct
governor g; and role d;. The relative probabil-
ity of a particular choice (¢, d’) can be modelled
statistically by assigning large weight to choices
of (¢',d’) that occur above chance level, and low
weight to choices that occur below chance level,
ie, the relative probability of the choice (¢',d’)
can be expressed by the quantity

Padjtrans (9/7 d’\g, d)
Padjtrans (9/7 d/)

where Pygiirans(¢', d') is the probability that a par-
allel adjunct has target governor ¢’ and target role
d’, and Pigjuans(9', d'|g, d) is the same probability
with the conditional knowledge that the parallel
adjunct has source governor g and source role d.
By normalizing the weights, we can compute:

Ig’,d/lgd =

I
g;1,d,11g5,d;
PT4a(wj) =7 - .
Z Ig’yd’lgj,dj
g/’dl

In step T4b, we must select a translation unit
7; for each non-deleted adjunct w;, given the tar-
get adjunct role d; and target adjunct governor
g This is modelled exactly as in step T2, but for
non-deleted external source adjuncts rather than
translation unit arguments.

Combining (a) and (b), we therefore define:

Pry(w;) = H Prya(w;) Pray(wj) Pr(w;).
w; Eextadj,;

5;=0

TS. Generate added adjuncts

In step TS5, we must generate the added target
adjuncts in the target analysis. We do this by
traversing the internal target nodes in in#, in tar-
get derivation order: for each internal target node
wj in int;, we (a) generate a sequence added; of
added target adjunct phrases one at a time, until
the special stop symbol STOP is generated, and
(b) assign landing sites to the generated target ad-
junct phrases in the process.

Step T5a can therefore be computed by:

PT5a(’wj) = Padd-arole(STOP|w;)

H Padd-arole (dk |w;( ) Padd-adj (Tk ‘ dk s w;()
wy €added,;

where Padd_mle(d|w;f) is the probability of creat-
ing an added target adjunct with adjunct role d
at wj, and Pagd-adj(T'|d, w;‘) is the probability of
creating the added target adjunct tree I" given ad-
junct role dj at w;. T5b can be computed by
means of’

Prsp(w;) =

H Pry:(Ty)

wy, €added,;

where Pri(T)) is the probability of the target
landing sites assigned to the words in the target
adjunct phrase Tk.

We therefore have:

PTS(wi) = H PTSa(wj)PTSb(wj)‘

w; €int}
6 Statistical estimation and optimization

Our generative probabilistic dependency model
decomposes the probability of the entire analy-
sis into probabilities associated with individual
steps in the generative procedure, such as Peframe,
Pexpath» Padd-adj» €tc. Each of these distributions
can be estimated from parallel dependency tree-
bank data by means of any suitable density esti-
mator, including Generalized Linear Models and
Generalized Additive Models (which have log-
linear models as a special case) and the XHPM
estimator proposed by (Buch-Kromann, 2006, ch.
5,6). The XHPM estimator is a generalization of
(Li and Abe, 1999) that is designed specifically
for categorical data equipped with classification
hierarchies. As a correction estimator, the XHPM
estimator may be particularly suited to estimat-
ing probability ratios of the form P(z|y)/P(x),
which is needed in steps S1 and T4.

7 Conclusions

In this paper, we have presented a generative
probabilistic dependency model of parallel texts
that can be used for machine translation and par-
allel parsing. Unlike previous dependency models
used in machine translation, the proposed model
is not based on context-free dependency gram-
mar, but builds on a more sophisticated notion of
dependency theory that is capable of modelling
complements and adjuncts, non-projective depen-
dencies and island constraints, as well as dele-
tions and additions in the translation. In this re-
spect, our model can be seen as a step towards
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translation models that are more realistic from
a linguistic point of view. By allowing syntac-
tic translation units to be arbitrarily large par-
allel tree structures, and decomposing syntactic
translation units into lexical translation units, the
model may even provide an elegant account of
head-switching.

There are many issues that need to be addressed
before the dependency model we have presented
can be used to build a functioning machine trans-
lation or parallel parsing system. First of all,
we have not described how to estimate the many
probabilities in our dependency model from par-
allel treebank data. Secondly, some empirical
work remains to be done with respect to choos-
ing the relevant covariates in each generative step.
Finally, although (Buch-Kromann, 2007b) has
started work in this direction, we still need to de-
velop a computationally efficient algorithm that
is capable of computing optimal or near-optimal
solutions to the optimization problems posed by
parallel parsing and machine translation.
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Starting in October 2004, METIS-II is the contin-
uation of the successful project METIS I (IST-2001-
32775). Like METIS I, METIS II aims at translation
of free text input based on rule-based, statistical and
pattern matching methods. The METIS-II project
has four partners, translating from their ‘home’ lan-
guages Greek, Dutch German, and Spanish into En-
glish.

The following goals and premises were defined for
the project:

1. use of a bilingual hand-made dictionary

2. use of ‘basic’ NLP tools and resources

3. different tag-sets for SL and TL possible

4. translation units below the sentence border
5. use a monolingual target language corpus
6

. no bilingual corpus required

In particular, the availability of the monolingual
target language corpus makes METIS-II a data-
driven MT system. However, parallel corpora as in
SMT/EBMT are not required. For our German-to-
English METIS-IT system we have designed and im-
plemented an architecture which uses rule-based de-
vices to generate sets of partial translation hypothe-
ses and a statistical Ranker to evaluate and retrieve
the best hypotheses in their context!. Similar ar-
chitectures have already been suggested as EBMT
systems (Sato and Nagao, 1990), for instance with
their MBT2 system. Methods to integrate knowl-
edge bases and statistics have also been explored in
(Knight et al., 1994) and recently in the LOGON-
project (Oepen et al., 2007) which uses statisti-
cal feature functions to select the best rule-induced
structures at various stages during processing.

In the German-to-English METIS-II system, rule-
based devices generate an acyclic AND/OR graph
which allows for compact representation of many
different translations while the Ranker is a beam
search algorithm which tries to find most likely paths
through the AND/OR graph. The architecture con-
sists of the following five steps:

LA full description of the system is provided in (Carl,
2007).

1. The Analyser lemmatises and morphologically
analyses the SL sentence. It produces a (flat)
grammatical analysis of the sentence, detecting
phrases and clauses and potential subject can-
didates. The Analyser uses the linguistic tech-
nology available at the TAIL

2. Dictionary Lookup matches analysed SL sen-
tence on the transfer dictionary and retrieves
TL equivalences. This procedure retrieves am-
biguous and/or overlapping entries and stores
them in a partial OR graph. Our German to
English dictionary contains more than 629.000
single and multi-word entries. Since matching
proceeds on morphemes and lemmatised forms,
a sophisticated compilation of the dictionary
into a database is required. As described in
(Carl and Rascu, 2006), the matching procedure
is also suited to retrieve discontinuous entries.

3. The Ezpander inserts, deletes, moves and per-

mutes items or chunks in the graph generated by
the Dictionary Lookup according to TL syntax.
The FEzpander is a rule-based device and ex-
tends the AND/OR graph with further partial
translation hypotheses. It is called Ezpander
because it expands the search space with addi-
tional paths. The operations of the Fzpander
and its modifications on the graph are such
that each path through the graph consumes ex-
actly once the translation(s) of each word of the
source language sentence. For our German-to-
English implementation we have currently ca.
50 rules.

4. The Ranker is a beam search algorithm that
iteratively traverses the AND/OR graph and
computes the most likely translations in a log-
linear fashion (Och and Ney, 2002). Unlike a
usual statistical decoder (Koehn, 2004) — but
similar to the method suggested by (Knight et
al., 1994) — our Ranker traverses the search
graph to grade alternative paths and outputs a
list of the n-best translations. The Ranker itself
does not modify the graph. It does not permute
chunks or items and it does not generate addi-
tional paths which are not already contained in
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the graph.

5. A Token Generator generates surface word-
forms from the lemmas and PoS tags. The To-
ken Generator has been described in (Carl et
al., 2005).

The Ranker and the Token Generator are trained
on the British National Corpus (BNC?). It is a col-
lection of tagged texts making use of the CLAWS5
tag set which comprises roughly 70 different tags®.
The heuristic functions of the Ranker are trained
with the CMU-language modelling toolkit.

Evaluation In a first experiment we have tested
the system on four languages (Dutch, German,
Greek and Spanish) into English based on 50
sentences for each of the languages. The results are
shown in table (1). A separate set of Expander rules
was developed for each source language, consisting
of five rules for Greek up to approx. 20 rules for
German.

Language BLEU NIST
Dutch 0.4034 6.4489
Spanish 0.3701 5.7304
Greek 0.2138 5.1220
German 0.1671 3.9197

Table 1: Results of first Experiment

Another set of evaluations was conducted one a
German test set of 200 sentences after enhacing the
Dictionary Lookup, Expander, and Ranker modules.
Our best results are shown in the first line in table
(2). However, they (still) lag behind those produced
by Systran (Babelfish) on the same test set, as shown
last line in table (2).

NIST BLEU token model tag model
5.3193 0.2231 5M-n3 5M-n7
6.3644 0.3133 — —

Table 2: Results of 200 test translations

A full description of the system is provided in
(Carl, 2007).
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Abstract

We present comparative empirical evi-
dence arguing that a generalized phrase
sense disambiguation approach better
improves statistical machine translation
than ordinary word sense disambigua-
tion, along with a data analysis sug-
gesting the reasons for this. Stan-
dalone word sense disambiguation, as
exemplified by the Senseval series of
evaluations, typically defines the tar-
get of disambiguation as a single word.
But in order to be useful in statisti-
cal machine translation, our studies in-
dicate that word sense disambiguation
should be redefined to move beyond the
particular case of single word targets,
and instead to generalize to multi-word
phrase targets. We investigate how and
why the phrase sense disambiguation
approach—in contrast to recent efforts
to apply traditional word sense disam-
biguation to SMT—is able to yield sta-
tistically significant yimprovements in
translation quality even under large data
conditions, and consistently improve
SMT across both IWSLT and NIST
Chinese-English text translation tasks.
We discuss architectural issues raised
by this change of perspective, and con-
sider the new model architecture neces-
sitated by the phrase sense disambigua-
tion approach.

*This material is based upon work supported in part by

1 Introduction

Until recently, attempts to apply word sense dis-
ambiguation (WSD) techniques to improve trans-
lation quality in statistical machine translation
(SMT) models have met with mixed or disap-
pointing results (e.g., Carpuat and Wu (2005),
Cabezas and Resnik (2005)), suggesting that a
deeper empirical exploration of the differences
and consequences of the assumptions of WSD
and SMT is called for.

On one hand, word sense disambiguation as
a standalone task consists in identifying the cor-
rect sense of a given word among a set of pre-
defined sense candidates. In the Senseval series
of evaluations, WSD targets are typically single
words, both in the lexical sample tasks, where
only a predefined set of targets are considered
(e.g., Kilgarriff (2001); ), and in the all-words
tasks, where all content word in a given cor-
pus must be disambiguated (e.g., Kilgarriff and
Rosenzweig (1999)).

This focus on single words as WSD targets
might be explained by the sense inventory, which
is usually derived from a manually constructed
dictionary or ontology, where most entries are sin-
gle words. In addition, historically, as for many
other tasks, work on European languages imposed
whitespace as an easy way to define convenient

the Defense Advanced Research Projects Agency (DARPA)
under GALE Contract No. HR0011-06-C-0023, and by the
Hong Kong Research Grants Council (RGC) research grants
RGC6083/99E, RGC6256/00E, and DAG03/04.EG09. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the Defense Advanced Re-
search Projects Agency.
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word boundaries. Linguistically, however, this
oversimplistic modeling approach seems rather
guestionable, and recalls long-held debates over
the issue of what properly constitutes a “word”.

In contrast, work in statistical machine trans-
lation has for some time recognized the need to
segment sentences as required by the task’s evalu-
ation criteria, and today most systems use phrases
or segments, and not single words, as the ba-
sic unit for lexical choice (e.g., Wu (1997); Och
and Ney (2004); Koehn (2004); Chiang (2005)).
Note that single-word based SMT architectures
already perform a significant amount of sense dis-
ambiguation intrinsically, by virtue of combining
a priori sense candidate likelihoods (from ade-
quacy criteria as modeled by lexical translation
probabilities) with contextual coherence prefer-
ences (from fluency criteria as modeled by lan-
guage model probabilities). Phrasal SMT archi-
tectures, furthermore, integrate lexical colloca-
tion preferences into the disambiguation choices,
raising the bar yet higher.

This suggests that to be effective at improving
disambiguation accuracy within SMT architec-
tures, sense disambiguation techniques may need
to incorporate assumptions at least as strong as
those already made by the SMT models. Ded-
icated WSD models do appear to possess traits
that are promising for SMT: they employ a much
broader range of features for sense selection than
SMT models, and are far more sensitive to dy-
namic context. The question, however, is whether
these advantages must be reformulated within a
phrasal framework in order for the advantages to
be realizable for SMT.

In this work, we empirically compare the ef-
ficacy of phrase sense disambiguation versus
word sense disambiguation approaches toward
improving translation quality of SMT models.
The phrase sense disambiguation (PSD) approach
generalizes word sense disambiguation to multi-
word targets, aiming thereby to incorporate the
crucial assumptions responsible for the success
of phrasal SMT approaches into the sense disam-
biguation model as well. Our results and analy-
sis show that it is indeed necessary to move away
from the simplistic single-word level definition of
sense disambiguation targets, in order to be useful
to SMT. In effect, this argues for redefining WSD

for the task of SMT. This task-driven approach to
sense disambiguation requires several changes:

e Sense disambiguation targets are very differ-
ent from Senseval targets.

e Sense candidates are not extracted from
manually defined sense inventories, but from
automatically annotated data.

e Sense disambiguation predictions require a
dynamic integration architecture in SMT
systems in order to be useful.

We will begin by reviewing our phrase sense
disambiguation approach for SMT and contrast-
ing it against previous word-based models. We
then describe new contrastive empirical studies
aimed at directly assessing the differences. On
one hand, we note that incorporating multi-word
PSD into phrasal SMT reliably and consistently
improves translation quality, as measured by all
eight most commonly used evaluation metrics, on
all four different test sets from the IWSLT and
NIST Chinese-English translation tasks. On the
other hand, the contrastive experiments reported
here show that incorporating single-word WSD
into phrasal SMT leads to unpredictable and in-
consistent effects on translation quality, depend-
ing on which evaluation metric one looks at. We
then turn to data analysis exploring more closely
how and why the multi-word PSD approach out-
performs the single-word WSD approach. The
analysis shows that dynamic integration of PSD
prediction is crucial to this improvement, as it al-
lows all PSD predictions to participate in the seg-
mention of the input sentence that yields the best
translation quality.

2 Previous work

In Carpuat and Wu (2007), we proposed a novel
general framework for integrating a generalized
sense disambiguation method into SMT, such
that phrasal lexical choice is dynamically in-
fluenced by context-dependent probabilities or
scores. This Phrase Sense Disambiguation—
as opposed to Word Sense Disambiguation—
approach appears to be the only model to date
that has been shown capable of consistently yield-
ing improvements on translation quality across all
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different test sets and automatic evaluation met-
rics. Other related work has all been heavily ori-
ented toward disambiguating single words.

In perhaps the earliest study of WSD potential
for SMT performance by Brown et al. (1991), the
authors reported improved translation quality on
a French to English task, by choosing an English
translation for a French word based on the sin-
gle contextual feature which is reliably discrim-
inative. However, this was a pilot study, which
is limited to single words with exactly two trans-
lation candidates, and it is far from clear that
the conclusions could generalize to more recent
SMT architectures. In contrast with Brown et al.’s
work, our approach incorporates the predictions
of state-of-the-art WSD models (generalized to
PSD models) that use rich contextual features for
any phrase in the input vocabulary.

More recent work on WSD systems designed
for the specific purpose of translation has fol-
lowed the traditional word-based definition of the
WSD task. Vickrey et al. (2005) train a logis-
tic regression WSD model on data extracted from
automatically word aligned parallel corpora, and
evaluate it on a blank filling task, which is es-
sentially an evaluation of WSD accuracy. Spe-
cia et al. (2007) use an inductive logic program-
ming based WSD system to integrate expres-
sive features for Portuguese to English transla-
tion, but this system was also only evaluated
on WSD accuracy, and not integrated in a full-
scale machine translation system. Even when us-
ing automatically-aligned SMT parallel corpora
to define WSD tasks, as in the SemEval-2007 En-
glish Lexical Sample Task via English-Chinese
Parallel Text (Ng and Chan, 2007), WSD is still
defined as a word-based task.

There have been other attempts at using con-
text information for lexical selection in SMT, but
the focus was also on single words vs. multi-word
phrases, and they were not evaluated in terms of
translation quality. For instance, Garcia-Varea et
al. (2001) and Garcia-Varea et al. (2002) show
improved alignment error rate with a maximum
entropy based context-dependent lexical choice
model, but do not report improved translation ac-
curacy. Another problem in the context-sensitive
SMT models of Garcia Varea et al. is that they
strictly reside within the Bayesian source-channel

model, which is word-based.

The few recent attempts at integrating single
word based WSD models into SMT have failed
to obtain clear improvements in terms of transla-
tion quality. Carpuat and Wu (2005) show that
using word-based Senseval trained models does
not help BLEU score when integrated in a stan-
dard word-based translation system, for a NIST
Chinese-English translation task.

Following this surprising result, a few attempts
at integrating WSD methods into state-of-the-
art SMT systems have begun to obtain slightly
more encouraging results by moving away from
manually-constructed sense inventories, and in-
stead automatically defining word senses as word
translation candidates, just like in SMT. Cabezas
and Resnik (2005) reported that incorporating
word-based WSD predictions via the Pharaoh
XML markup scheme yielded a small improve-
ment in BLEU score over a phrasal SMT baseline
on a single Spanish-English translation data set.
However, the result was not statistically signifi-
cant, and in this paper, we will show that apply-
ing a similar single-word based model to several
Chinese-English datasets does not yield system-
atic improvements on most MT evaluation met-
rics. Carpuat et al. (2006) also reported small im-
provements in BLEU score by using single-word
WSD predictions in a Pharaoh baseline. How-
ever, these small improvements were obtained on
a slightly weaker SMT baseline, and subsequent
evaluations showed that these gains are not con-
sistent across metrics. Giménez and Marquez
(2007) also used WSD predictions in Pharaoh for
the slightly more general case of very frequent
phrases, which in practice essentially limits the
set of WSD targets to single words or very short
phrases. However, evaluation on the single Eu-
roparl Spanish-English task did not yield consis-
tent improvements across metrics: BLEU score
did not improve, while there were small improve-
ments in the QUEEN, METEOR and ROUGE
metrics. Chan et al. (2007) report an improved
BLEU score for a hierarchical phrase-based SMT
system on a NIST Chinese-English task, by incor-
porating WSD predictions only for single words
and short phrases of length 1 or 2. However,
no results for metrics other than BLEU were re-
ported, and no results on other tasks, so the relia-
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bility of this model is not known.

What the foregoing attempts at WSD in SMT
share is that (1) they focus on single words rather
than full phrases, and (2) the evaluations do
not show consistent improvement systematically
across different tasks and metrics.

In contrast, we showed in Carpuat and Wu
(2007) for the first time that generalizing WSD
to exactly match phrasal lexical choice in SMT
yields consistent improvements on 4 different test
sets as measured by 8 common automatic evalu-
ation metrics, unlike all the single-word oriented
approaches. The key question left unanswered,
however—which we attempt to address in the
present paper—is exactly how and why it is nec-
essary to generalize Word Sense Disambiguation
to Phrase Sense Disambiguation in order to obtain
this sort of consistency in translation accuracy im-
provement.

3 Building multi-word Phrase Sense
Disambiguation models for SMT

3.1 Phrase sense disambiguation vs. word
sense disambiguation

In a task-driven definition of sense disambigua-
tion for phrase-based SMT, the PSD approach ar-
gues that disambiguation targets must be exactly
the same phrases as in the SMT phrasal trans-
lation lexicon, so that the sense disambiguation
task is identical to lexical choice for SMT. This
constrasts with the standalone WSD perspective,
where targets are single words, as in Senseval
tasks (e.g., Kilgarriff and Rosenzweig (1999)).
In SMT, phrases are typically defined as any se-
guence of words up to a given length. As a
result, the phrasal targets for sense disambigua-
tion need not necessarily be syntactic well-formed
phrases, but rather need only be collocations de-
fined by their surface form. This again departs
from Senseval-style WSD where POS-tagging is
typically decoupled from WSD, as training data is
manually checked to contain instance for a single
POS of the target.

In sense disambiguation for SMT, the sense
candidates are those defined by the SMT trans-
lation lexicon. Sense candidates can be single
words or multi-word phrases regardless of the
length of the target. Note that phrasal senses do

occasionally also exist in standalone WSD tasks.
For instance, the Senseval English Lexical Sam-
ple tasks include WordNet phrasal senses (e.g.,
“polar bear” is a sense candidate for the English
target word “bear”.)

Given the above definitions for sense disam-
biguation targets and senses, annotated training
data can naturally be drawn from the automat-
ically aligned parallel corpora used to learn the
SMT lexicon. Given a Chinese-English sentence
pair, a WSD or PSD target in the Chinese sentence
is annotated with the English phrase which is con-
sistent with the word alignment. The definition
of consistency with the word alignment should be
exactly the one used for building the SMT lexi-
con.

Despite the differences introduced by the use of
phrasal targets, the disambiguation task remains
in the character and spirit of WSD. The transla-
tion lexical choice problem is exactly the same
task as in recent and coming Senseval Multilin-
gual Lexical Sample tasks (e.g., Chklovski et al.
(2004)), where sense inventories represent the se-
mantic distinctions made by another language.
In our SMT-driven approach to PSD rather than
WSD, we are only generalizing the definition of
the sense disambiguation targets, and automating
the sense annotation process.

3.2 Leveraging Senseval classifiers for both
WSD and PSD

As in Carpuat and Wu (2007), the word sense
disambiguation system is modeled after the best
performing WSD system in the Chinese lexical
sample task at Senseval-3 (Carpuat et al., 2004).
The features employed include position-sensitive,
syntactic, and local collocational features, and are
therefore much richer than those used in most
SMT systems.

4 Integrating multi-word PSD vs.
single-word WSD into phrasal SMT
architectures

Unlike single-word WSD, it is non-trivial to
incorporate the PSD predictions into an exist-
ing phrase-based architecture such as Pharaoh
(Koehn, 2004), since the decoder is not set up
to easily accept multiple translation probabili-
ties that are dynamically computed in context-
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sensitive fashion. While PSD and WSD models
differ in principle only by the length of the WSD
target, their integration into phrase-based SMT ar-
chitectures requires significantly different strate-
gies.

Since multi-word PSD predictions are defined
for every entry in the SMT lexicon or phrase ta-
ble, they can be thought of as an additional fea-
ture in the phrase table. However, unlike baseline
SMT translation probabilities, these predictions
are context-sensitive, and require to be updated
for every new sentence. Therefore, instead of us-
ing a static phrasal translation lexicon, integration
of PSD predictions require dynamically updating
the phrasal translation lexicon for each sentence
during decoding.

In contrast, in the single-word WSD system,
since the WSD predictions only cover a subset of
the phrase-table entries and the word-based tar-
gets do not have overlapping spans, it is usually
possible to implement a much simpler integration
architecture, by annotating the input sentence to
contain the WSD predictions, as with the Pharaoh
XML markup scheme.

Thus, the dynamic phrase table architecture for
PSD integration necessarily generates a signifi-
cant overhead. While we could in theory anno-
tate the input sentence with phrase-based WSD
predictions, just like for single-word based WSD,
we argue that this approach is not optimal and
would in fact hurt translation quality: annotation
schemes such as the Pharaoh XML markup do not
allow to annotate overlapping spans, and would
thus require to commit to a phrasal segmentation
of the input sentence before decoding. It is im-
possible to find an optimal phrasal segmentation
before decoding, since the quality of the segmen-
tation can only be evaluated by the translation it
yields.

5 Comparative experiment setup

5.1 Data set

In order to better isolate the different effects
of WSD versus PSD, comparative experiments
are conducted using training and evaluation data
drawn from the multilingual BTEC corpus, which
contains sentences used in conversations in the
travel domain, and their translations in several

languages. The simpler character of these sen-
tences faciliates clearer identification of individ-
ual factors in data analysis, compared with open
domain newsire text where too many factors inter-
fere with each other. We used a subset of this data
which was made available for the IWSLT 2006
evaluation campaign; the training set consists of
40000 sentence pairs, and each test set contains
around 500 sentences. We used only the pure
text data, so that speech-specific issues would not
interfere with our primary goal of understanding
the effect of integrating WSD/PSD in a full-scale
phrasal SMT model.

We also report results of the large scale evalua-
tion of the PSD model conducted on the standard
NIST Chinese-English test set (MT-04), which
contains 1788 sentences drawn from newswire
corpora, and is therefore of a much wider domain
than the IWSLT data set.

5.2 Baseline SMT system

Since our focus is not on a specific SMT archi-
tecture, we use the off-the-shelf phrase-based de-
coder Pharaoh (Koehn, 2004) trained in a stan-
dard fashion on the IWSLT training set, as in
Carpuat and Wu (2007).

5.3 WSD and PSD models

WSD classifiers are trained for every word, while
PSD classifiers are trained for every multi-word
phrase in the test set vocabularies. The number of
targets is therefore much higher than even in the
all-words WSD tasks. For the first IWSLT test set
which contains 506 sentences, we have a total of
PSD 2882 targets, as opposed to only 948 WSD
targets. There is on average 7.3 sense candidates
and 79 training instances per PSD target.

The scale of WSD and PSD models for SMT
greatly constrasts with, for instance, the Senseval-
3 Chinese lexical sample task which considered
only 21 single word targets, with an average of
3.95 senses and 37 training instances per target.

6 Comparative evaluation results

The comparative experiments clearly show a
marked difference between single-word WSD
and multi-word PSD results. Evaluation scores,
summarized in Tables 2 and 3, show that multi-
word PSD yields consistent improvements in
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Table 1: Evaluation results on the IWSLT-07 dataset: integrating the WSD translation predictions for
single words has unpredictable effects on BLEU, NIST, METEOR, WER, PER, CDER and TER across
all 3 different available test sets. Using only more reliable target words, such as nouns and verbs only,
or targets that have more than 30 training instances, does not yield clear improvement either.

Test| Experiment BLEU| NIST | METEOR| METEOR| TER | WER | PER | CDER

Set (no syn)

#1 | Baseline 42,21 | 7.888 | 65.40 63.24 40.45 | 45.58 | 37.80 | 40.09
+WSD (all words) 41.94 | 7.911 | 65.55 63.52 40.59 | 45.61 | 37.75 | 40.09
+WSD (nouns and | 42.19 | 7.920 | 65.97 63.88 40.64 | 45.88 | 37.58 | 40.14
verbs)
+WSD (>30) 42.08 | 7.902 | 65.43 63.30 40.52 | 45.57 | 37.80 | 40.06

#2 | Baseline 41.49 | 8.167 | 66.25 63.85 40.95 | 46.42 | 37.52 | 40.35
+WSD (all words) 41.31 | 8.161 | 66.23 63.72 41.34 | 46.82 | 37.98 | 40.69
+WSD (nouns and | 41.25 | 8.135 | 66.08 63.40 41.30 | 46.76 | 37.85 | 40.65
verbs)
+WSD (>30) 4156 | 8.186 | 66.44 63.89 40.87 | 46.36 | 37.57 | 40.35

#3 | Baseline 4991 | 9.016 | 73.36 70.70 35.60 | 40.60 | 32.30 | 35.46
+WSD (all words) 49.73 | 9.017 | 73.32 70.82 35.72 | 40.61 | 32.10 | 35.30
+WSD (nouns and | 49.58 | 9.003 | 73.07 70.46 35.94 | 40.84 | 32.40 | 35.62
verbs)
+WSD (>30) 50.11 | 9.043 | 73.60 70.98 35.41 | 40.38 | 32.23 | 35.30

Table 2: Evaluation results on the IWSLT-06 dataset: integrating the multi-word PSD translation pre-
dictions for all phrases improves BLEU, NIST, METEOR, WER, PER, CDER and TER across all 3
different available test sets. In contrast, using the traditional single-word WSD approach has an unreli-
able impact on translation quality.

Testl Experiment BLEU | NIST | METEOR| METEOR| TER | WER | PER | CDER

Set (no syn)

#1 | Baseline 42.21 | 7.888 | 65.40 63.24 40.45 | 45.58 | 37.80 | 40.09
+WSD (all words) 41,94 | 7.911 | 65.55 63.52 40.59 | 45.61 | 37.75 | 40.09
+PSD (all phrases) | 42.38 | 7.902 | 65.73 63.64 39.98 | 45.30 | 37.60 | 39.91

#2 | Baseline 41.49 | 8.167 | 66.25 63.85 40.95 | 46.42 | 37.52 | 40.35
+WSD (all words) 41.31 | 8.161 | 66.23 63.72 41.34 | 46.82 | 37.98 | 40.69
+PSD (all phrases) | 41.97 | 8.244 | 66.35 63.86 40.63 | 46.14 | 37.25 | 40.10

#3 | Baseline 4991 | 9.016 | 73.36 70.70 35.60 | 40.60 | 32.30 | 35.46
+WSD (all words) 49.73 | 9.017 | 73.32 70.82 35.72 | 40.61 | 32.10 | 35.30
+PSD (all phrases) | 51.05 | 9.142 | 74.13 71.44 34.68 | 39.75 | 31.71 | 34.58

translation quality, across all metrics and on all
test sets, including statistically significant im-
provements on the large NIST task, while in con-
trast, the impact of single-word WSD on transla-
tion quality is highly unpredictable. In particu-
lar, the single-word WSD results are inconsistent
across different test sets, and depend on which
evaluation metric is chosen.

In order to measure the impact of WSD on

translation quality, the translation results were
evaluated using all eight of the most commonly
used automatic evaluation metrics. In addi-
tion to the widely used BLEU (Papineni et al.,
2002) and NIST (Doddington, 2002) scores, we
also evaluate translation quality with METEOR
(Banerjee and Lavie, 2005), Word Error Rate
(WER), Position-independent word Error Rate
(PER) (Tillmann et al., 1997), CDER (Leusch
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et al., 2006), and Translation Edit Rate (TER)
(Snover et al., 2006). Note that we report ME-
TEOR scores computed both with and without us-
ing WordNet synonyms to match translation can-
didates and references, showing that the improve-
ment is not due to context-independent synonym
matches at evaluation time.

In the sections that follow, we investigate vari-
ous reasons that PSD outperforms WSD, drawing
from data analysis on these comparative experi-
ments.

7 Single-word WSD yields unreliable
results

Using WSD predictions for all the single words
in a given test set has an unreliable impact on
translation quality, as can be seen in Table 1.
While it yields a very small, non-significant gain
on NIST and METEOR on Test Set 1, it yields
worse BLEU, NIST and METEOR scores for all
the other test sets.

In order to check that this disappointing result
cannot be simply explained by the effect of un-
usual target words, we perform two sets of addi-
tional experiments. We attempt to consider only
target words that are closer to those used in Sen-
seval evaluations for which these WSD models
were initially designed, and demonstrated good
performance.

Instead of using WSD predictions for all the
whitespace separated tokens that were seen dur-
ing training, we restrict our set of WSD targets
to nouns and verbs. This is slightly closer to the
definition of targets in Senseval tasks, which typ-
ically include nouns, verbs and sometimes adjec-
tives, but never punctuation or any function word.
Table 1 shows that this does not help translation
quality compared to the baseline system, and ac-
tually underperforms using WSD predictions for
all words.

In contrast with Senseval target words, which
are picked so that representative training data can
be obtained, we are using every target word in the
vocabulary, whatever the available training data.
In order to check that the target words with few
training instances are not hurting the contribution
of other targets, we try to restrict our set of tar-
get words to those for which at least 30 instances
were seen during training. Table 1 shows that this

does not have a reliable effect on translation qual-
ity either, yielding small gains in BLEU, NIST
and METEOR scores over the baseline for Test
Sets 2 and 3, but hurting BLEU on Test Set 1.
While the results are overall slightly better than
when using all WSD predictions for all words,
there is no clear trend for improvement.

These results show that considering only single
words as sense disambiguation targets does not
allow the SMT system to reliably exploit WSD
predictions. This holds even when only targets
that meet conditions that are closer to Senseval
evaluations, where our WSD models are known
to achieve good performance.

8 Multi-word PSD consistently improves
translation quality

In contrast with the unreliable single-word WSD
results, using phrasal multi-word PSD predictions
in SMT remarkably yields better translation qual-
ity on all test sets, as measured by all eight com-
monly used automatic evaluation metrics. The re-
sults are shown in Table 2 for IWSLT and Table 3
for the NIST task. Paired bootstrap resampling
shows that the improvements on the NIST test set
are statistically significant at the 95% level.
Comparison of the 1-Best decoder output with
and without the PSD feature shows that the sen-
tences differ by one or more token respectively
for 25.49%, 30.40% and 29.25% of IWSLT test
sets 1, 2 and 3, and 95.74% of the NIST test set.

9 Multi-word PSD helps the decoder
find a more useful segmentation of the
input sentence

Analysis reveals that integrating PSD into SMT
helps the decoder select a phrase segmentation
of the input sentence which allows to find bet-
ter translations than word-based WSD. We sam-
pled translation examples from the IWSLT test
sets, so that both word-based and phrase-based
results are available for comparison. In addition,
the relatively short sentence length of this corpus
helps give a clearer understanding of the impact
of WSD. Consider the following example:

Input A8 FF A - F X 5K 52K BUT .

Reference | want to reconfirm this ticket.
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Table 3: Evaluation results on the NIST test set: integrating the PSD translation predictions improves

BLEU, NIST, METEOR, WER, PER, CDER and TER.

Experiment | BLEU | NIST | METEOR| METEOR| TER | WER | PER | CDER
(no syn)

Baseline 20.20 | 7.198 | 59.45 56.05 75.59 | 87.61 | 60.86 | 72.06

+PSD 20.62 | 7.538 | 59.99 56.38 72.53 | 85.09 | 58.62 | 68.54

WSD | would like to reconfirm a flight for this
ticket.

PSD | want to reconfirm my reservation for this
ticket.

Here, in the input segment “iX 7k ZZ {{) #5177,
the particle “f” is in the same segment as the
preceding word when using multi-word PSD pre-
dictions (“ ZZ ] ), while the single-word WSD
prefers to use “ [ FiT”. This results in an
incorrect translation of the phrase “[ 1] as
“flight for”. In contrast, PSD prefers to use the
target “¥i1]™, which ranks the correct “reserva-
tion” as the top translation candidate with a very
confident probability of 0.94, as opposed to 0.28
only for the baseline context-independent trans-
lation probability used in the single-word WSD-
augmented model. Similarly, consider:

Input i ¥ 3¢ Hp o 2k

Reference You should transfer to the Central
Line.

WSD Please turn to the Central Line.
PSD Please transfer to Central Line.

Here, PSD translates the segment “%% 3¢” as
a single unit and selects the correct translation
“transfer to”, while WSD separately translates
the words “%” and “¢” into the incorrect “turn
to”. The multi-word PSD model correctly ranks
“transfer to” as its translation candidate, but it is
interesting to note that all other translation can-
didates (e.g., “have a connection to0”) are better
than “turn to”, because the sense disambiguation
target phrase itself contains disambiguating infor-
mation, and is therefore a better lexical choice
unit. Consider a further example:

Input & A8 FTHLIE 2] HA ) K50,
R L RL?

B

Reference 1'd like to call Tokyo, Japan. What
time is it now in Tokyo?

WSD | want to make a call to Tokyo, Japan is
Tokyo time now?

PSD | want to make a call to Tokyo, Japan what
time is it now in Tokyo?

The PSD system translates the phrase
“/& JL A" as a single target into “what time is”,
with a confident PSD probability of 0.90. This
prediction is not used by the WSD-augmented
system, because the context-independent baseline
translation probabilities prefers the incorrect
translation “what time does it” higher than
“what time is”, with much less confident scores
(0.167 vs. 0.004). As a result, using only WSD
predictions leads the words “J&” and ”JL. /" to
be translated separately, and incorrectly.

In contrast, the following example demon-
strates how multi-word PSD helps in selecting a
mix of both longer and shorter phrases where ap-
propriate:

Input i 4 BT F A R .
Reference Please fix it or exchange it.

WSD Please fix it or | change it for me.

PSD Please give me fix it or exchange it for me.

In particular, by translating the phrase “i& %+
F&” as a whole, multi-word PSD avoids the prob-
lem caused by the incorrect reordering of the pro-
noun “I” in single-word WSD. The phrase transla-
tion is not optimal, but it is better than the single-
word WSD translation, which does not make
much sense because of the incorrect reordering.
At the same time, the multi-word PSD predictions
do not translate the phrase “4< 5t & JL /5”7 as a
single target, which helps pick the better transla-
tion “exchange”.

50



It is worth noting that using multi-word
PSD sometimes yields better lexical choice than
single-word WSD even in cases when the same
phrase segmentation of the input sentence is ar-
rived at. This is the case in the following exam-
ples:

Input 2 2 NMA % .

Reference This is all my personal luggage.
WSD s it all personal effects.

PSD They are all personal effects.

Input MIME FI 2055, & B ERAS 2
Reference Which would you like, coffee or tea?

WSD Which would you like, and coffee black
tea?

PSD Which would you like, black tea or coffee?

The targets that are translated differently are
single words in both sentences, which means
that the WSD/PSD predictions are identical in
the WSD-augmented SMT and PSD-augmented
SMT experiments. However, the translation can-
didate selected by the decoder differs. In the first
example, the WSD/PSD scores incorrectly prefer
“and” with a probability of 0.967 to the better
“or” translation, which is only given a probabil-
ity of 0.002. However, the PSD-based translation
for the whole sentence is correct, while the WSD-
based translation is incorrectly ordered, perhaps
letting the language model prefer the phrase “and
coffee” which was seen 10 times more in the
training set than the correctly ordered “and tea”.
Although this phenomenon requires more analy-
sis, we suspect that having WSD predictions for
every phrase in the SMT lexicon allows to learn
better log linear model weights than for word-
based WSD predictions.

10 When WSD/PSD predictions go
wrong

The following examples show that for some
sentences using sense disambiguation, whether
single-word WSD or multi-word PSD, occasion-
ally does not help or even hurts translation quality.
Consider the following example:

Input & 2 X & ]k .
Reference Room service, please.
WSD | will take meal service.

PSD | want to eat service.

Here, the single word target “i%” is incorrectly
translated as “eat” and “meal”, while a better
translation candidate, “order”, is given a lower
WSD score. Another problem with this sentence
is that the word “fi# 45 is not seen alone during
training, but in the collocation “f5 [&] ik 45", so
that “Jx 45" was aligned to “service” only during
training, and “room service” is not a translation
candidate for “fx4%” in the SMT phrasal transla-
tion lexicon. WSD/PSD can only help to rank the
given candidates, and there is nothing they can do
when the correct translation is not in the original
SMT phrasal translation lexicon.

Similarly, consider the following example:

Input M7 . 25 B kA .
Reference Uhh. Give me a Tab.
WSD Oh. | have the hill.

PSD Wkell, let me check.

The incorrect translation of “fk ¥ . ” as
“check .” by the multi-word PSD model inappro-
priately influences the translation of the context,
resulting in a sentence translation whose meaning
has nothing in common with the reference.

This, of course, highlights the fact that for ex-
tremely short sentences containing only neutral
words or extremely polysemous function words,
WSD/PSD is not a good idea. In Example 7, there
is actually no solid contextual evidence upon
which the sense disambiguation model can decide
whether “Ii ¥8.” should be translated as “bill”,
“check”, or “tab”. “45” is the highly polysemous
verb “give”, and “3&” is the neutral word “I1”. In
fact, without document level context, it would be
hard even for a human translator to pick the right
translation.

These observations suggest that in future evo-
lutions of these directions, we might want to trig-
ger PSD based on a cursory examination of sen-
tence properties, in order to avoid hurting trans-
lation quality when there is simply no context in-
formation for PSD to exploit.
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11 Conclusion

We have presented new comparative empirical ev-
idence and data analysis strongly indicating that
in order to be useful for improving the trans-
lation quality of current phrasal SMT perfor-
mance levels, we will need phrase sense dis
ambiguation models that are generalized to dis-
ambiguate phrasal target words, rather than tra-
ditional single-word sense diambiguation mod-
els. On one hand, the experimental results con-
ducted on both the IWSLT-06 and NIST Chinese-
English translation tasks, using eight different au-
tomatic evaluation metrics, have shown that—
remarkably—incorporating phrase sense disam-
biguation consistently improves translation qual-
ity on all test sets for all evaluation metrics. But
on the other hand, contrastive results where tradi-
tional single-word oriented WSD is incorporated
into SMT leads to unpredictable effects on trans-
lation quality depending on the metric used, thus
tending to confirm that the generalization from
word sense disambiguation to phrase sense dis-
ambiguation is indeed necessary.

Analysis suggests that this very different be-
havior is made possible by the dynamic integra-
tion of phrase-based WSD predictions into SMT,
which allow all phrase targets to compete dur-
ing decoding, instead of forcing the SMT system
to use a particular segmentation of its input sen-
tence.
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1 Introduction

The European METIS-II project! (Oct. 2004-
Sept. 2007) combines techniques from rule-
based and corpus-based MT in a hybrid
approach for four language pairs (German,
Dutch, Spanish, and Greek to English). We
only use a dictionary, basic analytical re-
sources and a monolingual target-language
corpus in order to enable the construction of
an MT system for lesser-resourced languages.
Cutting up sentences in linguistically sound
subunits improves the quality of the transla-
tion. Demarcating clauses, verb groups, noun
phrases, and prepositional phrases restricts
the number of possible translations and hence
also the search space. Sentence chunks are
translated using a dictionary and a limited set
of mapping rules. Using bottom-up matching
to match the different translated items and
higher-level structures with the database in-
formation, one or more candidate translations
are constructed. A search engine ranks them
using occurence frequencies and match accu-
racy in the target-language corpus.

2 Components

The source-language analysis tools construct
a source-language model. This toolset con-
sists of a tokeniser, the TnT tagger trained on
the Spoken Dutch corpus, a PoS-based lem-
matiser, a chunker, and a subclause delimiter.

The translation model consists of a bilin-
gual Dutch-English dictionary with approx-

'Supported by the 6th European Framework Pro-
gramme, FP6-IST-003768.

imately 110,000 entries and a set of tag-
mapping rules between Dutch and English.

The target-language model is based on a
target-language corpus, the British National
Corpus (BNC). It is processed in an analo-
gous way to the source-language input sen-
tences. The translation engine itself is com-
posed of an expander and a ranker. The ex-
pander inserts, deletes, moves and permutes
tokens and chunks generated during dictio-
nary look-up and the application of the tag
mapping. There are currently some half a
dozen rules applying. The ranker is a beam-
search, bottom-up algorithm that ranks the
proposed translations according to the lan-
guage model. It does not alter the trans-
lations anymore. Finally, a token generator
generates the correct word forms, since in all
intermediate processes, only lemmas are used.

More information on the different compo-
nents of the system can be found in (Dirix et
al., 2005), (Dirix et al., 2006), and (Vande-
ghinste et al., 2006). The impact of applying
hand-crafted rules is described in (Vandegh-
inste et al., 2007).

3 Evaluation

Our test set consists of 50 Dutch sentences,
selected from newspaper texts, with three hu-
man reference translations. These sentences
are selected to contain a number of classi-
cal difficult MT issues. The system generates
several translation alternatives (dependent on
beam size, which is 20 for all tests described
in this paper), each with a weight. As our sys-
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tem is not always capable of generating only
one best translation, we present two types
of results, namely the average BLEU scores
of all the top-weight? translations generated
for that test sentence (‘average’ score) and
the highest BLEU scores of all the top-weight
translations generated for that test sentence
(‘best’ score).

Table 1: BLEU scores

BLEU
‘average’ | 0.3024
‘best’ 0.3486

A discussion of the results in Table 1 can
be found in (Vandeghinste et al., 2007).

4 Current and future work

Currently, we are adding co-occurrence met-
rics in order to generate unique top-weight
translations. These metrics are used to dif-
ferentiate the weights of the different trans-
lations of a single source-language dictionary
entry. It is based on the co-occurence of the
differents words of the sentence in the target-
language corpus. We also moved to an xml
representation of our dictionary in order to
better represent complex entities. We allow
structural changes and discontinuous entries.

Furthermore, we are developing a post-
editing interface. The corrections of human
post-editors will result in an aligned corpus
of machine-made and corrected translations.
The corrected translations can be added to
the target-language corpus and will also be
used as part of the bilingual dictionary. This
can be seen as a kind of supervised machine
learning.

5 Related work

Related techniques are context-based machine
translation (CBMT), as described in (Car-
bonell et al., 2006), and generation-heavy
hybrid machine translation (GHMT), as de-
scribed in (Habash, 2003). As in METIS,

2The top-weight translations are those translations
that receive the highest weight.

CBMT does not rely on parallel corpora, but
on a large target-language corpus, an optional
small source-language corpus and a bilin-
gual dictionary. The translation and target-
language generation phases do not require any
linguistic knowledge, but use n-grams instead.
GHMT uses about the same resources as
CBMT, but involves a deep source-language
analysis. Initially, the dependency structure
of the source language is maintained, but at
the end, a source-language-independent gen-
eration module rewrites the target language
part lexically and syntactically.
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Abstract

This paper aims at providing a reliable
method for measuring the correlations
between different scores of evaluation
metrics applied to machine translated
texts. A series of examples from recent
MT evaluation experiments are first
discussed, including results and data from
the recent French MT evaluation
campaign, CESTA, which is used
here. To compute correlation, a set of
1,500 samples for each system and each
evaluation metric are created using
bootstrapping.  Correlations  between
metrics, both automatic and applied by
human judges, are then computed over
these samples. The results confirm the
previously observed correlations between
some automatic metrics, but also indicate
a lack of correlation between human and
automatic metrics on the CESTA data,
which raises a number of questions
regarding their validity. In addition, the
roles of the corpus size and of the
selection procedure for bootstrapping
(low vs. high scores) are also examined.

1 Introduction

One of the design principles of automatic MT
evaluation metrics is that their scores must
“correlate” with a reliable measure of translation
quality, generally estimated by human judges.
Indeed, the claim that an automatic scoring
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procedure applied to MT output can provide an
accurate view of translation quality must be
substantiated by a proof that the scores do reflect
genuine quality, as perceived by human users of
a translation. For instance, the proponents of
BLEU or WNM (Babych and Hartley, 2004;
Papineni et al., 2001) have compared the scores
produced by their metrics — which compare
n-grams of MT-generated sentences with one or
more reference translations produced by humans
— with adequacy and fluency scores assigned by
human judges.

It is not, of course, that all metrics of
translation quality must be correlated. Although
adequacy (i.e. fidelity or “semantic correctness”)
and fluency (acceptability as a valid sample of
the target language) do seem correlated to some
extent (White, 2001), one can easily imagine
MT output with high fluency but low adequacy.
However, an automatic MT evaluation metric
should at least correlate with one quality
characteristic on which human judges would
reliably agree, which can be some aspect of
intrinsic quality, or a utility-based measure with
respect to a given task.

Given the low cost of automatic metrics, they
have been widely used in recent experiments,
three of which are discussed in Section 5.
However, the results obtained on the correlation
between metrics that were used are difficult to
compare, and therefore the reliability of
automatic metrics is hard to assess.

In this article, we propose a method to
measure the correlation between two MT
evaluation metrics based on bootstrapping
(Section 3) and apply it to data from the recent
French MT evaluation campaign, CESTA
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(Section 4). Our experiments (Section 5) analyze
the correlation between metrics and show that
correlation is lower than expected for automatic vs.
human metrics. The experiments also show that
correlation varies with sample size, as well as with
the subset of sentences that is considered (low vs.
high quality). Samples from the two CESTA runs
indicate however that correlations do not vary
significantly with a different translation domain.

2  Correlation between MT Evaluation
Metrics in Previous Experiments

Many authors report on the correlation between
human and automated metrics: some working at
the sentence level (Kulesza and Shieber, 2004;
Russo-Lassner et al., 2005), and some at the
corpus level (Doddington, 2002; Papineni, 2002),
in a variety of approaches and setups. Recent
experiments, for instance, report that the
correlation of the well-known BLEU metric with
metrics applied by humans is not always as high as
previously reported (Callison-Burch et al., 2006).
In this section, we analyze three recent
contributions that illustrate clearly the variety of
methodologies used to compute correlations
between metrics.

2.1 An Experiment with the Europarl Corpus

Koehn and Monz (2006) describe the competition
organized during the Statistical MT Workshop at
NAACL 2006. Its main goal was to establish
baseline performance of MT evaluation for
specific training scenarios. The test corpus
consisted of sentences from the Europarl corpus
(Koehn, 2005) and from editorials of the Project
Syndicate website, and contained a total of 3,064
sentences. The translation directions were
SP<—EN, FR—EN, DE<EN and there were 14
participating systems.

The BLEU metric was used for automatic
evaluation, as the most commonly used metric in
the MT community. To provide human quality
judgments, the workshop participants had to assess
300—400 sentences each, in terms of adequacy and
fluency, on a 5-point scale. Each evaluator was in
fact simultaneously given 5 machine translations,
one reference translation, and one source sentence,
and was asked to perform a comparative
evaluation of the machine translations. The scores
for adequacy and fluency were then normalized

and were finally converted into rankings, to
increase robustness of the conclusions.

The similarity between the performances of
the systems and the problems encountered in the
human evaluation made it difficult to draw
strong conclusions about the correlation of
human and automatic metrics. Some evaluators
explicitly pointed out how difficult it was to
maintain consistency of judgment, especially
when the sentences are longer than average.
Evaluators also suggested extending the scale
for adequacy scores, as this would improve the
reliability of judgments.

2.2 Reliability and Size of Test Set

Coughlin  (2003) reports results on the
correlation between human assessments of MT
quality and the BLEU and NIST metrics
(Doddington, 2002) in a large scale evaluation,
using data collected during two years. The
judges were neither domain experts (in computer
science), nor were they involved in the
development of the participating systems.
Having access only to high quality reference
translations, they had to rate sentences in pairs,
to compare two different systems. The
innovative methodology of human evaluation
was to rate the overall acceptability of the
sentences — and not their adequacy or fluency —
on a 4-point scale, without further instructions,
thus generating only one human score per
sentence.

The sentences were evaluated by 4—7 judges,
leading to an average inter-rater agreement of
0.76 for EN->DE and 0.83 for FR>EN.

Contrary to the work described in the
previous subsection, Coughlin (2003) found a
very high correlation between the BLEU metric
and the human judges, especially when test data
sets comprise more than 500 sentences. For the
NIST metric, on the contrary, correlation is
lower for data sets that comprise more than 250
sentences. In general, Coughlin (2003) shows a
high correlation between BLEU/NIST and
human scores, for all language pairs and systems
used, except for the FR=>EN pair which had low
negative correlation, for which they suggest that
the Hansard domain might be more difficult to
translate for the systems under evaluation.
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2.3 Correlations in the CESTA Campaign

The French MT evaluation campaign, CESTA,
also reported results on the meta-evaluation of
automatic metrics, i.e. their comparison to the
human scores of adequacy and fluency (Hamon et
al., 2006). The data used for the evaluation is
described in detail in Section 4, since it is also
used in this paper. The main automatic metrics
used in CESTA are BLEU, NIST, Weighted N-
gram Metric (WNM) (Babych, 2004), mWER
(Niessen et al., 2000), and mPER (Tillmann et al.,
1997).

CESTA used human judges to assign adequacy
and fluency scores on a S5-point scale with a
protocol and interfaces that changed from the first
to the second run. The rating scale in the first run
explicitly listed the intermediate labels for the
values, while for the second run the labels were
removed. In addition, while in the first run the
evaluation of adequacy and fluency was done at
the same time, in the second run, the judges scored
every segment separately for fluency and for
adequacy. In both runs the final scores for each
sentence are the average of two assessments.

When defined as the percentage of identical
values from the 5-point scale, the inter-judge
agreement is only 40% for fluency, and varies
from 36% to 47% for adequacy in the first vs.
second run (EN->FR). However, when defined as
the percentage of scores that differ by at most one
point between two judges (e.g. a segment rated 3
by one judge and 2 by the other would count as an
agreement), inter-judge agreement increases
significantly, to 84% for fluency and 78% for
adequacy. Moreover, the CESTA campaign
reports acceptable correlation between automatic
metrics and adequacy/fluency, when computed
over the five participating systems, that is, as the
Pearson correlation of five pairs of values. For
example, the correlation of NIST (or BLEU) with
fluency is around 0.67 in the first run'.

3 Using Bootstrapping to Study the
Correlation between Metrics

We propose here the use of bootstrapping to
investigate the correlation between the scores of
different metrics on a per system basis, and not

'"The CESTA final report provides the detailed scores:
http://technolangue.net/IMG/pdf/Rapport_final CESTA_v1.04.pdf.

only between the various systems participating
in an evaluation. To calculate the correlation
between two or more variables (metrics in this
case), we need two or more samples of each
variable: for example, in an evaluation
campaign, the samples are the final scores
obtained by each system, which are then
correlated to explore relations between different
metrics (cross-system correlation). Our approach
consists of (artificially) generating several
sample scores of the same system and
calculating the correlations of two metrics over
the set of samples, for that particular system.
The advantages of this method are that we only
need the output of one system and that the
results obtained are specific to that system. The
disadvantage is of course, that direct comparison
with standard cross-system correlation is not
possible, since we only consider one system at a
time.

Therefore, this method can be used to
estimate the correlation of metrics as the result
of evaluating one system only, and can include
of course any kind of metrics, human and
automatic, in the analysis.

3.1 Bootstrapping Samples of Scores

Bootstrapping is a statistical technique that is
used to study the distribution of a variable based
on an existing set of wvalues (Efron and
Tibshirani, 1993). This is done by randomly
resampling with replacement (i.e. allowing
repetition of the values) from the full existing
sample and computing the desired parameters of
the distribution of the samples. The method has
the practical advantage of being easy to
implement and the theoretical advantage of not
presupposing anything about the underlying
distribution of the wvariable. A simple
programming routine can thus calculate the
estimators of the mean, variance, etc., of any
random variable distribution.

Moreover, when the original sample is
resampled a large number of times, the law of
large numbers ensures that the observed
probability approaches (almost certainly) the
actual probability. Also, when N is sufficiently
large, the sample scores are quite close to the
normal distribution, as illustrated in Figure 1.

The Dbootstrapping algorithm can be
summarized as follows:
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1. Given a sample X= (X, Xp, ..., Xj) from a
population P, generate N random samples
(noted X*) of the same size by drawing n
values from the sample, with replacement
(each value having probability 1/N).

2. The resulting population P*, noted X" = (X;",
..., Xy), constitutes the N bootstrapped
samples.

3. If the original estimator of a given population
parameter was 6(X), with the bootstrapped
samples we can calculate the same estimator
as O(X).

An important parameter for bootstrapping is N,
the number of bootstrapped samples, i.e. the
number of times the process is repeated. This
number should be large enough to build a
representative number of samples. It appears that,
for instance, N =200 leads to slightly biased
estimations (Efron and Gong, 1983; Efron and
Tibshirani, 1993; Koehn, 2004; Zhang et al., 2004,
so N ~ 1,000 is preferred, for example N = 1,000 )
or even N =10,000 (Bisani and Ney, 2004). Based
on these examples, we decided to use N=1,500
bootstrapped samples.

,f-‘"“—“'x_\\_
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Figure 1. Example of histogram for the WER

scores obtained with 1,500 bootstrapped samples

(CESTA scores, first run, system S2)

3.2 Application to MT Evaluation Scores

In the MT field, bootstrapping has been mainly
used to estimate confidence intervals for automatic
metrics and to compute the statistical significance
of comparative performance of different MT
systems, e.g. using the BLEU (Koehn, 2004;
Kumar and Byrne, 2004; Zhang et al., 2004) or
WER metric (Bisani and Ney, 2004). Here,
bootstrapping will be used to compute the
correlation between metrics for MT. These

correlations will be studied for each system, i.e.
they are calculated on a per system basis as
opposed to the common cross-system
correlation.

Since correlation concerns two sets of scores,
we need to apply the metrics simultaneously to
the same bootstrapped samples to keep
consistency in the scores. Put in simpler words,
we apply two (or more) different metrics to the
same random sample per iteration of the
bootstrapping process. A random sample is a set
of segments randomly selected from the corpus
and of the same size of the corpus used in the
evaluation.

Described in pseudo code, the routine
computing correlation is particularly simple: M
is the number of segments to be considered, N is
the numbers of iterations, sanpl e[ nj is the m-th
element of the random sample and sanpl e* is
the complete bootstrapped sample:

for(n=0; n<N, n++){
for(m=0; MM m++) {
sanpl e[mM = sel ect RandSeg();

scoresAl n] =cal cMetri cA(sanpl e*);
scoresB[ n] =cal cMetri cB(sanpl e*);

cal cCorrel ati on(scoresA, scoresB);

4 Evaluation Resources: Data, Systems
and Metrics

For the experiments presented here, we used the
resources of the EN->FR translation task in the
CESTA MT evaluation campaign (Hamon et al.,
2006). In all cases, the results of the
participating systems are anonymized, therefore
the systems will simply be referred to by the
codes S1 to S5 in no particular order.

One of the goals of the first run was to
validate the use of automatic evaluation metrics
with French as a target language, by comparing
the results of well-known automatic metrics with
fluency and adequacy scores assigned by human
judges. The test data for the first run consisted
of 15 documents from the Official Journal of the
European Communities (JOC, 1993) with a total
of 790 segments and an average of 25 words per
segment. The documents contain transcribed
questions and answers in a parliamentary
context, and since no particular domain was
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targeted when putting together the corpus, the
CESTA campaign considered this as general
domain data. Five systems participated in the
EN->FR first run, both commercial and research
ones.

For the second run, the goal was to improve the
evaluation protocols used in the first run and to
observe the impact of system adaptation to a
particular domain. Therefore, the medical domain
was chosen, using data collected from the Santé
Canada website, with a total of 288 segments and
an average of 22 words per segment. Almost the
same systems participated in the second run.

In addition to the automatic metrics used in the
CESTA campaign, we included in our experiment
precision and recall from the General Text
Matcher (Turian et al., 2003).

S Experimental Study of Correlation

Although we performed the study using all the
systems participating in the CESTA campaign, we
will only present here the results of two systems,
namely S2 and S5, chosen among the best. In
Section 5.1, we compute correlations between
metrics on two test sets of dissimilar size, in
Section 5.2 we study the correlations for segments
of very high and very low adequacy scores and,
finally, in Section 5.3 we present the results of the
correlations for a test set of a different domain.

5.1 Correlation Values and the Influence of
the Size of Test Data

In the first experiment, we compared correlation
between metrics, when calculated on a test set of 5
documents and on a larger set of 15 documents
from the general domain corpus. We hypothesize
that if a strong correlation exists between two
score sets, it should be stable, i.e. it should be
similar or even higher, when using a larger test set.

Tables 1 to 4 show the Pearson R coefficients
for all the metrics applied in this study, separately
for systems S5 (Tables 1 and 2) and S2 (Tables 3
and 4). The correlation figures were computed on
5 documents in Tables 1 and 3, and respectively on
15 documents in Tables 2 and 4. Negative values
generally occur when the metrics vary in the
opposite direction, e.g. higher scores of the first
one correspond (correctly) to lower scores of the
second one.

As we expected, there is a relatively high
correlation between metrics of the same type
(except for adequacy and fluency for S5)
regardless of the size of the test data set: for
instance, the following correlations between
metrics appear to be quite high: WER vs. PER >
0.81, BLEU vs. NIST > 0.72, PREC vs. REC >
0.76. However, the figures show also that
automatic metrics correlate better with other
automatic metrics than with adequacy or
fluency; for both systems, the NIST metric
presents the lowest coefficients.
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Figure 2. Scatter plot of WER vs. BLEU
bootstrapped scores using 5 documents
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Figure 3. Scatter plot of adequacy vs. fluency
bootstrapped scores using 5 documents

Regarding the change in the size of the test
data, the correlations (excluding adequacy vs.
fluency) for S2 systematically increase when
using 15 documents with respect to 5. However,
this is less clear for S5: the correlation of NIST
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with all other metrics increases, BLEU vs.
WER/PER remains stable, but the correlations
between automatic metrics and the human ones
decrease, quite considerably in some cases, e.g.
BLEU vs. fluency. This is probably due to the
particular documents selected, since scores vary
more on small test sets, as shown in (Estrella et al.,
2007).

A graphical representation of the scores
appears in Figures 2 to 5, which plot two scores
for each of the 1,500 bootstrapped samples, for
systems S2 (light/green) and S5 (dark/blue).
Figure 2 illustrates two metrics that are highly
correlated, BLEU and WER: the clouds of dots are
organized along a line, which has negative slope as

lower WER corresponds to higher BLEU (and to
better performance, in principle). The correlation
coefficients for the samples in Figure 2 are
respectively -0.83 and -0.89.

A similar, albeit lower, correlation appears in
Figure 3 for the two human metrics, adequacy
vs. fluency. Again, the clouds of dots are
organized along lines, this time with positive
slopes. The correlation coefficients are
respectively 0.84 and 0.58 for S2 and S5, the
lower value for S5 being quite visibly reflected
in the more scattered pattern of blue dots (less
linear and more rounded shape).

S5 WER | PER | BLEU | NIST | ADE | FLU | PREC | REC
WER 1 093 | -0.90 | -0.69 | -0.42 | -0.43 | -0.72 | -0.56
PER 1 -0.89 | -0.76 | -0.40 | -0.41 | -0.84 | -0.68
BLEU 1 0.83 | 0.39 | 044 | 0.82 | 0.71
NIST 1 0.26 | 0.27 | 0.87 | 0.68
ADE 1 0.58 | 034 | 0.39
FLU 1 0.34 | 037
PREC 1 0.79
REC 1

Table 1. Correlation matrix for S5 using 5 documents

S5 WER | PER | BLEU | NIST | ADE | FLU | PREC | REC

WER 1 092 | -090 | -0.75 | -0.28 | -0.32 | -0.74 | -0.55
PER 1 -0.89 | -0.79 | -0.25 | -0.29 | -0.84 | -0.65
BLEU 1 0.86 | 0.25 | 0.29 | 0.83 0.66
NIST 1 0.16 | 0.16 | 0.86 | 0.64
ADE 1 0.63 | 0.25 | 0.30
FLU 1 0.24 | 0.26
PREC 1 0.78
REC 1
Table 2. Correlation matrix for S5 using 15 documents
S2 WER | PER | BLEU | NIST | ADE | FLU | PREC | REC
WER 1 0.81 | -0.83 | -0.52 | -0.48 | -0.46 | -0.61 | -0.41
PER 1 -0.73 | -0.60 | -0.43 | -0.42 | -0.75 | -0.54
BLEU 1 0.72 | 043 | 0.41 | 0.74 | 0.61
NIST 1 0.13 | 0.13 | 0.84 | 0.58
ADE 1 0.84 | 027 | 032
FLU 1 0.26 | 0.30
PREC 1 0.76
REC 1

Table 3. Correlation matrix for S2 using 5 documents
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S2 WER | PER | BLEU | NIST | ADE | FLU | PREC | REC
WER 1 0.83 | -0.85 | -0.59 | -0.49 | -0.49 | -0.64 | -0.50
PER 1 -0.81 | -0.69 | -0.44 | -0.43 | -0.79 | -0.61
BLEU 1 079 | 043 | 043 | 0.78 | 0.65
NIST 023 | 020 | 0.86 | 0.61
ADE 1 0.79 | 030 | 0.35
FLU 1 0.28 | 0.33
PREC 1 0.77
REC 1

Table 4. Correlation matrix for S2 using 15 documents

5.2 Correlation for High and Low Quality
Translations

The findings from the previous section can be due
to many factors; for example, using a corpus
containing segments of diverse translation
difficulty or using the average of two judgments
for adequacy or fluency might give Iless
informative results, since the final scores are
calculated on the entire test set. Or it might be, as
pointed out by Coughlin (2003), that humans could
be influenced by the reference translation they see
during the evaluation and therefore evaluate
systems depending more on the algorithm they use
(statistical or rule-based) than on their intrinsic
quality.

To further investigate the correlations described
in Sections 5.1, we carried out another experiment,
focusing on the highest and lowest scores assigned
by adequacy judgments. The goal is to explore the
agreement among some metrics when the
adequacy scores are very high and very low. Ana
priori hypothesis is that low quality translations
might be more difficult to evaluate (leading to a
larger variation of scores) than high quality
translations. According to this hypothesis, the
correlation between metrics applied on almost
perfect segments should be stronger than that of
metrics applied on low quality segments. We
consider “quality” in terms of the score provided
by human judges of adequacy, fluency or the
average of both; for the purpose of this experiment
we take adequacy as the measure of quality, but
results using fluency or the average do not change
dramatically.

Each segment of the CESTA data was
evaluated for adequacy and for fluency by two
judges, and the final scores for each metric are the
average between the two assessments. These

scores were then normalized and converted from
a 5-point scale to a value between 0 and 1. To
find only the segments with high adequacy
score, we extracted, from the 15 documents of
the first run, those segments with an average
adequacy score above 0.825. For the low quality
test set, we extracted the segments with an
average adequacy below 0.125. We tried to keep
the size constant, so we had around 130
segments in both new test sets, given that S5 had
the least number of segments below 0.125.
These empirical cut-off limits should also
account for high inter-judge agreement, since a
high/low score can only be reached if both
assessors assigned similar high/low scores for
the same segment.

To simplify the experiment, we only applied
the WER and PER metrics to the corresponding
outputs of S2 and S5. Tables 5 and 6 show the
resulting R coefficients, the lower part of the
tables corresponding to S2 and the upper part to
S5 (for compactness reasons).

2 S| WER | PER | FLU | ADE
WER 0.93 |-0.17 | -0.25
PER 0.71 -0.13 | -0.28
FLU -0.14 | -0.11 -0.13
ADE -0.09 | -0.14 | 0.16

Table 5. Correlations on the low-adequacy
data set: S2 lower-left half, S5 upper-right

<2 5 | WER | PER | FLU | ADE
WER 0.94 |-0.17]-0.32
PER 0.93 -0.27 | -0.10
FLU -0.43 | -0.39 0.42
ADE -0.36 | -0.30 | 0.41

Table 6. Correlation on the high-adequacy
data set: S2 lower-left half, S5 upper-right
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0.125 (90 segments vs. 57 for S5) but has also
more segments scoring 1 (121 segments vs. 93
for S5). This explains the scatter plot in Figure

The correlations clearly increase in absolute 5 but contradicts the expected results, since S5
value from low-adequacy to high-adequacy was ranked among the best in the CESTA
segments, as hypothesized, but are still much campaign. In overall scores this situation could
weaker than expected for high-adequacy segments. be changed because the scores are averaged out.
Two special cases with extremely low correlation In practice, we believe that the difference
values are marked in italics, namely fluency vs.  between coefficients of -0.10 and -0.13 does not
adequacy in Table 5 and PER vs. adequacy in  have a big impact, since one system provides
Table 6, respectively. In the first case, we clearly better translations than the other.
manually inspected the results of the bootstrapping
procedure, and observed that adequacy scores 5.3 Correlations on a Different Domain

were much lower than the fluency scores. Figures

4 and 5 provide a graphical representation of these The last experiment consists of comparing
two cases. the correlations obtained for test sets in a

o3 different domain than the previous one. For the
second run of the CESTA campaign, the
participants had the opportunity to train or adapt
their systems to a particular domain (medical)
using a special corpus for that purpose. Given
that systems were trained for that specific
=021 1 Zgggxgg}mxz: domain, performance should have increased, as
gij | well as correlations between some metrics.
Using the test corpus created for the second run

0.33 -
0.31 -
0.29 -
0.27 -

20.25 1

g
£0.23 1

0.15 7
0.13 of CESTA (288 segments), the results are
011 comparable, in terms of size, to those obtained
" Adequacy " in Section 5.1 for 5 documents (270 segments).
Figure 4. Adequacy vs. flueney using only Results for S2 an S5 are reported respectively
segments with low adequacy scores in Tables 7 and 8. For the human metrics,
0.99 | + S5 PER vs. ADE - high scores ¢ S2 PER vs.ADE-highscores\i results are not directly comparable to those of

the previous sections due to a change in the
evaluation protocols from the first run of the
campaign to the next. Unfortunately, it appears
that correlation coefficients remain quite low,
despite the adaptation. In Table 7 we observe a
significant increase in correlation coefficients
between automatic metrics and adequacy for S2;
this difference between S5 and S2 might indicate
a failure of S5 to fully acquire the relevant
vocabulary for the new domain. Following the
091 hypothesis of the previous section and recalling
017 019 i 023 035 that S2 was ranked below S5 in the CESTA
campaign, it appears that assessment of low
quality segments leads to more variation of
scores, thus resulting in low correlation
coefficients.

0.97

a

quacy
N
b

Ade

=
N
P>~

Figure 5. Adequacy vs. PER using only segments
with high adequacy scores

For the PER vs. adequacy correlation, we found
out that S2 has more segments scoring less than
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S2 WER | PER | BLEU | NIST | ADE | FLU | PREC | REC
WER 1 098 | -0.87 | -0.72 | -0.72 | -0.27 | -0.69 | -0.77
PER 1 -0.81 | -0.69 | -0.70 | -0.26 | -0.67 | -0.83

BLEU 1 0.84 | 0.68 | 0.36 | 0.77 | 0.47
NIST 1 0.51 | 024 | 0.68 | 0.40
ADE 1 0.27 | 0.50 | 0.52
FLU 1 0.27 | 0.15
PREC 1 0.35
REC 1

Table 7. Correlation matrix for S2 using corpus from health domain

S5 WER | PER | BLEU | NIST | ADE | FLU | PREC | REC
WER 1 0.87 | -0.82 | -0.67 | -0.20 | -0.28 | -0.66 | -0.29
PER 1 -0.80 | -0.75 | -0.18 | -0.20 | -0.78 | -0.44
BLEU 1 0.80 | 0.17 | 0.21 | 0.74 | 0.48
NIST 1 021 | 021 | 0.85 | 0.63
ADE 1 034 | 0.18 | 0.13
FLU 1 0.15 | 0.12
PREC 1 0.64
REC 1

Table 8. Correlation matrix for S5 using corpus from health domain

6 Conclusion and Future Work

The method presented in this paper allows the
computation of correlation between two metrics on
a single system, using bootstrapping to create a
large set of samples of variable qualities.

Observations clearly indicate that some related
automatic metrics, such as BLEU and NIST, or
BLEU and WER, are better correlated than
automatic vs. human metrics. However, even for
related metrics, the correlation is not necessarily
very high.

It is quite surprising that, using this method,
correlations between human and automatic metrics
are much lower than figures obtained by other
methods and published as arguments for the
reliability of automatic metrics.

At this stage, it is not yet clear, which is the
main factor that explains such a low correlation,
and whether these figures do indicate a significant
lack of correlation on the CESTA scores that we
examined. For instance, these figures could be
related to low inter-rater agreement between the
two judges of adequacy and fluency, which is not
compensated by the use of the average values or to
the fact that these automatic metrics are not

suitable for the evaluation of morphologically
richer languages, such as French.

Future work in this direction will examine
how human scores used in our experiments are
distributed among systems. Of course, adding
new human judgments of the same MT output
could help to increase our confidence in
adequacy and fluency, but this operation is quite
costly. We also plan to repeat some of the
experiments with other automatic metrics, which
claim to improve some of the metrics used here
and to improve correlation with human scores.
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Abstract

This paper proposes an EBMT method
based on finite automata state transfer
generation. In this method, first some
links from the fragments in the input
sentence to the fragments in the target
sentence of the selected example are
built. Then some predefined states are
assigned to these links according to their
link types. Finally, taking these links
and their corresponding states as inputs,
a finite automaton is constructed and the
translation result is generated in a finite
automata state transfer manner. This
method can be easily replicated, and
does not need too much complicated
parsers either. Based on this method, we
built a Chinese-Japanese bidirectional
EBMT system to evaluate the proposed
method, and experimental results indi-
cate that the proposed method is effec-
tive.

1 Introduction

Example-based machine translation (EBMT) is a
method of translation by the principle of analogy.
It generally consists of three modules: a match-
ing module, an alignment module and a recom-
bination module. Given an input sentence, an
EBMT system first matches the input sentence
against the example set to select some relevant
examples whose source sentence parts are similar
to the given input sentence; once the relevant
examples have been selected, the alignment mod-
ule will select the corresponding fragments in the
target sentences of the selected examples for
every part of the input sentence; once the appro-

priate fragments have been selected, the recom-
bination module will combine them to form a
legal target text (Somers, 1999).

Generally, we can regard the last two modules
as a translation generation module. For the gen-
eration, some researchers (Aramaki and Kuroha-
shi, 2003; Aramaki and Kurohashi, 2004) used a
semantic-based generation approach that obtains
an appropriate translation fragment for each part
of the input sentence. The final translation is
generated by recombining the translation frag-
ments in some order. This approach does not take
into account the fluency between the translation
fragments. The statistical approach (Akiba et al.,
2002; Watanabe and Sumita, 2003; Imamura et
al., 2004) selects translation fragments with a
statistical model. The statistical model can im-
prove the fluency between the translation frag-
ments by using n-gram co-occurrence statistics.
However, the statistical model does not take into
account the semantic relation between the exam-
ple and the input sentence. Tree parsing based
generation approach (Zhanyi et al., 2005) solves
the above two problems by using a method based
on tree string correspondence (TSC) and statisti-
cal generation. During the translation process of
this method, the input sentence is first parsed into
a tree. Then the TSC forest is searched to find
out if it is best matched with the parse tree. Fi-
nally, it uses a statistical generation model to
generate translation by combining the target lan-
guage strings in the TSCs. This method depends
heavily on the tree parsing technology, if the
parser does not work well, it is impossible to
generate a proper translation result.

This paper proposes a generation method for
EBMT based on finite automata state transfer. It
uses the target sentence of the selected example
to generate the translation result in a finite auto-
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mata state transfer manner, and outputs the modi-
fied target sentence as final translation result.

The rest of this paper is organized as follows.
Section 2 gives a brief description of our Chi-
nese-Japanese bidirectional EBMT system. Sec-
tion 3 describes our generation method in detail.
Section 4 presents our experiments. At last, we
conclude this paper and present future work in
section 5.

2 System Structure of Our Chinese-
Japanese Bidirectional EBMT System

Our Chinese-Japanese bidirectional EBMT sys-
tem’s structure is shown in figure 1. A word-
based matching method is used to select one ex-
ample that is most similar to the input sentence.
Here two sentences’ similarity is calculated as
shown in formula 1 (LV Xue-giang and Ren
Feiliang, 2003).

2x SameWord (s, s,)

Sim(sl’SZ) = Len(sl)+ Len(sz)

(1)

In this formula, Sim(s,,s,) means the simi-
larity of sentence s, and sentence s, |,
SameWord(s;,s,) means the number of common
words in sentence s, and sentence s, , and
Len(s;) is the number of total words in sen-
tences; .

Indexed
corpus

Dictionary

Language
model

Figure 1. Structure of CJ EBMT System

3 Generation Based on Finite Automata
State Transfer

We generate the input sentence’s translation by
modifying the target sentence of the selected ex-
ample. This process consists of three steps.

(1) Build links from the fragments in the
input sentence to the fragments in the
target sentence of the selected example.

(2)  Assign states to each of these links.

(3) Construct a finite automaton and gener-
ate the translation result in a automaton
state transfer manner.

3.1 Building Links

A link from a fragment in one sentence S, to a
fragment in another sentence S, is defined as a 3-
tuple (Sf;,Tf;,t) , where Sf; (a fragment in S, ),
Tf, (a fragment inS,), and t are called source

fragment, target fragment, and link type respec-
tively. In this 3-tuple, if the languages of
S,and S, are the same, the target fragment is the

most similar part inS, to the source fragment; if
the languages of S,and S, are different, the target
fragment is the most useful part in S, to generate

the source fragment’s translation. Either the
source fragment or the target fragment can be
null, but they can’t be null at the same time. Link
type indicates a possible operation converting the
source fragment to the target fragment. Follow-
ing edit distance’s style (Wagner and Fischer,
1974), we define four link types: I, R, D, N,
which mean inserting, replacing, deleting and
outputting directly respectively.

Suppose S is an input sentence, (A, B) is the
selected example. The process of building links
from S’s fragments to B’s fragments consists of
two steps.

(1) Build links from S’s fragments to A’s
fragments using a revised edit distance
algorithm as shown in figure 2. Its result
is denoted as LinkSet(S 2A).

(2) Build links from S’s fragments to B’s
fragments (denoted as LinkSet(S-2B))
according to following rules. (a) For a
link in LinkSet(S=2A), if neither its
source fragment nor its target fragment is
null, replace its target fragment with this
target fragment’s corresponding aligned
fragment in B, and add this new link to
LinkSet(S->B). (b) For a link in Link-
Set(S2A) whose target fragment is null,
add it to LinkSet(S->B) directly. (c) For
those fragments in B that have not been
linked, build links for each of them by
assigning a null source fragment and a D
link type to them respectively, and add
these links to LinkSet(S -B). (d) Reorder
the items of LinkSet(S=>B) in their target
fragments’ order in sentence B.
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In the revised edit distance algorithm, it takes
fragments as comparison units, and its two input
sentences S and A are segmented into fragments
by two segmentation tools’ before they are input-
ted. This is a little different from Brown (1996)
who took a full segmentation strategy for the in-
put sentence.
m=length(S1), n=length(S2)

d[0][0] =0; tags[0][0] = O;
for i=1tom

d[i][0]=q+d[i-1][0]; tags[i][0]="D’
for j=1ton

d[0][j]=r+d[O][j-11; tags[O][j]="1"
for i=1tom

forj=1ton

p = computeCost(S1[i-1],S2[j-1]);

a=d[i-1][-1] + p;

b=d[i-1][j] + ¢;

c=d[i][j-1] +r;

d[il[j] = min(a,b,c);

if(min==a and p==0)

tags[i][j] = ‘N’;
else if (min==a)

tags[i]lj] = ‘R”;
else if (min==h)

tags[i][j] = ‘D’;
else if (min==c)

tags[i]ij] = “I";

return tags

Figure 2. Revised Edit Distance Algorithm

In figure 2, computeCost is a function to com-
pute two fragments’ linking cost based on their
lexical forms and their head words’ POSs. Its
possible value belongs to the range [0, 1] and is
manually assigned according to human’s experi-
ences. If two fragments’ lexical forms are the
same and their head words’ POSs are the same
too, this cost is zero; if two fragments’ lexical
forms are the same but their head words’ POSs
are different, this cost is 0.2; otherwise, this
value is assigned by human’s experiences ac-
cording to the two fragments’ head words’ POSs
as shown in table 1.

Table 1. Linking Cost for Two Fragments

PosPair(c;,c;) W,
(noun, noun) 0.5
(noun, auxiliary) 0.8

(noun, adjective) 0.85

! http://chasen.aist-nara.ac.jp/hiki/ChaSen/ for Japanese
http://www.nlplab.com/chinese/source.htm for Chinese

In figure 2, g, r are constants. It is required
that g+r>p and q,r € (0,1], here we set
g=r =1. The returned tags is LinkSet(S 2A).

After step 1, we can build links from sentence
S to sentence B according to the rules described
in step 2, and an example of this process is
shown in figure 3.

Suppose S is “fi1 1l % th ] ZZ 1 (He loves hig
wife very much)”. The selected example (A,B) ig
“(fth, 22 At ) 453 45 (He loves his mother), 15 & . i @
% % L T £ F (He loves his mother))”.

Firstly, LinkSet(S2A) is built using the algo-
rithm shown in figure 2. It is: (fth(he),ft2,N), (1K
(very much),null,l), (Z (loves), % ,N), (4t [ (his), At
11, N), (FE¥(wife), i 15 ( mother),R).

Secondly, LinkSet(S->B) is built as follows.
We know that in (A,B), “ftli”aligns to “4i%(he)”,
“3%Z" aligns to “F L T\ & 7 (loves)” , “fthIK)”
aligns to “f @ (his)”, and “U 44 aligns to “h}
(mother)”, according to rule (a), we replace these
target fragments in LinkSet(S ->A) with their cor-
responding aligned fragments in B and add them
to LinkSet(S 2B), and LinkSet(S =B) is changed
to: (fi(he), #(he),N), (FZ(loves), =L T\ % ¥
(loves),N), ([P (his), {1 @ (his),N), (T (wife), B}
(mother),R). For the link ({K (very much),null,l),
according to rule (b), we add it to LinkSet(S 2B)
directly. Besides, there are some fragments in B
that haven’t been linked, according to rule (c),
we build links for each of them by assigning
them a null source fragment and a link type D,
and add these new links in LinkSet(S-B) , and
LinkSet(S-=B) is changed to: (fthi(he), 15 (he),N),
(5 (loves), = L T 1 £ F (loves),N), (fll1](nis), 1
D (his), N), (ZET (wife), B (mother),R), (1R (very
much),null,l), (null, & (ha),D), (null,  (wo),D). At
last, according to rule (d), we reorder the items
in LinkSet(S -2B), and the final LinkSet(S2B) is:
(1t (he), 1% (he),N), (null, & (ha),D), (1K (very
much) ,null,1), (fib ¥ (his), % @ (his), N), (F£F
(wife), BF(mother),R), (null, # (wo),D), (% (loves), &
L T % 7 (loves),N).

Figure 3. An Example of Building Links

3.2 States Assignment
3.2.1

If a link’s type is not I, that is to say it is one of
the types {R, D, N}, the state assignment is easy.
If its link type is R, a state named S_R is assigned;

States for Non-1 Type’s Links
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if its link type is D, a state named S_D is as-
signed; if its link type is N, a state named S_N is
assigned.

3.2.2

For an I-type’s link, it indicates a possible gen-
eration operation is inserting. Different from
other link types, there are two challenges for it:
one is how to select a proper inserting position;
the other is how to make the whole sentence flu-
ent when finishing this inserting operation. In
response to these two problems, we use current |-
type link’s pre- and post- links’ link shapes to
define current I-type link’s state.

Suppose an I-type’s link in LinkSet(S =2B) is (i,
null,l), i+1 and i-1 are the post- and pre- frag-
ments of this link’s source fragment. m and n are
some fragments in sentence B. It is the same that
we use m+land n+1to denote the post- and
pre- fragments of mand n respectively.

According to the link shapes of the links that
take i+1 and i-1 as their source fragments, there
are twelve basic link shapes shown in figure 4
and three extended link shapes shown in figure 5.

States for I-Type’s Link

We map each of these link shapes to an I-type
link’s state. Thus there are twelve basic states
and three extended states for I-type’s links.

In figure 4 and figure 5, a dot rectangle de-
notes a true link in LinkSet(S-B), and a bold
rectangle denotes this link’s generation path
when taking into account LinkSet(S 2A).

A brief explanation to these states is as fol-
lows. For example, state 6 in figure 4 means S’s
fragment i-1 links to B’s fragment m and S’s
fragment i+1 links to nothing in B. The appear-
ance reason for this null target fragment is that in
sentence pair (S,A), fragment i+1 links to frag-

mentb; , but in sentence pair (A,B), b aligns to

null, thus i+1 links to null according to the sec-
ond step when building LinkSet(S->B). Due to
the same or similar reason, state 7, 8, 10,
12,13,14,15 also have null target fragments in
their links. We distinguish these link shapes be-
cause they will be treated differently. State 9 in-
dicates that i is the first fragment in sentence S.
State 11 indicates that i is the last fragment in
sentence S.

s [ (1] [t ]
A A

\ 4

B: m
1)
li-1] [ ] [i+1 |
A A
A 4 A 4
[m| [n(n>m+1) |
4)

s: i1 |
A:
B: [null]

[ [ 7]
A PA :
P ':::’ A:
v H
[ m| null B
............. o ®
=i ol cal i RlE
(,‘:,IE S PA i
b ] ] : ' '== A:
i, o
- | B:

@)

(11)

Figure 4. Basic States for I-type’s Link
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Figure 5. Extended States for I-type’s Link

In practice, we will meet the extended states
in figure 5, but they can be converted into basic
states in some way. These conversion rules are
as follows. For state 13, move rightward until
find a non-l type’s link, if this link’s target
fragment is null, convert it to state 6; otherwise,
convert it to a state among state 1 to state 5 ac-
cording to the link shapes of fragment i-1’s link
and the new found link; if can’t find a non-I
type’s link in current link’s right side, convert it
to state 11. For state 14, move rightward until
find a non-l type’s link, if this link’s target
fragment is null, convert it to state 8, otherwise,
convert it to state 7; if can’t find a non-I type’s
link in current link’s right side, convert it to
state 12. For state 15, move rightward until find
a non-I type’s link, if this link’s target fragment
is null, convert it to state 10, otherwise, convert
it to state 9; if can’t find a non-1 type’s link in
current link’s right side, move leftward until
find a non-I type’s link (this link will be found
always) and convert it to state 11.

For all these conversions, the final new state’s
I-type link takes all the passed fragments in S
during rightward movement as its new source
fragment.

By conversion, every I-type’s link can be
mapped to a basic state in figure 4, and we can
consider basic states only in the following de-
scription.

3.3 Translation Generation

In this process, an automaton is constructed to
generate the input sentence’s translation. For
different state, there is different generation op-
eration corresponds to it.

3.3.1 Generation Operations for Non-I Type
Links’ States

If a link’s type is not I, we take an easy genera-
tion strategy according to its state. If a link’s
state is S_R, replace this link’s target fragment
with its source fragment’s translation, and de-
note this operation as O(R); if a link’s state is
S_D, delete this link’s target fragment, and de-
notes this operation as O(D); if a link’s state is
S_N, remain this link’s target fragment un-
changed, and denote this operation as O(N).
Here a link’s source fragment’s translation is
generated by looking up a dictionary.

3.3.2 Generation Operations for
Links’ States

I-Type

If a link’s type is | (suppose its source fragment
is i), we take its source fragment’s pre- and post-
fragments into account and judge: whether the
fragment combinations (i-1,i,i+1), (i-1,i) and
(i,i+1) are chunks. If they are chunks, look up
their corresponding translations in dictionary,
otherwise, look up i’s translation in dictionary
(we assume its translation can be found always).
Here a chunk is defined as a translation unit and
a simple dictionary-based method is used for
chunk recognition: as long as a fragment can be
found in dictionary, it is regarded as a chunk.
According to current I-type link’s state and the
recognized chunk information, we choose one of
these chunks as current I-type link’s new source
fragment for later processing, and define 10 pos-
sible generation operations as follows.

o 0O(0): Delete the links that take B’s frag-
ments among m+1 to n as their target
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fragments. And for the link that takes B’s
fragment m as target fragment, replace m
with the translation of current I-type
link’s new source fragment.

e O(1): For the link that takes B’s frag-
ment m as target fragment, replace m with
the translation of current I-type link’s
new source fragment.

e 0O(2): For the link that takes B’s frag-
ment n as target fragment, replace n with
the translation of current I-type link’s
new source fragment.

e 0O(3): For the link that takes B’s frag-
ment m as target fragment, add the trans-
lation of current I-type link’s new source
fragment to the end of m.

e 0O(4): For the link that takes B’s frag-
ment n as target fragment, add the transla-
tion of current I-type link’s new source
fragment to the end of n.

e O(5): For the link that takes B’s frag-
ment m as target fragment, replace m with
the translation of current I-type link’s
new source fragment. And delete the link
that takes B’s fragment n as target frag-
ment.

e O(6): For the link that takes B’s frag-
ment n as target fragment, replace n with
the translation of current I-type link’s
new source fragment. And delete the link
that takes B’s fragment m as target frag-
ment.

e O(7): For the link that takes B’s frag-
ment m as target fragment, add the trans-
lation of current I-type link’s new source
fragment before m.

e 0O(8): For the link that takes B’s frag-
ment n as target fragment, add the transla-
tion of current I-type link’s new source
fragment before n.

e 0O(9): Do not modify any link’s target
fragment.

Here m and n are sentence B’s fragments, and
they also correspond to the target fragments of
the links shown in figure 4.

During the generation, which operation
should be chosen depends on current I-type

link’s state and the result of chunk recognition.
The choice strategy will be described subse-
quently.

3.3.3 Finite Automaton State Transfer Based
Generation

Based on LinkSet(S -B) and the assigned states,
we construct an automaton that has a similar
form as shown in figure 6. This automaton takes
LinkSet(S-2B) and the assigned states as input,
executes generation operations according to
these states and outputs LinkSet(S->B)’s final
modified target fragment sequence as the input
sentence’s translation result.

Figure 6. Finite Automation State Transfer
Based Generation

In figure 6, B is a start state, E is an end state,
{I, R, D, N} are link types, {O(N), O(D), O(R)}
in parallelogram are the operations defined in
section 3.2.1; and # is a fictitious symbol that
indicates the end of the automaton’s input. {S_R,
S_D, S_N} are states correspond to non-1 type’s
links. And S_I" is a state set that corresponds to
I-type’s links. When the state transfers to S_I,
the corresponding operations are shown in fig-
ure 6. In this figure, numbers from 1 to 12 in
ellipse circles correspond to the states defined in
figure 4. O(i) in parallelogram corresponds to
the operations defined in section 3.3.2; O’ in the
operation of state 3 means the automaton gener-
ates the fragment combination (i-1,i,i+1)’s
translation by simply joining their single frag-
ment’s translations together. d, means the se-
mantic distance from fragment i to fragment i-1,
and d, means the semantic distance from frag-

ment i to fragment i+1, and they are computed
as shown in formula 2.

dist(f, f,)= > > w (PosPair(c;,c;)) (2)

ceficjef,
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In formula 2, f and f, are fragments, c
and c; are words in them, w, is a weight func-

tion whose value is determined by the POSs of
words ¢; and c;, and its value assignment strat-

egy can be referred to table 1. When current I-
type link’s pre- and post- links’ target fragments
span several fragments, this formula is used to
identify a proper inserting position for the trans-
lation of current I-type link’s source fragment.
The larger this distance, the less possibility its
two fragments’ translations are close.

Figure 7 shows the operation strategy for dif-
ferent states of the I-type’s links. Here we take
state 1 as example and give some explanations
for these operations in figure 6. For state 1, if
the fragment combination (i-1,i,i+1) is a chunk,
from the link shape of state 1 in figure 4 we can
see, there is a strong hint that the original target
fragments of the two links that take fragments i-
1 and i+1 as their source fragments respectively
should be replaced by this new chunk’s transla-
tion, and this just corresponds to the first opera-
tion defined in section 3.3.2. Otherwise, if (i-1,i)
is a chunk, there is a strong hint that the original
target fragment of the link that takes i-1 as its
source fragment should be replaced by this new
chunk’s translation; and other cases are similar
to these explanations.

The main idea for the operation strategies in
figure 7 is trying to enlarge the source fragment
for an I-type’s link, and using its contextual
links” link shapes to find a proper inserting posi-
tion for the translation of its new source frag-
ment.

To demonstrate this generation process, we
continue the example introduced in section 3.1.

After building links described in section 3.1
LinkSet(S=2B) is: (4 (he), 1 (he),N), (null, &
(ha),D), (1R (very much),null,l), (ft& 7] (his), 1 @
(his),N), (Z=F (wife), B} (mother), R), (null, % (wo),D)
(% (loves), B L T > £ ¥ (loves),N).

Its corresponding state sequence is: S_N, S D,
S_|_4(the forth state in figure 4),S N, S R, S D,
S N.

During the process of generation, the con-
structed automaton takes LinkSet(S 2B) and the
corresponding state sequence for the links in
LinkSet(S->B) as inputs, and analyzes these in-
puts one by one. This process is shown in figure
8 which give an example of the translation gen-
eration process.

1 (i-1,i,i+1)is a chunK

(i-1,i)is a chunk
» O(1)
(i,i+1)is a chunk
»' O(2)
others
@ (i-1,i,i+1)is a chunk. @)
2 i »
(i-1,i)is a chunk
— » 0(2)
(i,i+1)is a chunk
»/ O(1)
dl<=d2
»/ O(4)
d1>d2 >/ O(7)

,@ (i-1,i)is a chunk

(i,i+1)is a chunk

»
» L

(i,i+1)is a chunk

»/ O(2)
dl<=d2
»/ O(3
d1>d2 » OG)
—»/ O(8)
,@\ (i-Li)is a chunk “—— o)
(i,i+1)is a chunk L
»/ O(1
dl<=d2 - ™)
»/ O(4)
d1>d2
»/ O(7)
i-1,i,i+1)is a chunk
RaCR ) »/001) /|
(i-1,i)is a chunk
»/ O(1
dl<=d2 » OW)
»/ O(3)
d1>d2
»/ O(9)

i-1,i,i+1)is a chunk
*@( ) »/02) / |

»/ 0(2)
dl<=d2
»/ O(8)
d1>d2
»/ O(9)
@ —»/009) /|

+@

i,i+1)is a chunk
g ) (i) »/002) /|
others
» 0(8)

»/009) / |

11 ) (i-1,i)is a chunk R
O ——on )
» 0(3)

@

»/009) /|

Figure 7. State Transfer for I-Type’s Links
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For the link (ftti(he), 7% (he),N), its state is S_N.
According to figure 6, the automaton executes
operation O(N) and does not modify this link’s
target fragment.

For the link (null, & (ha),D), its state is S_D.
According to figure 6, the automaton executes
operation O(D) and deletes this link’s target
fragment.

For the link (1R (very muchy,null,l), its state is
S 1 4. If the fragment combination (i-1,i) “t
1 (he...very much)” is a chunk and the correspond-
ing translation is “f% & . & T & (he...very
much) ”, according to figure 6, the automaton
executes operation O(1). It first takes this recog-
nized chunk as current link’s new source frag-
ment. Then it selects the link whose target frag-
ment is “f% (he)”, and this link is (il (he), 1%
(he),N). Thirdly, it replaces the selected link’s|
target fragment with the translation of current I-
type link’s new source fragment. At last the se-
lected link is changed to (ftli(he), 1 &, & T &
(he...very much), N ).

For the link (fbf¥)(his), 25 @ BE(his),N), its state
is S_N. According to figure 6, the automaton
executes operation O(N) and does not modify
this link’s target fragment.

For the link (ZZ¥-(wife), B} (mother),R), its state]
is S_R. According to figure 6, the automaton
executes operation O(R) and replaces this link’s
target fragment with its source fragment’s trans-|
lation. Finally current link is changed to (1
(wife), 2 (wife),R).

For the link (null, Z (wo),D), its state is S_D.
According to figure 6, the automaton executes
operation O(D) and deletes this link’s target
fragment.

For the link (5% (loves), & L T \* £ ¥ (loves),N),
its state is S_N. According to figure 6, the
automaton executes operation O(N) and does not
modify this link’s target fragment.

At last, the automaton ends the state transfer|
process and outputs LinkSet(S-=B)’s modified
target fragment sequence “fif & . & T & fif ©
SEE L TV % ¥ (he loves his wife very much)” and
takes it as the input sentence’s translation.

Figure 8. An Example of Generation

4  Experiments

We developed a Chinese-Japanese bidirectional
EBMT system to evaluate the proposed method

in term of translation quality, and BLEU value
and NIST score are used for evaluation. The
evaluation tool is the NIST MT Evaluation Tool-
kit2.

4.1 System Resources

Bilingual Corpus We collect 10083 Chinese-
Japanese bilingual sentences from Internet in
Olympic domain as examples. The average
length of the Chinese sentences is 12.8 characters
while the average length of the Japanese sen-
tences is 25.6 characters. All the examples are
stored in their lexical form along with their
fragments alignment information. We used an in-
house tool for fragment alignment and revised
this result by some experienced experts.
Bilingual Dictionary A bilingual dictionary is
used to translate the input fragment and to judge
whether an input fragment is a chunk.

This bilingual dictionary contains not only the
general word items, but also some bilingual
chunks collected from our corpus by an in-house
rule-based chunk parser. All together there are
about 150,000 word items and about 71,000
chunk items in this bilingual dictionary.
Language Model During the process of R-type
and I-type links’ generations, if a fragment has
several translations, a language model is used for
its translation choice (Feiliang Ren and Tianshun
Yao, 2006). Its work principle is to make the
whole sentence fluent most after fragments trans-
lation choices. For example, if during the process
of translation generation, we need to insert a
fragment’s translation into the target part of the
selected translation example, and if there are
several different translations for this fragment in
dictionary, which translation should be chosen?
Our method is to choose the one that can make
the final sentence fluent most after choices. And
use language model to measure the fluency of a
sentence.

We collected an approximate 1,400,000
words’ Japanese monolingual corpus and a simi-
lar size’s Chinese monolingual corpus from
Internet, and trained a standard trigram Japanese
language model for Chinese-to-Japanese EBMT
system and a standard trigram Chinese language
model for Japanese-to-Chinese EBMT system
respectively.

Test Corpus We collect another 100 bilingual
sentences in Olympic domain from Internet as

2 ttp://www.nist.gov/speech/tests/mt/resources/scoring.htm
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test corpus. But it is required that for every sen-
tence S in test corpus, there must be at least one
example (A, B) that satisfies Sim(S,A)>0.4 .
This is because the characteristic of EBMT is
translated by analogy. If there weren’t any proper
examples for the input sentence, the advantage of
EBMT would vanish. When this happened, sys-
tem would have to perform translation in a dif-
ferent manner. This is not what we hope. This
threshold condition can guarantee that system
performs translation in an EBMT manner and
thus we can focus on the generation method pro-
posed.

4.2  Experimental Results

We take system’s matching module as a baseline
system. In fact it is a TM (translation memory)
system, and its performance is the lowest limit of
our translation system’s performance.

In the evaluation, we set N at 4 when comput-
ing BLEU value and NIST score. Experimental
results for Chinese-to-Japanese EBMT system
and Japanese-to-Chinese EBMT system are
shown in table 2 and table 3 respectively.

Table 2. Experimental Results for Chinese-to-
Japanese EBMT System

Method NIST BLEU
Baseline 4.8321 0.4913
Our System | 5.9729 0.7705

Table 3. Experimental Results for Japanese-to-
Chinese EBMT System

Method NIST BLEU
Baseline 41275 0.4076
Our System | 5.0976 0.5908

From table 2 and table 3, it can be seen that
our system achieves excellent translation per-
formances in both Chinese-to-Japanese transla-
tion system and Japanese-to-Chinese translation
system. These results are unexpected and en-
couraging. We think the following reasons lead
to these good results. First, we set a threshold in
matching module. This guarantees that even un-
der the worst condition, our system’s perform-
ance is still at a relative high level. Second, the
alignment results for the fragments of the exam-
ples stored in corpus are revised by experienced
experts. It makes the alignment precision be very
high. And this is very helpful when building
links before generation. Third, we generate the
translation by modifying the target sentence of
the selected example, this makes us use the ex-
isted target sentence’s structure information as

much as possible, and it is useful for generating
translation that conforms to the grammar and the
semantic rules well. Forth, the most important
point is that we view the generation as a process
of finite automata state transfer, search out the
most useful information for the input fragments
by building fragments’ links from the input sen-
tence to the target sentence of the selected exam-
ple, and take different generation strategies for
different kinds of states.

We also notice that the performance of Chi-
nese-to-Japanese translation system is better than
the performance of Japanese-to-Chinese transla-
tion system. This is because that generally a
Japanese sentence has a more complicated struc-
ture than a Chinese sentence. This will lead to
poorer result when building fragments’ links
from sentence S to sentence A, thus the frag-
ments’ links from S to B are worse accordingly.
So the final translation result will be worse be-
cause the proposed method is affected by the link
result heavily. More work should be done to im-
prove the algorithm that builds links from S’s
fragments to A’s fragments.

Besides, there are still some translation results
that are not as good as expected. For example, in
the Chinese-to-Japanese translation system, some
auxiliary particles were wrongly deleted, which
made several translation results were somewhat
odd when checked by a Japanese native speaker.
This is caused by the simple deleting strategy in
our generation process for those D-type’s links.
We think that operation strategy for these D-
type’s links needs further improvement.

5 Conclusions and Future Work

This paper proposes an EBMT method based on
finite automata state transfer generation. During
the translation process, first a bilingual sentence
pair is selected as example whose source sen-
tence is most similar to the input sentence; then
the target sentence of this example is used to
generate final translation result in a finite auto-
mata state transfer manner. During the generation
process, firstly we build links from the fragments
in the input sentence to the fragments in the tar-
get sentence of the selected example. Then we
assign states for each of these links. Finally, we
construct a finite automaton with these states and
generate a translation result in a finite automata
state transfer manner. Our method hasn’t any
special requirement for corpus’s domain. It can
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be easily replicated, and does not need some
complicated parsers either. As long as you have a
bilingual corpus and a fragment alignment tech-
nology (even it is a simple dictionary-based
method), you can replicate our work. Therefore,
we think it is a good baseline method for ma-
chine translation.

From the generation process and experimental
results we can see that there are some factors that
affect our translation system’s performance heav-
ily, such as the algorithm used to build links, the
similarity algorithm for matching module, the
fragment alignment technology, and the chunk
recognition method and the translation genera-
tion technology for the recognized chunks, and
so on. In future work, we will investigate im-
proving the performances of these factors.
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Abstract

To explore the potential applica-
tion of semantic roles in struc-
tural machine translation, we pro-
pose to study the automatic learning
of English-Chinese bilingual predi-
cate argument structure mapping.
We describe ARG_ALIGN, a new
model for learning bilingual seman-
tic frames that employs monolin-
gual Chinese and English seman-
tic parsers to learn bilingual seman-
tic role mappings with 72.45% F-
score, given an unannotated par-
allel corpus. We show that, con-
trary to a common preconception,
our ARG_ALIGN model is superior
to a semantic role projection model,
SYN_ALIGN, which reaches only a
46.63% F-score by assuming seman-
tic parallelism in bilingual sentences.
We present experimental data ex-
plaining that this is due to cross-
lingual mismatches between argu-
ment structures in English and Chi-
nese at 17.24% of the time. This
suggests that, in any potential ap-
plication to enhance machine trans-
lation with semantic structural map-
ping, it may be preferable to em-
ploy independent automatic seman-
tic parsers on source and target lan-
guages, rather than assuming se-
mantic role parallelism.

1 Introduction

As statistical language learning technologies
strain the limits of the relatively flat, sim-
plistic structures of first-generation models,
the need to incorporate representations that
capture meaningful semantic patterns has be-
come increasingly evident. Particularly for
cross-lingual applications, techniques for mul-
tilingual semantic parsing and the acquisi-
tion of cross-lingual semantic frames have nu-
merous potential applications. Error analysis
suggests that a structured bilexicon contain-
ing a large inventory of cross-lingual seman-
tic frame argument mappings—rather than
merely word or phrase translations—would
be invaluable toward attacking common types
of errors in statistical machine translation,
machine-aided translation, or cross-lingual in-
formation extraction or summarization mod-
els.

For example, inspection of recent con-
trastive error analysis data from a typical
phrase-based SMT system shows that around
20% of the incorrect translations produced
could have been avoided if the correct pred-
icate argument information had been used
(Och et al., 2003). Consider the following ex-
ample from the error analysis data:

input 3% [HEBUF A RER, A K3 EH R
TR LB 3B BT o 40 ) 2 ey
PRPARNI B ERIRI, LLEA] R 4
TR [l

system The United States Government re-
quested clarification of Israel’s intention
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in the occupied Golan today, on the
planned expansion of Jewish settlement,
Israel has not yet given a satisfactory re-
sponse.

reference The United States government
said today that Israel had not provided
a satisfactory answer to U.S. request for
clarification about the reported plans to
expand Jewish settlement in the occupied
Golan Heights.

This example exhibits a typical mistake
arising from the system’s lack of awareness of
the correct argument structure for the nomi-
nalized “intention” verb frame (as well as nu-
merous other complements). Such errors of
semantic role confusion are one of the most
common sources of errors in current statistical
systems that rely only on relatively flat rep-
resentational structures and n-gram language
models. Different languages realize semantic
roles using different surface forms, and the
language models and word reordering models
in SMT are not always sufficient to discrimi-
nate between alternative hypotheses that may
score equally well in fluency despite high vari-
ance in translation adequacy.

Bilingual frame semantics, if available,
would provide an additional source of trans-
lation disambiguation leverage required to at-
tack such problems. This necessitates the
cross-lingual acquisition of a large inventory
of bilingual semantic frames, which capture
the needed role correspondence information
in a manner independently of word reorder-
ing. Bilingual semantic verb frames specify
the conventional patterns of alignment of se-
mantic argument structures between a pair
of semantic frames (or valency frames, qualia
structures, etc.) for verbs in translation.

A challenge we faced is that (contrary to
what one might first assume) even with se-
mantic rather than syntactic arguments, the
acquisition model still needs to be capable
of dealing with the fact that predicate verb
translations in English and Chinese often do
not have the same semantic argument struc-
ture, due to cross-linguistic lexical and con-
ceptual differences and translation idiosyn-

crasies. That is, the ARG (say) in the Chi-
nese semantic verb frame may not align to
the ARG1 in the frame for the correspond-
ing English verb. This might seem surpris-
ing since, in principle, it would seem that
semantic role labels for translatable verbs
ought to be preserved more closely than
syntactic roles across languages, since the
agents, patients, and so forth seem more likely
to remain constant in translation indepen-
dent of verb alternations—whereas in con-
trast, surface syntactic labels (subject, object,
etc.) often do not survive translation, due
to language-specific verb alternations. How-
ever, we will describe experimental results in-
dicating that even semantic roles are not pre-
served across Chinese and English 17.24% of
the time.

Thus, our acquisition model cannot assume
that the argument labels (ARGO, ARG1, ...)
learned by our separately trained Chinese and
English semantic parsers will necessarily cor-
respond to each other cross-linguistically. To
address this we introduce a cosine similar-
ity model enabling our acquisition model to
build and extract the bilingual semantic verb
predicate-argument structure. We then com-
pare this model to a semantic role projec-
tion model that uses syntactic constituent
alignment, and which preserves semantic roles
cross-lingually.

This paper is organized as follows. We be-
gin by defining the bilingual semantic frame
mapping problem. In section 3, we describe
our findings from a manually aligned refer-
ence set of semantic structure mappings. Sec-
tion 4 presents our new approach to seman-
tic frame mapping, ARG_ALIGN, followed by
the experimental results in section 5. In sec-
tion 6, we then demonstrate experimentally
how ARG_ALIGN outperforms a more con-
ventional method based on semantic role pro-
jection, SYN_ALIGN.

2 Problem Definition

In recent years, researchers have shown that
statistical machine translation models can be
enhanced by incorporating structural infor-
mation (Wu and Chiang, 2007). The atten-
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tion, though, has thus far been largely focused
on chunk or syntactic structures. Researchers
only recently began seriously investigating
whether incorporating semantic models can
enhance statistical machine translation per-
formance (Carpuat and Wu, 2005a; Carpuat
and Wu, 2005b), and are only just begin-
ning to show that semantic word sense dis-
ambiguation techniques can indeed improve
accuracy (Carpuat et al., 2006; Carpuat and
Wu, 2007). However, it remains an intrigu-
ing open question as to how semantic struc-
tures—semantic role mappings in bilingual se-
mantic frames—can also be potentially lever-
aged to improve machine translation.

Thus, in order to overcome the immediate
obstacle to exploring this potential, we are
interested in learning the bilingual semantic
structure given a predicate verb pair in En-
glish and Chinese, as in Figure 1. The predi-
cate verb pair “organized /%%7}” have the op-
erators ARGO “African Environmental Cen-
tre/AEMIAEE L and the operands ARG
“Seminar on desertification /¥ EAY ] R 5}
0.

In the above example, the subject of
the English sentence is ARGI, the operand,
whereas the object is ARGO, the operator.
On the other hand, the subject-object order
is reversed in the Chinese sentence. The lo-
cation “Ivory Coast” after the predicate verb
and ARGI1, at the end of the English sentence,
whereas the Chinese translation is before the
predicate verb, after ARGO, in the Chinese
sentence. We are interested in learning and
acquiring bilingual semantic frame mapping
as illustrated in the above example, as an ad-
ditional knowledge source for structural ma-
chine translation.

3 Findings in the Oracle Semantic
Frame Mapping

To facilitate the development and evaluation
of bilingual semantic frame acquisition meth-
ods, it was necessary for us to create an anno-
tated gold standard reference corpus, contain-
ing parallel sentences whose semantic predi-
cates and arguments are not only labeled but
also mapped between Chinese and English.

Table 1: Reference Semantic Role Mappings

EN\CN | ARG0O ARGl ARG2 ARG3
ARGO 326 77 7 1
ARG1 21 540 48 0
ARG2 3 28 39 2
ARG3 0 1 1 1

We aligned the semantic verb frames cross-
lingually from a subset of the pre-release ver-
sion of the Parallel Proposition Bank II for
Chinese and English (Palmer et al., 2005).
The Parallel Proposition Bank II for Chinese
and English is derived from the Chinese Tree-
bank English Parallel Corpus. Both the Chi-
nese sentences and their English translations
have been annotated syntactically in the Tree-
bank format and semantically in the Prop-
Bank format.

We construct an oracle semantic role map-
ping based on manual semantic role align-
ment. The mapping matrix is shown in Table
1. Only the mapping between major core ar-
guments (from ARGO to ARG3 in the Propo-
sition bank) are of interest at this stage. This
is owing to the fact that, although the Chinese
Propbank contains over 40 argument types
and the English Propbank over 200, only core
arguments ARGO to ARG5 are responsible
for representing the main semantic concepts,
other argument types are served as adjunc-
tive components (referred to as ARGM) that
are used to provide additional information,
for instance, ARGM-TMP for temporals. Ac-
cording to our observation, the occurrences of
these core arguments diminish drastically af-
ter number 3.

As we can see from Table 1, around 82.74%
of the mappings are direct mapping from
ARG; in English to ARG; in Chinese. How-
ever, there remain a significant proportion of
mappings that do not agree with direct map-
ping. Specifically, around 8.95% of the role
mappings are from ARGy to ARG1, 6.94%
are from ARG to ARG, and 0.27% are from
ARG9 to ARG3. This type of cross-lingual
role mismatch, also known as cross mapping,
is also of particular interests since, if avail-
able, this knowledge source could be helpful

77



NP AUX VBN

[ARG1 Seminar on dgsggification] was [PRED organized] by [ARGQ African Environmental Centre] in Ivory Coast

e -

o e———

[ARGO 3EM  IREE d] & RMBER [PRED FAH] (ARG WL @B BRAE]
féi zhGu huan jing zhéng xin  zai Ké té oi wa Ju ban sha ma hua wen ti yan tdo hui
Africa environment  center in Ivory Coast hold desertification  issue seminar

| = I
NP P NR W NP
PP VP

VP

Figure 1: An example of bilingual semantic predicate argument mapping.

to MT systems.

One such cross-mapping example is shown
below, where the “[4rg1 world trade]” in En-
glish is mapped to “[argo T F/world %
Y /trade]” in Chinese.

English Moreover , the report estimated
that [arg1 world trade] [araym—moD
would] [7ArcET grow| [arG2—ExT by 9.4
%] [ArGm—Tap for 1997]

Chinese It4h , #i5 & it [Arem—TMP
199 74 [arco M A [rarcer
WK [arc1 HrZ U]

Gloss Moreover, report also estimate 1997
year world trade grow 9.4%

4 ARG_ALIGN: Learning
Bilingual Semantic Frames via
Chinese/English Shallow
Semantic Parsing

We propose to first use shallow semantic
parsers to annotate Chinese and English bilin-
gual sentences with their semantic role bound-
aries and labels. Next, we propose to align
these predicate-argument structures in the
bilingual sentences by an automatic mapping
approach.

Given all the candidate semantic roles
parsed from the automatic semantic parsers,
the automatic role mapping problem is cast
as follows:

n m
Z* = ergnzxijCij (1)
i=1 j=1
s.t.

Z;n:lxljzlvjzla , M
x>0

Z* is the final role mappings we learned. x;;
is one element of the mapping matrix where
argument ¢ in Chinese is mapped to argument
J in English, ¢;; is one element of the cost
matrix for aligning argument 7 in Chinese to j
in English, n is the total number of arguments
in a given source sentence and m is the total
number of arguments in the target sentence.

To solve this bilingual predicate-argument
role mapping problem, we propose an al-
gorithm, ARG_ALIGN, as shown in Algo-
rithm 1. In this algorithm, given S (source)
and T (target) bi-sentence with semantic role
annotation, we first match their predicate
verbs based on a bilingual lexicon. Then,
for each matched predicate verb pair S-PRED
(source predicate) and T-PRED (target pred-
icate), we extract their semantic arguments S-
ARGs (source arguments) and T-ARGSs (tar-
get arguments) and compute the cosine simi-
larity score between all source and target ar-
guments. We then extract the highest rank-
ing matching pair of source and target con-
stituents.
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Algorithm 1 ARG_ALIGN

1: for each bilingual sentence pair do

2:  for each source predicate verb S-PRED do

3: for each target predicate verb T-PRED do

4: if S-PRED and T-PRED are translatable to each other, based on bilingual lexicon
then

5: S-ARGs < ARGy, ..., ARG, given S-PRED

6: T-ARGs < ARGy, ..., ARGy, given T-PRED

7 for each ARG; in S-ARGs do

8: max(ARG;) =0

9: for each ARG, in T-ARGs do

10: align(ARGi, ARGJ)

11: if sim(ARG;, ARGj) > max(ARG;)&sim(ARG;, ARG}) > threshold then

12: max(ARG;) := sim(ARG;, ARG))

13: A]?Gj := argmax ARG,

14: where

15: sim(ARGi, ARG)) = tapeianch

4.1 Experimental Setup

Different sections of the Parallel Propbank
corpus are used for algorithm development
and evaluation. In order to determine the
similarity threshold by which we can decide
whether a pair of annotated bi-arguments
match to each other, we randomly selected
497 sentence pairs as the test set and another
set of 80 sentence pairs as the development
data set.

Owing to the unavoidable errors through
POS tagging, chunking or syntactic parsing,
among the bilingual sentences, some Chinese
and English sentences have no identifiable
predicate verb, and are eliminated from fur-
ther processing. Finally, 397 sentence pairs
with automatic semantic parsing results are
used in our predicate-argument mapping ex-
periment.

In our proposed method, Chinese/English
shallow semantic parsing is a prerequisite to
achieving the task of bilingual semantic frame
mapping. In recent years, there has been a
lot of research on shallow semantic labeling or
parsing both in English (Pradhan et al., 2004;
Pradhan et al., 2005) and Chinese (Sun and
Jurafsky, 2004; Xue and Palmer, 2005). In
our experiments, we use the ASSERT seman-
tic parser (Pradhan, 2005) to carry out the
automatic semantic parsing on the English

side and a similar SVM-based Chinese seman-
tic parsing system (Wu et al., 2006) on the
Chinese side. According to (Pradhan et al.,
2005), their English semantic parser achieved
89.40 F-score with gold syntactic parse in-
put, and 79.40 F-score with automatic syntac-
tic parse input. Meanwhile, our SVM-based
Chinese semantic parser yielded 89.89 F-score
with gold syntactic parse input and 69.12 F-
score with automatic syntactic parse input.
Both of these parsers are among the-state-of-
the-art shallow semantic systems in English
and Chinese.

4.2 Experimental Results

Semantic role mapping output of our system
is evaluated against the reference mappings
described in the previous section, and mea-
sured with Precision, Recall and F-score' . In
our evaluation strategy, a pair of arguments
are considered correctly aligned to each other
if the arguments are judged to be correct, and
the mapping is judged to be correct.

The semantic role mapping result from our
ARG_ALIGN algorithm is listed in Table 2
and the performance evaluation is listed in
Table 3. 594 predicate-argument structure
mappings are learned, with 219 unique Chi-

nese verbs and 192 unique English verbs.

2X Precision X Recall
Precision+ Recall

1PF-score=
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Table 2: Semantic Role Mappings from
ARG _ALIGN
EN\CN | ARG0O ARG1 ARG2 ARG3
ARGO 259 8 7 0
ARG1 40 486 25 2
ARG2 3 26 15 0
ARGS3 0 0 1 1

Table 3: Performance of Proposed Predicate-
Argument Mapping

# words | [1,20] <20,40> [40,00] All

Precision | 76.54 77.26 70.34  74.87
Recall 74.25 72.00 65.70  70.19
F-score 75.38 74.54 67.94 72.45

Many of these verbs are part of multiple
context-dependent semantic structures. Hu-
man translation errors in the bilingual cor-
pus, syntactic parsing and tagging errors ac-
count for some of the unmatched predicate-
argument structures. Despite this, we ob-
tained a fairly high F-score of 72.45% in bilin-
gual semantic structure mapping, as evalu-
ated against the mapping obtained from the
oracle reference set.

5 Discussion of Results

Some of the mapping errors are due to er-
rors in automatic syntactic and shallow se-
mantic parsing. As a reference, we also eval-
uated the ARG_ALIGN algorithm directly on
the Parallel Propbank data, by using the
predicate-argument labels from manual anno-
tation. The mapping accuracy in this case,
free from parsing errors, is 98.9%.

Meanwhile, we observe that due to lan-
guage differences and translation idiosyn-
crasies, predicate verb pairs in English versus
Chinese do not always have the same argu-
ment structure. In this section, we present
some interesting findings with examples in
several categories.

5.1 Ellipsis

The ellipsis of some syntactic elements, such
as the subject, occurred in either English or
Chinese in the parallel sentences and might

lead to some NULL argument mapping in
the other language. As shown in the follow-
ing example, [argo *PRO*] in Chinese is a
filler constituent manually inserted in Chi-
nese PropBank. However, the semantic role
parser is not capable of generating this filler
constituent automatically during the parsing.
Thus, no ARGO is labeled out in the auto-
matic semantic parse result.

English Insiders feel that it would provide
an excellent opportunity for [4rco the
economy and trade circles of China and
South Korea] to [rarcer extend] [arc1
exchange and co-operation] .

Chinese YW AL Ak, & K & + &
PO A R — K [argo *PRO*]
[rarcET ¥ K] [ARc1 W 5 G1E] I R
Ml .

Gloss Inside people believe , it will be China
Korea two country economy and trade
circles provide a extend communication
and co-operation excellent opportunity

5.2 Parallel Structures in Chinese

When a Chinese sentence consisting of a par-
allel structure is translated into English, the
parallel structure is consistently translated to
clauses in English since these syntactic alter-
nations are an effective translation technique
to represent the same meaning of Chinese in
one English sentence. Argument mapping is
nevertheless correct despite this type of syn-
tactic mismatching, as shown in the following
example.

English [4rc1 An office of Shanghai Cus-
toms posted at Chongming] , that was
[rarcET approved]| [arco by the China
Customs Head Office] [arg2 to be set up
| , was established a few days ago , and
has already officially conducted business.

Chinese 2 [srco "TH #X BE] [rarcer
HEHE] Beor ) Bifg e 3E 528 Ak
T B or . JfF IER A Mk
%
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Gloss Via China Customs Headquarters ap-
proval establish Shanghai Customs sta-
tion Chongming office in current set up,
and officially conduct business .

5.3 One-to-many Role Mapping

In our proposed algorithm, role mapping is
based on individual ARG, not the ARG com-
bination. However, in reality, it is possible
for there to be one-to-many mappings. Thus,
when this occurs, the one-to-many mapping is
not possible to be identified. For example, in
the following bi-sentence, ARG! and ARG2
in English are mapped to ARG1 in Chinese
together.

English At present , about 150 thousand
foreign-invested enterprises have opened
accounts in the Bank of China , of which ,
[ARGo more than 20 thousand enterprises
| have [rargET received] [ara1 loan sup-
port] [arge from the Bank of China] .

Chinese [agcyv—ryvp HAET , 4 A T4
K Ahi B b 7E A E BT R ik
Fy B [arco =2 K] [rarcer 3K
3] [arc1 HHE AT 1 BT KF .

Gloss currently, about 150 thousand for-
eign merchant investment enterprise in
China Bank open account, of which, 20
thousand more enterprise receive China
Bank’s loan support .

6 Role Mapping from Syntactic
Constituent Alignment

To date, it is often casually assumed that
semantic roles can be simply projected
across language pairs by constituent align-
ment (Pado and Lapata, 2006). In such an
approach, it is assumed that an English con-
stituent is lexically translated into the Chi-
nese constituent, in which case they must
share the same role label. This sort of view is
typically inspired by the many structurally-
based statistical machine translation models
that make use of some kind of syntactic con-
stituent projection (Hwa et al., 2005).
Therefore it is worth investigating the pos-
sibility of projecting semantic role labels

across matching syntactic constituents. To
accomplish this, we implement a contrastive
SYN_ALIGN algorithm that obtains semantic
structure mapping based on Treebank syntac-
tic parse projection. This model is similar in
spirit to that of (Pado and Lapata, 2006), in
which the authors proposed a semantic role
projection model based on FrameNet rather
than PropBank verb frames. While our se-
mantic role projection model is inspired by
(Pado and Lapata, 2006), we propose a novel
solution to the Linear Assignment Problem
in order to align syntactic constituents from
both the English and Chinese sentences, and
then project the semantic role labels from En-
glish across to Chinese. The reason why we
project the semantic role from English to Chi-
nese is because according to (Pradhan et al.,
2005), their English semantic parser outper-
forms our Chinese one due to the larger train-
ing data available in English TreeBank and
PropBank.

In this approach, we make a strong assump-
tion that the English semantic roles can be
projected directly to their corresponding en-
tities in Chinese (although, obviously, this as-
sumption does not always hold in reality), and
then utilize the lexical and syntactic informa-
tion from the syntactic parses to project the
semantic roles from English to Chinese.

To decouple the effect of semantic parsing
from syntactic parsing, we save the syntactic
annotations on the bilingual sentences, but re-
move the semantic annotations from the Chi-
Based on the “perfect con-
stituent alignment” proposed in (Pado and
Lapata, 2006), we then project English se-
mantic role labels to their corresponding Chi-
nese entities. Finally, an evaluation of the
mapping results are carried out in reference
to the gold standard mapping set.

nese sentences.

6.1 Alignment Selection

Since most structural machine translation
systems are based on tree alignments, we are
interested in investigating semantic role map-
ping on top of such syntax tree alignments. In
other words, we select syntactic constituent
(i.e. chunk) as the alignment unit. Moreover,
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(Pado and Lapata, 2006) has also shown that
the best semantic role projection is achieved
with constituent based alignment.

6.2 Assignment Cost

Similar to (Pado and Lapata, 2006), we de-
fine the alignment cost between any pair of
English and Chinese constituents as follows:

1

Sim(ec(wl,wz..)a Cc(wl,wQ,...))

(2)
where, e. is an English constituent, c. is
a Chinese constituent, w; belongs to the
set of (NP, PP, pronoun, numeral, quantifier)
and w; is a content word. The purpose of this
is to disregard any lexical items that would
not be of interest to us in the ultimate task of
argument mapping.

cost(ec, cc) =

6.3 Constituent Alignment

(Pado and Lapata, 2006) proposed three
alignment models for the constituent align-
ment: total alignments, edge covers and per-
fect matchings. We chose perfect matching
for our experiment since (Pado and Lapata,
2006) reported superior performance using
this model. “Perfect matching” is defined as
follows: given all the constituents extracted
from the Chinese and English parallel data,
each constituent in Chinese must align to one
and only one constituent in English, and vice
versa. We observe that this problem can be
cast as a Linear Assignment Problem, which
of course is a fundamental combinatorial op-
timization problem. The Linear Assignment
Problem can be described as follows:

VARES mxinzn:zn:xijcij (3)

i=1 j=1
s.t.
2?2133‘1']' :1,i:1,"- s, N
Z;’L:lmij :17]:17 , N
x>0

Z* is the solution of the linear assignment
problem. z;; is the assignment matrix where
constituent ¢ was assigned to constituent j, c;;
is the cost matrix for aligning constituent ¢ to

VE

Table 4: Role Mapping from Syntactic Pro-
jection

EN\CN | ARG0O ARG1 ARG2 ARG3
ARGO 248 0 0 0
ARG1 0 381 0 0
ARG2 0 0 22 0
ARG3 0 0 0 0

Table 5: Performance of Semantic Role Pro-

jection
# words | [1,20] <20,40> [40,00] All
Precision | 54.45 45.10 39.35  44.57
Recall 59.78 50.14 41.98 48.90
F-score 56.99 47.49 40.62  46.63

Our semantic role projection algorithm,
SYN_ALIGN, is described in Algorithm 2.
Given the English and Chinese bi-parse,
we first extract their constituents (chunks).
These constituents are stored in two arrays.
Then, for these two constituent arrays, we
apply the classic Hungarian method (Kuhn,
1955) to solve the Linear Assignment opti-
mization problem by using the cosine simi-
larity score between two constituents as the
assignment cost. Finally, we project the En-
glish semantic roles to the Chinese side based
on the constituent alignment result.

The predicate-argument mapping learned
from the constituent based semantic role pro-
jection is shown in Table 4 and the per-
formance evaluation against the mapping
learned from the gold standard is shown in
Table 5.

6.4 Experimental Results

Again evaluating with respect to the gold
standard reference mappings, the mapping F-
score of SYN_ALIGN is only 46.63%. This
mapping performance is significantly lower
than achieved by our proposed ARG_ALIGN
model, owing to the assumption that argu-
ment structures can be projected across syn-
tactic constituents, which has hereby been
shown to be brittle.
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Algorithm 2 SYN_ALIGN

1: INPUT: Chinese and English parallel syntactic parse trees
2: let EN_Cons[] = source English constituents
3: let CN_Cons|| = target Chinese constituents
4: en_no = number of English constituents
5: cn_no = number of Chinese constituents
6: mazx_no = mazximum(cn_no, en_no)
7: if en_no < maz_no then
8:  append max_no — cn_no with “dummy” constituents to CN_Cons]
9: else if en_no < maz_no then
10:  append max_-no — en_no with “dummy” constituents to EN_Cons]]
11: for ¢ = 1 to max_no do
12: for j =1 to maxr_no do
13: similarity_score = cosine(C N _Consli], EN _Conslj])
14: if similarity_score == 0 then
15: cost_matriz[i][j] = 1000.00
16: else
17: cost_matriz[i|[j] = 1/similarity_score
18: alignment = hungarian_method(cost_matrix)
19: for all semantic roles in English semantic parsing result do
20:  project the semantic roles to Chinese side based on alignment solution

7 Conclusion

For machine translation purposes, it is mean-
ingful to study the semantic structural map-
ping between the source and target lan-
guage. We propose a new automatic algo-
rithm, ARG_ALIGN, to extract the predicate-
argument mappings from unannotated bilin-
gual sentence pairs with 72.45% F-score, given
an unannotated parallel corpus. We first
identify and label the semantic structures us-
ing the Chinese and English shallow semantic
parsers and then use ARG_ALIGN to find the
mapping pairs.

Given bilingual sentence pairs with manu-
ally annotated semantic role labels, we record
the semantic role mapping between bilin-
gual argument structures if they are lexi-
cally aligned to each other. We observe that
there are 17.24% of cross mapping between
argument structures in English and Chinese.
Among these, 8.95% are argument 0-1 map-
pings, 6.94% are 1-2 mappings, and 0.27%
are argument 2-3 mappings. Referring to
the manual gold standard mapping, the F-
score of our proposed mapping between au-
tomatically annotated argument structures is

72.45%, showing promise for automatic se-
mantic structure mapping in bilingual sen-
tence pairs, applicable to machine translation
and other multilingual and cross-lingual ap-
plications.

Contrary to a preconception that one some-
times hears, we show empirically that our
model is superior to a semantic role pro-
jection model which assumes semantic par-
allelism in bilingual sentences. In the lat-
ter model, we propose using the Hungarian
method in a syntax alignment algorithm we
name SYN_ALIGN, to align syntactic con-
stituents from both the English and Chinese
sentences, and project the semantic role la-
bels across. Compared to the gold standard
mapping, the mapping F-score in this case is
46.63%.

Our results led us to believe that, since
there is a non-negligible amount of cross ar-
gument mapping between English and Chi-
nese translations, it maybe preferable to use
automatic semantic role labeling in both the
source and target languages, than to use di-
rect projection of semantic role labels from
one language to the other.
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One obvious next step is to embed the shal-
low semantic parsers and the cross-lingual
verb frame acquisition model in end-to-end
machine translation systems or MT applica-
tions. We would also like to acquire cross-
lingual semantic frames for other categories
besides verbs.
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Abstract

Parallel treebanks, which comprise
paired source-target parse trees aligned
at sub-sentential level, could be use-
ful for many applications, particularly
data-driven machine translation. In
this paper, we focus on how transla-
tional divergences are captured within
a parallel treebank using a fully auto-
matic statistical tree-to-tree aligner. We
observe that while the algorithm per-
forms well at the phrase level, per-
formance on lexical-level alignments
is compromised by an inappropriate
bias towards coverage rather than pre-
cision. This preference for high pre-
cision rather than broad coverage in
terms of expressing translational diver-
gences through tree-alignment stands in
direct opposition to the situation for
SMT word-alignment models. We sug-
gest that this has implications not only
for tree-alignment itself but also for the
broader area of induction of syntax-
aware models for SMT.

1 Introduction

Previous work has argued for the development of
parallel treebanks, defined as bitexts for which the
sentences are annotated with syntactic trees and
are aligned below clause level (Volk and Samuels-
son, 2004). Such resources could be useful for
many applications, e.g. as training or evaluation

corpora for word and phrase alignment, as train-
ing material for data-driven MT systems and for
the automatic induction of transfer rules, and for
translation studies. Their development is partic-
ularly pertinent to the recent efforts towards in-
corporating syntax into data-driven MT systems,
e.g. (Melamed, 2004), (Chiang, 2005), (Galley et
al., 2006), (Hearne and Way, 2006), (Marcu et al.,
2006), (Zollmann and Venugopal, 2006).

In this paper, we focus on how translational
divergences are captured within a parallel tree-
bank using a fully-automatic statistical tree-to-
tree aligner.1 In doing so, we take a somewhat
different perspective on tree-alignment from that
of e.g. (Wu, 2000; Wellington et al., 2006). We
do not incorporate trees for the express purpose of
constraining the word- and phrase-alignment pro-
cesses, although this is certainly a consequence
of using trees. Our purpose in aligning monolin-
gual syntactic representations is to make explicit
the syntactic divergences between sentence pairs
rather than homogenising them. We are not seek-
ing to maximise the number of links between a
given tree pair, but rather to find the set of links
which most precisely expresses the translational
equivalences between that tree pair. How best to
exploit such information through model induction
for syntax-aware statistical MT remains an open
question.

The remainder of this paper is organised as fol-
lows. In Section 2 we describe the tree-to-tree
alignment process from a manual annotation per-

Although the definition of a parallel treebank leaves
room for a variety of types of tree structure, in this paper
we focus on constituent structure trees only.
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spective, outlining crucial ways in which it dif-
fers from the word-alignment process. We show
how translational divergences are represented in
an aligned parallel treebank in Section 3, giving
insights into why such resources would be use-
ful. In Section 4 we outline an automatic method
for statistically inducing tree alignments between
parsed sentence pairs — full details of the align-
ment algorithm are given in (Tinsley et al., 2007).
In Section 5 we analyse the output to see how well
translational divergences are captured. Finally, in
Sections 6 and 7 we conclude and describe plans
for future work.

2 Manual Tree-to-Tree Alignment

The tree-to-tree alignment process assumes a
parsed, translationally equivalent sentence pair
and involves introducing links between non-
terminal nodes in the source and target phrase-
structure trees. Inserting a link between a node
pair indicates that the substrings dominated by
those nodes are translationally equivalent, i.e. that
all meaning in the source substring is encapsu-
lated in the target substring and vice versa. An
example aligned English—French tree pair is given
in (1). This example illustrates the simplest pos-
sible scenario: the sentence lengths are identical,
the word order is identical and the tree structures
are isomorphic.

NP VP____NP__VP
N IV g\ 1
John\‘/ N‘P JohnY N‘P
sees Mary voit Mary

However, most real-world examples do not align
so neatly, as we will discuss in Section 3. The
example given in (2) illustrates some important
points. Not every node in each tree needs to be
linked, e.g. click translates not as cliquez, but as
cliquez sur. However, each node is linked at most
once. Also, as we do not link terminal nodes,
the lowest links are at the part-of-speech level.
This means that multi-word units identified dur-
ing parsing are preserved as such during align-

ment, cf. Save As and Enregistrer Sous.>

- VP
/ /\
VP -~V ---PP_
T~ | T
\‘/ NP - eligezP-~-NKP--__ 2)
sl‘er N ADJ

click D ADJ N
¥

the Save As button le bouton Enregistrer Sous

2.1 Tree Alignment vs. Word Alignment

When deciding how to go about linking a given
tree pair, the logical starting point would seem to
be with word alignment. However, some analy-
sis reveals differences between the tasks of tree-
alignment and word-alignment. We illustrate the
differences by referring to the Blinker annotation
guidelines (Melamed, 1998) which were used for
the word alignment shared tasks at the workshops
on Building and Using Parallel Texts at HLT-
NAACL 2003* and ACL 2005.*

If a word is left unaligned in a sentence pair,
it implies that the meaning it carries was not re-
alised anywhere in the target string. On the other
hand, if a node remains unaligned in a tree pair
there is no equivalent implication. Because tree-
alignment is hierarchical, many other nodes can
carry indirect information regarding how an un-
aligned node (or group of unaligned nodes) is rep-
resented in the target string. Some consequences
of this are as follows.

Firstly, the strategy in word-alignment is to
leave as few words unlinked as possible “even
when non-literal translations make it difficult
to find corresponding words” (Melamed, 1998).
Contrast this with the more conservative guide-
line for tree-alignment given in (Samuelsson and
Volk, 2006): nodes are linked only when the sub-
strings they dominate “represent the same mean-
ing and ... could serve as translation units outside
the current sentence context.” This latter strategy
is affordable because alignments at higher lev-
els in the tree pair will account for the transla-
tion equivalence. Secondly, word-alignment al-
lows many-to-many alignments at the word level
but not phrasal alignments unless every word in
the source phrase corresponds to every word in

20Of course, an alternative parsing scheme which gives in-
ternal labelled structure in such phrases might permit further
sub-tree links.

3http://www.cse.unt.edu/ rada/wpt/

*http://www.cse.unt.edu/rada/wpt05/
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the target and vice versa. Tree-alignment, on the
other hand, allows each node to be linked only
once but facilitates phrase alignment by allowing
links higher up in the tree pair.

The contrasting effects of these guidelines are
illustrated by the example given in (3)° where
the dashed links represent tree-alignments and the
solid links represent word-alignments. We see
that the word-alignment must link ladder to both
la and échelle whereas the tree-alignment speci-
fies a single link between the nodes dominating
the substrings ladder and [’échelle.

NP PRl NP
- == e S
Nm]’ NP - = PP
| | T~ S
PN POS N D N P NP 3)
| | | | | | |
Jacob N ladder la  échelle de PN

Jacob

Note also that the word-alignment explicitly links
’s with de whereas the tree-alignment does not; it
is arguable as to whether these strings really rep-
resent precisely the same meaning. However, the
relationship between these words is not ignored
in the tree-alignment; rather it is captured by the
link between the three NP links in combination.

In fact, many different pieces of information
can be inferred from the tree-alignment given in
(3) regarding the relationship between ’s and de,
despite the fact that they are not directly linked;
examples exhibiting varying degrees of contex-
tual granularity are given in (4).

s — de
X’sY — Y de X
NP1 ’s NP2 — NP2 de NP1

NP — NP3 de NP, (4)

It is noteworthy, we feel, that the similarities
between the ‘rules’ in (4) and templates in EBMT
such as those in (Cicekli and Giivenir, 2003) are
striking.

5The sentence pair and word alignments were taken di-
rectly from (Melamed, 1998).

3 Translational Divergences

Work such as that of e.g. (Lindop and Tsujii,
1992; Dorr, 1994; Trujillo, 1999) makes explicit
the types of translational divergences which occur
in real data. These divergences occur frequently
even for language pairs with relatively similar sur-
face word order, and generally prove challenging
for MT models (Hutchins and Somers, 1992).°
An important characteristic of parallel treebanks
is that they provide explicit details, through tree-
alignments, about the occurrence and nature of
such divergences.

In this section, we examine how translational
divergences are represented in the HomeCen-
tre English—-French parallel treebank. This cor-
pus comprises a Xerox printer manual which
was translated by professional translators and
sentence-aligned and annotated at Xerox PARC.
It contains 810 parsed, sentence-aligned English-
French translation pairs. It was manually tree-
aligned by one of the authors of this paper ac-
cording to the guidelines outlined in Section 2.”
As observed by (Frank, 1999), the HomeCentre
corpus provides a rich source of both linguistic
and translational complexity.

Instances of nominalisation are very frequent in
the HomeCentre corpus. An example of a simple
nominalisation is given in (5), where the English
verb phrase removing the print head is realised as
the noun phrase retraite de la téte d’impression in
French.

v NP N PP
= I (5)
removing  the print head  retraite P NP
| —_—
de la téte d’impression

Instances of more complex nominalisations
which incorporate further translational diver-
gences are also common. Consider, for exam-
ple, the translation pair given in (6). Firstly, we
note the nominalisation: the English passive sen-
tential form the scanner is being calibrated is
realised as the French noun phrase [’étalonnage

®The picture is even more complex than we paint here;
(Dorr et al., 2002) make the further observation that such
‘hard’ cases tend to co-occur much more often than might
be expected.

"As there was just a single annotator, inter-annotator
agreement is obviously not a factor.
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du scanner. However, we also observe the pres-
ence of relation-changing: the subject of this En-
glish sentential form, the scanner, functions as an
oblique object in the French translation. In addi-
tion, this example exhibits stylistic divergence, as

PP

T
) E" NP
CONJP pendant DETP NP
P P
CONJ S ] PRE D N PP
I S T~ B s R (6)
while N VP toute la durée P---.._NP
o~ \
the scanner AUX VP de D N PP-...
S \ \ N

is AUX \Y le étalonnage P NP
\ [ \

being  calibrated

Another complex translation case which oc-
curs in the HomeCentre corpus is that of head-
switching, where the head word in the source
language sentence translates as a non-head word
in the target language realisation. An example
of head-switching is given in (7). Here, the En-
glish verbal unit is displayed is realised in French
as reste dffichée; in this context, reste means
(roughly) ‘remains’ and display is realised as the
adverbial modifier affichée. Thus, the head of the
English sentence, the verb display, corresponds to
the French non-head word affichée.

NP VP NP VP
T~ T~
AUX VP Ve AP @)
[ \ N
is \‘7 CONJP  reste /‘\ PP
displayed affichée

Of course, lexical divergences also occur fre-
quently. In some instances, these divergences can
be resolved in a straightforward manner. For ex-
ample, we see in (8) that as in English can trans-
late as au fur et a mesure que in French, but as
the idiomatic reading of this French phrase is re-
flected in the parse assigned to the sentence, the
overall shape of the sentence can remain the same
despite the complexity of the translation.

as au fur et a mesure que

However, even for a relatively similar language
pair, lexical divergence can cause source and tar-

de le scanner

get sentences expressing exactly the same con-
cept to have completely different surface real-
isations. Consider, for example, the translation
pair in Figure 1. As there is no French phrase
which is directly equivalent to the English ex-
pression null and void, the given French sentence
toute intervention non autorisée invaliderait la
garantie — which translates roughly as ‘any unau-
thorised action would invalidate the guarantee’
— is entirely structurally dissimilar to its English
counterpart.

Finally, variation in how certain frequently-
occurring words are translated, depending on the
context in which the word appears, is also com-
mon. Examples (9) — (12) illustrate this phe-
nomenon for the English verb need. you need to
X can be realised as both vous devez X and il faut
X in French, as shown in examples (9) and (10).
The realisation differs, however, where the object
is nominal rather than sentential: if you need X is
shown in (11) to translate as pour X. Finally, we
show in example (12) that the negative you do not
need to X can translate as il ne devrait pas étre
necessaire de X, which literally means ‘it should
not be necessary to X’ in English. We note that
this is just a subset of the differing French real-
isations for the verb fo need which occur in the
HomeCentre corpus.

4 S
PRON VPv ST
| T _.---PRON"""VPveérb-._
you V VPinf -~ | (9)
| / vous V VPverb
need PART  VPv
| devez
to
S
T S
PRON vev >
_..—PRON " VPverb...
you V VPinf -~ (10)
| ! i Vv VPverb
need PART VPv |
| faut
to
CONJPsub
/\ \.v
CONJsub S PP
if ~ PRON VPy P NPdet (11D
| N \
you Y NP pour
need
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CONIJPsub COMMA S
CONJsub S lNP///\VPcop -------
if ’I}'I_Padj ----- - VPaux D NPadj \% NP
A N AUX V t}le N PP iL N CONJ
unauth‘orised rep.air iL performed remainder P NP I’ll‘lll ar‘1d
o‘f D NPzero
tlle N N
warramyperlod

void | T~

"'NPdet.. VPv

NPPP 1 D
invaliderait N
| |

NPdet
toute N APvp
intervention Amod \

non autorisée

la garantie

Figure 1: Completely different surface realisations can be seen even for language pairs with similar

word order like English—French.

s

PRON VPverb

/\
PRON VP | T
| —NX " il NEG V PostNEG VPcop
you AUX NEG VPv | \ _—
| | —""—— nedevrait pas_Vco AP

,,,,,,,,,,,,,, (12)
do not V VPinf .-

/ ‘nl"‘lymf‘
need PART VPv | PN
| necessaire P VPverb

to |
de

4 Automatic Tree-to-Tree Alignment

The tree-alignment algorithm briefly described
here and detailed in (Tinsley et al., 2007) is de-
signed to discover an optimal set of alignments
between the tree pairs in a bilingual treebank
while adhering to the following principles:

(1) independence with respect to language pair
and constituent labelling schema;

(i1) preservation of the given tree structures;
(iii) minimal external resources required;
(iv) word-level alignments not fixed a priori.

4.1 Alignment Well-Formedness Criteria

Links are induced between tree pairs such that
they meet the following well-formedness criteria:

(1) a node can only be linked once;

(i1) descendants of a source linked node may
only link to descendants of its target linked coun-
terpart;

(iii) ancestors of a source linked node may only
link to ancestors of its target linked counterpart.

In what follows, a hypothesised alignment is ill-
formed with respect to the existing alignments if
it violates any of these criteria.

4.2 Algorithm

In this section we present how our alignment al-
gorithm scores and selects links. We refer to the
alternative methods by which decisions can be
made at various points, and summarise the possi-
ble aligner configurations. (Tinsley et al., 2007)
describes these variations in greater details and
provides the motivation behind each variant.

4.2.1 Selecting Links

For a given tree pair (S, T"), the alignment pro-
cess is initialised by proposing all links (s, ) be-
tween nodes in S and T as hypotheses and as-
signing scores y((s, t)) to them. All zero-scored
hypotheses are blocked before the algorithm pro-
ceeds. The selection procedure then iteratively
fixes on the highest-scoring link, blocking all hy-
potheses that contradict this link and the link
itself, until no non-blocked hypotheses remain.
These initialisation and selection procedures are
given in Algorithm 1 basic.

Algorithm 1 basic

Initialisation

for each source non-terminal s do

for each target non-terminal  do
generate scored hypothesis y((s, t))

end for

end for

block all zero-scored hypotheses

Selection underspecified

while non-blocked hypotheses remain do
link and block the highest-scoring hypothesis
block all contradicting hypotheses

end while

Hypotheses with equal scores: The Selection
procedure given in Algorithm 1 basic is incom-

89



e s = bec

N ~ N ~ N ti = Xy

I N 5 = a
! \ \ \ =

b c X y i Wz

Figure 2: Values for s;, t;, 57 and #; given a tree
pair and a link hypothesis.

plete as it does not specify how to proceed if two
or more hypotheses share the same highest score.
When this case arises we invoke a method called
skip2. Using this configuration, we skip over tied
hypotheses until we find the highest-scoring hy-
pothesis (s,t) with no competitors of the same
score and where neither s nor t has been skipped.

Delaying lexical (span-1) alignments: It is
sometimes the case that we want to delay the in-
duction of lexical links in order to allow links
higher up in the tree structures to be induced first.
For this reason we have an optional configuration,
spanl. When this method is activated, it post-
pones links between any hypothesis (x, y), where
either x or y is a constituent with a span of one,
i.e. a lexical node. Only when all other possi-
ble hypotheses have been exhausted do we allow
links of type (z,y).

4.2.2 Computing Hypothesis Scores

Inserting a link between two nodes in a tree
pair indicates that (i) the substrings dominated by
those nodes are translationally equivalent and (ii)
all meaning carried by the remainder of the source
sentence is encapsulated in the remainder of the
target sentence. The scoring method we propose
accounts for these indications.

Given tree pair (S, T") and hypothesis (s, t), we
compute the following strings:

S_l == Sl'--siflsi:erl--'Sm
tl = Tl-utj—ltjy-‘,—l-uTn

S| = S8;...S4x
by =1j..tjy

where s;...s;; and t;...t;, denote the terminal
sequences dominated by s and ¢ respectively,
and S1...5,, and T3...T,, denote the terminal
sequences dominated by S and 7' respectively.
These string computations are illustrated in Fig-
ure 2.

The score for the given hypothesis (s,t) is

computed according to (13).
(s, 1)) = alsifty) e(te]si) e(siltr) a(@fsy) (13)

Individual  string-correspondence  scores
a(z|y) are computed using word-alignment
probabilities given by the Moses decoder®:’
(Koehn et al., 2007). Two alternative scoring
functions are given by scorel (14) and score2
(19).

Score scorel
[yl |=|

a(zly) = [ > P(xily;) (14)
j=1i=1
Score score2 o] <alol
x Y Pl
ately) = [T 22 s)

ey Y

4.3 Aligner Configurations

When configuring the aligner, we must choose
skip2 and we must choose either scorel or score2.
spanl can be switched either on or off. The four
possible configurations are as follows:

skip2_scorel
skip2_score2

skip2_scorel _spanl
skip2_score2_spanl

S Alignment Evaluation and Analysis

In Section 5.1 we give an overview of aligner
performance through two automatic evaluation
methodologies. In Section 5.2 we then go on to
describe the capture of translational divergences
by manually analysing the aligner output.

5.1 Automatic Evaluation

We use two automatic evaluation methodologies
in order to gain an overview of aligner perfor-
mance: (i) we compare the links induced by the
algorithm to those induced manually and com-
pute precision and recall scores; (ii) we train a
Data-Oriented Translation (DOT) system (Hearne
and Way, 2006) on both the manually aligned
data and the automatically aligned data and assess
translation accuracy using the Bleu (Papineni et
al., 2002), NIST (Doddington, 2002) and Meteor

8http://www.statmt.org/moses/

° Although our method of scoring is similar to IBM model
1, and Moses runs GIZA++ trained on IBM model 4, we
found that using the Moses word-alignment probabilities
yielded better results than those output directly by GIZA++.
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Alignment Evaluation Translation Evaluation
all links lexical links non-lexical links (all links)
Configurations Precision Recall | Precision Recall | Precision Recall Bleu NIST  Meteor Coverage
manual — — — — - — 0.5222  6.8931 71.8531  68.5417
skip2_scorel 0.6162 0.7783 0.5057 0.7441 0.8394 0.7486 || 0.5091 69145 71.7764  71.8750
skip2_score2 0.6215 0.7876 0.5131 0.7431 0.8107 0.7756 || 0.5333 6.8855 72.9614  72.5000
skip2_scorel_spanl 0.6256 0.8100 | 0.5163 0.7626 0.8139 0.8002 || 0.5273 6.9384 72.7157  72.5000
skip2_score2_spanl 0.6245 0.7962 0.5184 0.7517 0.8031 0.7871 || 0.5290 6.8762 72.8765  72.5000

Table 1: Evaluation of aligner performance using automatic metrics.

(Banerjee and Lavie, 2005) automatic evaluation
metrics. The results of these evaluations are given
in Table 1.

Looking firstly at overall alignment accuracy
(the all links column), it is immediately appar-
ent that recall is significantly higher than preci-
sion for all configurations. In fact, we have ob-
served that all aligner variations consistently in-
duce more links than exist in the manual version,
with the average number of links per tree pair
ranging between 10.4 and 11.0 for the automatic
alignments versus 8.3 links per tree pair for the
manual version. A clearer picture emerges when
we differentiate between lexical and non-lexical
links, where a link is non-lexical if both source
and target nodes span more than one terminal.
We see that, actually, precision is higher than re-
call for non-lexical links, and overall accuracy is
higher for non-lexical links than for all links. In
contrast, overall accuracy is much lower for lex-
ical links than for all links, and the disparity be-
tween precision and recall is greater.

Turning our attention to translation accuracy,
we observe that the scores for the automatic align-
ments are very encouraging: for all three evalu-
ation metrics, at least two aligner configurations
outperform the manual scores. Furthermore, all
the automatically-aligned datasets achieve higher
coverage than the manually-aligned run. It is
perhaps somewhat surprising that the translation
scores do not reflect the indication given by the
alignment evaluation that word-level alignment
precision is low compared to phrase-level pre-
cision. The explanation as to why the transla-
tion scores do not deteriorate may lie in how
the MT system works: because DOT displays a
preference for using larger fragments when build-
ing translations wherever possible, the impact of
inconsistencies amongst smaller fragments (i.e.

word-level alignments) is minimised. The reason
for the improvement in scores lies in the increased
coverage of the system trained on the automatic
alignments.

5.2 Capturing translational divergences

Before looking at divergent cases, we first observe
that the alignment algorithm generally produces
accurate output for the simple translation cases.
Examples (16) and (17) illustrate cases where the
aligner correctly identifies equivalent constituents
where length, word order and tree structure all
match perfectly. For short phrases, such examples
are relatively common.

\
'

NPT zeeit o NP
T~ T
D N D N
‘ | ‘ | (16)
the scanner le scanner
PP . PP
LN LN
P NP P NP
| T T ( 1 7)
to D N a D N
\ § 1 1
thé -~ HomeCentre la HoméCentre

Lexical divergences which are of the form 1-to-
many and many-to-1 occur frequently in the data
and the aligner captures them with regularity. For
example, the aligner output exactly matches the
manual alignment for example (8). As mentioned
in Section 4, when calculating the score for a par-
ticular hypothesis, we not only consider the trans-
lational equivalence of the dominated substrings
but also the translational equivalence of the re-
mainder of the source and target sentences. In
this way, links can be inferred even when the con-
stituent substrings are lexically divergent.

Instances of nominalisation are also commonly
presented to the aligner. Consider, for exam-
ple, the aligner output in (18) where the En-
glish verb phrase removing the print head is re-
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alised as the French noun phrase retraite de la téte
d’impression. As the aligner does not take into
consideration the labels on the tree, but rather the
likelihood that the surface strings are translations
of each other, there is no impediment to the link-
ing of the English VP to the French NP. Further-
more, the lower NP alignment is straightforward.
Note, however, the (probably incorrect) link be-
tween the V removing and the N retraite. This link
does not appear in the manual alignment (shown
in (5)) as the annotator considered the meaning
equivalence to be between removing and retraite
de.

NP
VP .-~ TN
N N PP,
\% NP 1 N (18)
f=------""" retraite P NP
removing |
de

In Section 3 we noted that frequently-occurring
words vary greatly in terms of how they are trans-
lated, as illustrated for the English verb need in
examples (9) — (12). These examples are han-
dled reasonably well by the aligner, again due to
the strength of the equivalence between the object
constituents. In (19) and (20) (for which the man-
ual alignments were given in (9) and (10)), we
again see lexical alignments in the automatic out-
put which were not included in the manual ver-
sions; the annotator considered the equivalences
to be (need to, devez) and (you need to, il faut).
While the case for linking need with devez is ar-
guable, the link between need and faut is incor-
rect.

S N
/ N
L~ o \ S
PRON -VPv "~ Tl
| T~ PRON. VPverb
you V VPinf | (19)

| _——>_ vous V VPverb
need PART  VPv |

| devez

[
L~
W,
’

PRON _-VPv =~ ~

| PRON.  VPverb
you V VPinf [T~ (20)
| S il Vv VPverb

need PART  VPv [
| faut
to
The relation-changing and head-switching
cases illustrated by (6) and (7) are not handled
correctly by the aligner. However, in both cases

poor choice of lexical alignments (for being and
reste respectively) ruled out the possibly of cor-
rect higher-level alignments. Whether improved
lexical choice will lead to the identification of the
appropriate alignments in these cases remains to
be seen.

6 Conclusions

We observe that while the algorithm performs
well at the phrase level, performance on lexical-
level alignments is relatively poor when we com-
pare the aligner output to the manual alignments.
This can be seen both in terms of precision and
recall, where scores for phrase-level alignments
are much higher than those for lexical ones, and
through the manual evaluation where complex
translation phenomena are identified correctly at
a high level but then negated by inaccurate align-
ments at lexical level.

The lexical accuracy scores illustrate clearly
that there is an imbalance between precision and
recall: recall is consistently higher than pre-
cision across all variants of the alignment al-
gorithm. The reason for this is based in the
word-alignments used to seed our tree-alignment
algorithm. We have adopted the widely used
alignment tool GIZA++ (Och and Ney, 2003)
(and, more recently, Moses (Koehn et al., 2007)
which is based directly on GIZA++) which pri-
oritises broad coverage rather than high precision
(Tiedemann, 2004) and is appropriate to string-
based SMT (Koehn et al., 2003). However, the
work presented here indicates that the preference
in terms of expressing translational divergences
through tree-alignment is for the opposite — high
precision rather than broad coverage — and this
mismatch appears to impact on the overall quality
of the alignments. We suggest that this has impli-
cations not only for tree-alignment itself but also
for the broader area of induction of syntax-aware
models for SMT.

Despite these observations, training our DOT
system on automatically-aligned data gives
slightly better translation performance than train-
ing on the manually-aligned data. The issue
of coverage is key here. Crucially, the only
model used by the system is the synchronous tree-
substitution grammar induced directly from the
parallel treebank. As the manual alignments con-
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tain fewer links than the automatic alignments,
the induced grammar achieves correspondingly
lower coverage and, consequently, performance
suffers. We conclude that it is appropriate for
tree-alignment to prioritise precision in order to
capture translational divergences as accurately as
possible, and that MT systems making use of
these alignments should employ them in conjunc-
tion with broad-coverage models (such as word-
and phrase-alignments) in order to preserve ro-
bustness.

7 Future Work

In order to improve the accuracy of our tree-
alignment algorithm, we plan to investigate al-
ternative word-alignment techniques (e.g. (Tiede-
mann, 2004; Liang et al., 2006; Ma et al., 2007))
in order to establish which one is most appropri-
ate for our task.

With regard to the broader area of parallel
treebank construction and the use of statistical
parsers such as those of Charniak (2000) and
Bikel (2002), we would like to examine the im-
pact of imperfect parse quality on the capture of
translational divergences. We plan to extend our
aligner so that it works with n-best parse forests
on the source and/or target sides, thereby giving
the aligner some (limited) influence over the con-
figuration of the aligned parse trees.

Finally, we plan to investigate how best to in-
corporate the translation information encoded in
parallel treebanks into existing data-driven MT
systems, both indirectly in terms of complemen-
tary phrase/chunk extraction methods and directly
in terms of inducing syntactic models of transla-
tion.
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Abstract

We propose a method of extract-
ing phrasal alignments from com-
parable corpora by using an ex-
tended phrase-based joint probabil-
ity model for statistical machine
(SMT). Our method
does not require preexisting dictio-
naries or splitting documents into
sentences in advance. By checking
each alignment for its reliability by
using log-likelihood ratio statistics
while searching for optimal align-
ments, our method aims to produce
phrasal alignments for only paral-
lel parts of the comparable corpora.
Experimental result shows that our
method achieves about 0.8 in preci-
sion of phrasal alignment extraction
when using 2,000 Japanese-English
document pairs as training data.

translation

1 Introduction

Comparable corpora as a source of transla-
tion knowledge have attracted the attention
of many researchers. Comparable corpora are
composed of document pairs describing the
same topic in different languages. They are
not parallel (mostly word-to-word translated)
corpora composed of good bilingual sentence
pairs, but still contain various levels of par-
allelism, such as words, phrases, clauses, sen-
tences, and discourses, depending on the cor-
pora characteristics. Compared with parallel

Tokyo Institute of Technology
Tokyo, JAPAN 152-8552
take@cl.cs.titech.ac.jp

corpora, comparable corpora are much easier
to build from commonly available documents,
such as news article pairs describing the same
event in different languages.

Recently, many studies on automatic acqui-
sition of parallel parts from noisy non-parallel
corpora have been conducted to acquire larger
training corpora for statistical machine trans-
lation (SMT). One of the recent studies tried
to find parallel sentences (Zhao and Vogel,
2002; Munteanu and Marcu, 2002; Fung and
Cheung, 2004), and another tried to extract
sub-sentential parallel fragments (Munteanu
and Marcu, 2006). To detect the parallel
parts, most of these studies required good sta-
tistical bilingual dictionaries, which are ex-
tracted from parallel corpora. Here we face
“the chicken or the egg” problem. Previ-
ous studies use preexisting parallel corpora
as bootstraps to prepare dictionaries, but it
would be better to obtain lexical translation
knowledge and extract parallel parts (elimi-
nate unrelated parts) from comparable cor-
pora simultaneously without parallel corpora.

In this paper, we propose an extension of
the phrase-based joint probability model for
SMT proposed by Marcu and Wong (2002).
Our method can extract phrase alignments di-
rectly from comparable document pairs, with-
out preexisting dictionaries or preprocessing
of training data such as splitting it into sen-
tences or extracting parallel parts. To pre-
vent from producing alignments between un-
related phrases while searching for optimal
alignments, we check each alignment as to
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Original Japanese script:

1:

C ZOHE

D RERT OBIHIC

s INHED S HIE

D INSDOMEREO T EDOHIE @ETMM@%%%%

HEEDSHEV T 2 HERERTE X ) RN
WECREEASZBML £ Lk,

(There was a strong earthquake in the Izu Islands at 6:42 this morn-
ing, and the quake was measured the intensity of five-minus on the
Japanese scale of seven at Shikine Island. A series of earthquakes have
recently occurred around Izu Islands.)

NIREZE = A3 AR MR A3 H D 3K

EEREPADSHT R, M, BREESHE, ZEE. RS
%H%@#%T DN Bl £ L7,
(The measurements of the quake at other places are as follows: in-
tensities of four at Niijima and Kozu Islands, three at Toshima and
Miyake Islands, and two or one at several places in the Kanto area
and a part of Shizuoka Prefecture.)

X BEBEDOLELIEH ) XA,
(Official says there will be no fear of tsunamis caused by this earth-
quake.)

X0 F T ERBFHLIIHE - fEE O CEBOES 13+
¥o, HEOKBKEZRT v/ =F 2 — FIZAA—LHEEINTVLET,

(According to the observation of the Meteorological Agency, the center
of the earthquake was 10 kilometers under the the sea bottom near
Niijima and Kozu Islands, and the magnitude was 5.1.)

EIRENDSIR F o I RS TIXIREINE R R & 0D
HOIREZIR DR L T T, SEH=1H b =R TR O m\ iR
%[ L 2RO MES TR E £ L7,

(Intermittent seismic activity began in the Izu Islands in late July,
and the recent quakes were observed on the 30th of last month, once
with an intensity of six-minus at Miyake Island and twice with an
intensity of five-minus nearby.)

SR RTRIA
OO ERENLZ PUBEIEIH L 72D 2 & T TN E TICEE LY M Lo
ThREETHET,

(17 quakes with intensities of five-minus or higher including the recent
ones have occurred during the activity, including four strong quakes
with intensities of six-minus observed at Kozu, Niijima and Miyake

Islands.)

1: A

Script translated into English:

strong earthquake jolted
Shikine Island, one of the Izu is-
lands south of Tokyo, early on
Thursday morning.

: The Meteorological Agency says

the quake measured five-minus
on the Japanese scale of seven.

: The quake affected other islands

nearby.

: Seismic activity began in the

area in late July, and 17 quakes
of similar or stronger intensity
have occurred.

: Officials are warning of more

similar or stronger earthquakes
around Niijima and Kozu Is-
lands.

: Tokyo police say there have

been no reports of damage from
the latest quake.

Figure 1: Example article pair from the NHK Japanese-English news corpus

whether it is a statistically reliable translation
by using log-likelihood ratio (LLR) statistics.
The experimental results on our extension of
Marcu-Wong’s Model 1 shows that it is ef-
fective for extracting phrase alignments from
comparable corpora. Those phrasal align-
ments are useful in applications other than
machine translation. For example, we are
developing a comparable translation retrieval
system for supporting professional transla-
tors. The system will be more effective if it is
able to show how a part in a source document
is translated in a counterpart in response to
the user’s requests.

Section 2 introduces the Japanese-English

broadcast news corpus, which is the target
of our proposing method, and explains our
tasks. Section 3 explains our improvements
to the phrase-based joint probability model of
Marcu and Wong in order to apply it to com-
parable corpora. After that, we show the re-
sults of our preliminary alignment experiment
and discuss the effectiveness of our method in
Section 4. Section 5 refers to related works
and Section 6 concludes our paper.

2 Alignment Task for NHK
Japanese-English News Corpus

We have been studying possible alignment
methods for our comparable corpus, the NHK
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Japanese-English news corpus, which is com-
posed of pairs of Japanese news scripts and
their manual translations into English broad-
casted by NHK (Japan Broadcasting Corpo-
ration)!. The articles in Japanese and English
in our corpus respectively have about 5 and 8
sentences on average.

An example article pair is shown in Fig-
ure 1 (The Japanese article is provided with
a literal English translation for convenience).
This example shows that the article pair
shares the same topic, but each article de-
scribes the topic in a different style. Some
articles have partially different content from
their counterparts. Therefore, few parallel
sentence pairs can be found in this corpus.
At the level of words or shorter collocations,
many useful translations can be found. How-
ever, words or phrases in a sentence are often
translated into different sentences in the coun-
terpart language. Thus, if you estimate word
or phrase alignments from this type of com-
parable corpora, you have to search the whole
document of the counterpart language.

3 Extension of Phrase-Based Joint
Probability Model

Marcu and Wong (2002) proposed a joint
probability model. It models how source and
target sentences are simultaneously generated
by concepts. Many of the phrase-based SMT
models require word-level alignments for ex-
tracting phrases from combinations of the
alignments. On the other hand, their training
method can learn word and phrase alignments
at the same time for searching for optimal
alignments among possible partial word se-
quences in sentence pairs. There was a report
that the joint probability model achieved bet-
ter performance on SMT, especially for small-
sized training data (Birch et al., 2006).

The formulation of Marcu-Wong model can
be simply extended to non-parallel corpora
by adding a means of handling monolin-
gual phrases appearing independently of any
counterpart. The search for optimal phrase
alignments in their training method can be

Ihttp://www.nhk.or.jp/english/

straightforwardly viewed as finding the par-
allel parts in a comparable document pairs.
Therefore, we choose to employ their joint
probability model for comparable corpora.

The main difficulty of the extension is the
arbitrariness of deciding how many portions
in each of the document pairs should be con-
sidered as unrelated to the counterpart doc-
ument. We try to resolve the difficulty with
the help of the log-likelihood ratio statistics
to distinguish reliably correlated translations
from unrelated parts.

3.1 Model Formulation

The original joint probability model assumes
that every part of the sentences on the source
and target sides is composed of phrases gen-
erated from concepts. We extended the model
so that comparable document pairs have not
only parallel phrases that share concepts but
also non-parallel phrases that are independent
of the counterpart document.

We consider a concept so that they can gen-
erate a monolingual phrase only on either side
of a document pair. Under this definition, we
can use the following formula, which is the
same as the Marcu-Wong method, to express
the probability of generating a document pair
(e, f) which may have non-parallel phrases:

ple.f)= > [t f)., @

Ce{C|L(e,f,C)} cieC

where

€, f source and target phrases which are
empty ( ) or consist of sequences of

one or more words,
¢;: a concept to generate a pair of source
and target phrases (€, f ) only one side
of which can be . Each concept pro-
duces a unique pair of phrases (or a
monolingual phrase), so we indicate a

concept as a pair of phrases like (€, f)

In this model, a document pair can be lin-
earized with various degrees of parallelness
from completely independent (when every c¢;
is monolingual) to completely parallel (when
every ¢; is bilingual).
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3.2 Training Procedure

Our training procedure consists of the follow-
ing steps similar to those of the Marcu-Wong
method:

1. Initialize distributions.

2. For each document pair, produce an ini-
tial alignment by linking phrases so as to
create bilingual or monolingual concepts
that have high ¢ for all words in the doc-
ument pairs. Then hillclimb towards the
Viterbi alignment by breaking and merg-
ing concepts, swapping words between
concepts, and moving words across con-
cepts, so as to maximize the product of
t.

3. Update distributions with the results of
hillclimbing in step 2.

4. Tterate step 2.—3. several times.

We use a suffix array data structure for count-
ing phrase occurrences (Callison-Burch et al.,
2005), so we don’t need to select only the
limited number of high-frequency n-grams as
phrase candidates.

In the following sections we give a detailed
explanation of our extensions to the steps of
the Marcu-Wong method.

3.2.1 Initializing Distributions

t-distribution We define a phrase as a con-
tinuous sequence of zero or more words which
does not extend more than one sentence. Un-
der this definition, a document consisting of
w words and s non-empty sentences can be
partitioned into ¢ non-empty phrases in (% 7)

i—S
ways, because the document has w s par-
titionable word boundaries and ¢ s times

of partitioning makes s pieces into i frag-
ments2. Given that any phrases in e consist-
ing of w, words and s. non-empty sentences
can be mapped to any phrase in f consist-
ing of wy words and s; non-empty sentences,

2 Although it is not theoretically essential to do so,
we strictly enumerate the ways of partitioning, unlike
in the Marcu-Wong method which approximates them
by using the Stirling number.

there are A(we, se, wy, s¢) ways of alignments
that can be built between (e, f):

A(We, Se,wy, S¢) =
min(we,wy) We wy

DR D )

k=0  i=max(k,s.) j=max(k,sy)
We  Se i\ (wy sp\(J
. (2
(i 8)(’@)(? Sf><’f> 2

In this formula, k£ denotes the number of bilin-
gual concepts that (e, f) shares, and 7 and j
denote the number of phrases which e and f
are partitioned into, which follows that e and
fhavei kandj k phrases generated from
monolingual concepts, respectively.

When the EM training starts without any
information, all of the A(we, se, wy, sy) align-
ments that can be built between the docu-
ment pair (e, f) can be assumed to occur with
the same probability. Under these conditions,
the probability that a bilingual concept (€, £ )
occurs to generate non-empty phrases € and f
consisting of /. and Iy words in the document

pair (e, f) is
A(we le,se+(5e,wf lf,Sf—i-(Sf)
A(We, Se,wy, S5)

)

If € is placed in the middle of a sentence so
that its removal separates the sentence into
two non-empty parts, then é. = 1; if € shares
a single end with a sentence so that its re-
moval from the sentence leaves a single non-
empty sequence, then d. = 0; and if € covers
the whole of a sentence, then 6, = 1 (0
likewise).

Similarly, the probability that a monolin-
gual concept (€, ) occurs to generate a non-
empty phrase € consisting of [, words in the
document pair (e, f) is:

A(we l6a56+567wf75f)
A(We, Se,wy, S¢)

(4)

(and likewise for concept ( , f)).

We can consider the probabilities (3) and
(4) for each concept as the expected counts for
which the concept contributes to the genera-
tion of the document pairs. We collect these
counts for each document pair in a corpus,
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and then obtain an initial joint distribution ¢
by normalizing the counts to obtain probabil-
ities. The use of a suffix array data structure
for counting phrases enables us to calculate
each t probability on the fly while EM train-
ing without a prepared table. The only thing
we have to calculate beforehand is the total
counts as a normalization factor.

o-distribution In addition to the ¢-distri-
bution, we need a distribution of phrase cooc-
currence counts o, for checking the correlation
between the bilingual phrase pairs described
in the next section.

We consider a pair of bilingual phrases €
and fin a document pair (e, f) to be cooc-
curring phrases if they are potentially gener-
able by a bilingual concept; i.e. the pair is
generated by a bilingual concept, or each of
the pair is separately generated by a mono-
lingual concept. In addition, we assume that
only smaller number of cooccurrences between
a and b are observed when € (we call each of
them €7,...,¢é,) in e appears a times and f
(we call each of them fi, ..., ﬁ,) in f appears
b times. There are (a 4+ Y.0ZL 32920 ¢) ways
of alignments between (e, f) where the same
number of € and f are generated from mono-
lingual concepts in each side of the document
pair (assuming a > b), so the cooccurrence
counts for a pair (€, f) cooccurring in (e, f)
can be calculated as follows:

(1 ZZ:ll Z::/)ll c )
_|_
ab

le,Se—l—(Sei,’wf lf,5f+5fj)
A(we,se,wf,sf) '

a b Awe
Sy A

i=1j=1
()

We collect the counts of each document pair
in a corpus to obtain the initial cooccurrence
distribution o. As in the calculation of the t-
distribution, we only need to prepare the total
counts before EM training.

3.2.2 Producing Alignments with
Log-Likelihood Ratio (LLR)
Checking

To produce the alignments in step 2, we sta-
tistically check the bilingual concepts by us-

LLR(Z, f)
B B(ala+b, ;55)B(cletd, o77)
= 2log B(a|a+b, a+z:z+d)B(C|C+dva+z:2+d)
B(k\n,p) _ (Z)pk(l p)n—k el e
f al b
—|f C d

cooccurrence count matrix

Figure 2: Log-Likelihood Ratio Statistics
(Dunning, 1993)

ing log-likelihood ratio (LLR) statistics (Dun-
ning, 1993) so as to produce only concepts
of reliably correlated phrase pairs (Moore,
2004; Munteanu and Marcu, 2006). Note that
monolingual concepts are all available with-
out checking. The checking procedure for a
concept (&, f) is as follows:

1. Prepare the o of the following pairs:

—

o(@ f), o(@&—f) (total counts for € and
any phrases except f), o(—€, f) and
o(—e,—f). Then calculate the LLR(€, f)

by using the formula in Figure 2.

2. If the LLR(E, f) exceeds the threshold,
the occurrences of € and f are consid-
ered to be reliably correlated. The corre-
lation can be classified as positive if both
ad bc > 0 in the matrix in Figure 2
and t(&, f) > t(é, )-t( ,f), negative if
ad bc < 0, and else unreliably corre-
lated.

3. If the LLR value is smaller than the
threshold, we cannot make a reliable de-
cision as to whether the occurrences of €
and f are correlated or not.

We produce bilingual concepts only from
phrase pairs that are considered to have pos-
itive correlation.

3.2.3 Updating Distributions

We update the t- and o-distributions in the
same way as the Marcu-Wong method; we
calculate the probabilities for each alignment
generated during the hillclimbing process over
all document pairs in a corpus, and then col-
lect counts over all concepts and coocurrences
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in these alignments. The detailed procedure
differs from the original as follows because of
LLR checking.

t-distribution In the generated align-
ments, unreliably correlated bilingual con-
cepts are never found because they are sup-
pressed producing by LLR checking. Word
sequences that can be generated by such unre-
liably correlated bilingual concepts are mostly
composed of monolingual concepts. Therefore
we use the following procedure for updating
the t-distribution:

1. For each document pair, collect counts
for each concept for all alignments.

2. Distribute the counts for every monolin-
gual concept in the result of step 1 to the
every monolingual and unreliably cor-
related bilingual concepts in proportion
to the current t¢-distribution to obtain
smoothed counts for a document pair.

3. Collect these smoothed counts for all doc-
ument pairs in a corpus.

4. Obtain the updated ¢-distribution for the
next iteration by normalizing the counts.

In our implementation of the suffix array
data structure, the difference from the initial
distribution is stored in the table for each doc-
ument pair. Every count for positive and neg-
ative correlated bilingual concepts is stored in
the table since they cannot be directly cal-
culated from the initial distribution. On the
otherhand, the counts for the rest can be ob-
tained by multiplying their initial counts by
a factor for each document pair, which is also
held in the table.
o-distribution From the definition of
phrase cooccurrences described in Section
3.2.1, we approximate the updated cooc-
currence counts of (& f) in (e, f) by the
following equation (a, b, €, f; are the same as
in Section 3.2.1):

a b
SN te, fille, £) +

i=1j=1
a+ Y0y e
, ab
>N ta, e f)t , fille, £)) - (6)
i=1j=1

We can easily calculate these conditional
probabilities from the difference table for t-
distribution if the table also hold the total
alignment probability of the document pairs.

4 Experiments

We conducted a series of preliminary experi-
ments using our model to align phrases from
the NHK Japanese-English broadcast news
corpus, which is composed of document pairs
of Japanese news scripts and their manual
translation into English. The Japanese doc-
uments in the corpus were segmented into
morpheme tokens with part-of-speech tags
by Chasen?, the morphological analyzer for
Japanese. Each experiment was given differ-
ent conditions as to the size of corpora, LLR
thresholds, and the times of iterations as in
Table 1. Note that the smaller corpus is the
subset of the larger one.

One human evaluator evaluated the quality
of the phrase alignments by marking all align-
ments from the 10 randomly selected article
pairs in each of the above experiments. He
marked according to three grades:

correct(QO): the extracted phrase pair is par-
allel without no extra or absent words,

partly correct(A\): the extracted phrase pair
has extra or absent word(s) but almost
all content words are parallel,

incorrect( ): otherwise.

Table 2 shows the number of alignments for
each grade, the average number of words in
the aligned phrases, and coverage (how many
words of each document were covered by the
aligned phrases).

Table 3 shows some phrase alignments that
have higher LLR scores in the article pair

Shttp://chasen.naist.jp/hiki/ChaSen/
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Corpus Size .
. LLR Iteration
No. || # of document pairs Threshold Ti
(# of tokens / types) resho 1nes
1 1
2 1,000 3.841 (95%)
3l (J: 287,597 / 10,855)
4 || (E: 161,976 / 10,521) | 2.706 (80%) 5
5 0.4549 (50%)
2,000
6 (J: 578,374 / 18,182) | 3.841 (95%) 3
(E: 312,353 / 17,905)
Table 1: Experimental Conditions
’ Condition No. H 1 ‘ 2 ‘ 3 ‘ 4 \ 5 \ 6 ‘
Evaluation O 32/7 65/19 | 102/32 | 188/59 | 164/44 | 173/46
(# of alignments A 8/4 | 28/15 | 35/21 | 61/46 | 66/42 | 53/33
(tokens/types)) 42/22 33/19 26/20 | 216/166 | 357/258 | 38/25
rate of O or A (token/type)||.488,/.371|.738/.642| .840/.726 | .535/.389 | .392/.250 | .856/.760
Phrase Length J 1.02 1.09 1.21 1.29 1.23 1.33
(# of words) E 1.01 1.10 1.19 .18 1.10 1.24
Coverage J .029 .049 071 210 .254 122
(rate in words) E .051 .088 124 341 403 211

Table 2: Results of evaluation

shown in Figure 1 from the experiment for
the condition 6.

Comparing the evaluations of the experi-
mental conditions 3 to 5, it is apparent that
LLR checking seems to be useful for selecting
parallel segments from comparable corpora.

Comparing the conditions 1 to 3, we see
that the iteration improves the quality of
alignments, but is not very effective for find-
ing new longer alignments as expected. This
may be because our method of updating dis-
tributions is inappropriate.

Comparing the conditions 3 and 6, we see
that a larger corpus size made coverage better
and phrase lengths longer but did not change
the precision by much. This means that LLR
checking guarantees the correctness of phrasal
alignments according to the LLR thresholds.

4The asymptotic distribution of LLR statistics will
follows x?(1), so if the LLR score of a phrase pair
exceeds a threshold whose x2(1) probability is p, the
phrase pair is considered to be correlated with an ap-

5 Related Work

The studies on acquiring translation knowl-
edge from non-parallel corpora started with
extracting lexical translations (e.g. (Fung and
Yee, 1998; Rapp, 1999)). To find trans-
lations, they generally exploit the tendency
that equivalent words have similar contextual
words in corpora of different languages. These
methods are powerful in terms of their appli-
cability even to unrelated bilingual corpora,
but they provide very poor coverage.
Extracting parallel segments of longer than
lexical level from non-parallel corpora have
been studied afterward. As for the challenges
to exploit comparable corpora, there have
been some efforts on extracting parallel sen-
tences (Zhao and Vogel, 2002; Munteanu and
Marcu, 2002). Both studied used a statistical
bilingual dictionary obtained from a parallel
corpus as bootstraps to extract more parallel

proximate probability of p.
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Japanese English Log Prob. | LLR | Judge
HiE= quake 14.2 12.8 O
HiE earthquakes 15.3 10.1 O
R/ET The Meteorological Agency 15.9 8.11 O
ME/D more 15.1 7.89 O
= jolted 14.6 7.83
i strong 14.9 4.17 O
Z /B /U (observe(d)) eaethquake 16.8 4.11

Table 3: Example of phrase alignments extracted in the experiment No.6

sentences and bilingual lexicons from compa-
rable corpora. Fung and Cheung (2004) used
a multi-level bootstrapping to improve align-
ments at the levels of document, sentence, and
word pairs and thereby avoid the use of pre-
existing knowledge sources such as dictionar-
ies.

These methods of parallel sentence ex-
traction have a limitation in that few sen-
tence pairs can be extracted from corpora
that are far from parallel. Munteanu and
Marcu (2002) proposed a method of extract-
ing sub-sentential parallel fragments from
comparable corpora. It first selects sentence
pairs which are likely to share some paral-
lel fragments from a bilingual dictionary of
broad coverage, then detects parallel frag-
ments within each of the sentence pairs by
another precise bilingual dictionary.

These studies aim to mine corpora for
clean parallel parts in order to acquire fur-
ther knowledge for proposes such as SMT. On
the other hand, our approach directly acquires
phrase alignments from comparable document
pairs. We obtain lexical translation knowl-
edge and extract parallel parts from compa-
rable corpora simultaneously.

6 Conclusion

We described a method of extracting phrasal
alignments from comparable corpora by us-
ing an extended phrase-based joint proba-
bility model for statistical machine transla-
tion. Our method can extract phrasal align-
ments directly from comparable document
pairs composed of about 5-8 sentences with-

out preexisting resources or splitting them
into sentences. The experiments showed that
our method achieves about 0.8 in precision
of phrasal alignment extraction when using
2,000 document pairs of Japanese-English
news articles as training data, thanks to its
use of the alignment checking process using
log-likelihood ratio statistics.

The experiments indicated plenty of room
for our method to be improved, e.g.:

As mentioned before, our method of up-
dating distributions is far from theoret-
ically well-grounded, which may affect
performance.

Computation cost is high, especially for
the hillclimbing search. We need to make
practical improvements to the process
(e.g. (Birch et al., 2006)). Calculating
distributions on the fly also costs very
much, which spoil the merit of the suf-
fix array data structure in part.

Our method cannot recognize discontin-
uous segments as phrases. It is common
that a continuous phrase in English does
not have a Japanese counterpart of dis-
continuous segments because of the dif-
ference in language structure. We would
like to improve the model so that it can
handle discontinuous phrasal segments.

Our method highly depends on the size
of each document in a training corpus.
Because we find statistical prominence
in the cooccurrences distribution to find
reliable phrase correspondences, expan-
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sion of each cooccurrence window will de-
crease the performance of our method.
We need to test our method for longer
documents.

We would like to make a much finer eval-
uation by manually constructing an evalua-
tion set in the near future. The proposed
model highly depends The proposed model
is an enhancement of Marcu-Wong’s Model 1
and it does not contain a constraint on word
or phrase order. We would like to enhance
our method by taking order into considera-
tion, and apply it to statistical machine trans-
lation.
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Abstract

Most phrase-based statistical machine
translation decoders rely on a dynamic
programming technique for maximiz-

ing a combination of models, includ-

ing one or several language models
and translation tables. One implica-
tion of this choice is the design of

a scoring function that can be com-
puted incrementally on partial transla-
tions, a restriction a search engine using
a complete-state formulation does not
have. In this paper, we present exper-
iments we conducted with a simple, yet
effective greedy search engine. In par-
ticular, we show that when seeded with
the translations produced by a state-
of-the-art beam search decoder, it pro-
duces an output of significantly higher

quality than the latter taken alone, as
measured by automatic metrics.

Introduction

}@iro.umontreal.ca

(Koehn, 2004) and some open-source alterna-
tives, among whictlRamses (Patry et al., 2006)
andPhramer (Olteanu et al., 2006).

All these decoders share one common property:
they rely on a scoring function that is incremen-
tal, in order to allow an efficient organization of
the computations by dynamic programming (DP).
For the kind of models we typically consider in
SMT (word- or phrase-based), this is just fine, but
one can easily think of models for which such a
property is inappropriate.

One notable exception to the dynamic pro-
gramming approach is th®eWrite decoder
(Germann et al., 2001). It is a greedy decoder
that iteratively tries to improve a current transla-
tion by modifying some of its elements accord-
ing to some predefined operations. At each iter-
ation, the best hypothesis found up to that point
is kept and used for the next iteration, until con-
vergence is obtained, which typically happens af-
ter a few iterations. A time-efficient refinement
of this decoder has been described in (Germann,
2003). However, Foster et al. (2003) did report
that this decoder produces translations of lower
quality than those produced by a DP-decoder.

To our knowledge, there has been no investi-

lation (SMT), efforts were made to design ef-gation on a greedy decoder designed to maximize
ficient machine decoders for word-based modthe log-linear combination of models traditionally
els (Tillmann et al., 1997; Wang and Waibel, embedded in a phrase-based SMT system. This
1997; Niessen et al., 1998; Gaacand Casacu- paper aims at filling this gap.

berta, 2001). As phrase-based models gained in \we show that our implementation, although

popularity (Koehn et al., 2003), specific phrasenot as good as a state-of-the-art beam search
based decoders were released, suéasaoh *

IMoses, available athttp://www.statmt.org/
moses/ gracefully replace®haraoh .

DP-engine, is not far off. More interestingly,
we report experiments on th&uroparl  corpus
where the greedy search algorithm significantly
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improves the best translation produced by a DPRequire: source a sentence to translate
based decoder. Last, we demonstrate the flexibil- current < seed (source)

ity of the approach by adding a reversed language 00P

model to the set of models consulted to score a  S-current < score (current)

translation. s « s-current
The paper is organized as follows. We first de- ~ forall i € neighborhood  (current) do
scribe our greedy search algorithm in Section 2. ¢ «score (h)
The experimental setup as well as the reference if ¢ > s then
beam search DP-engine we used are described s ¢
in Section 3. In Section 4, we report experi- _ best < h
ments comparing our greedy implementationwith ~ if s = s-current then
a state-of-the-art phase-based DP-search engine. ~ féturn current
We conclude our work in Section 5. else

current < best

2 The greedy search engine

. _ _ Figure 1: Core of the greedy search algorithm.
The strategy oReWrite , as described in (Ger-

mann et al., 2001) is one of the simplest form of _ _
local search algorithms: a hill-climbing search. 1t2.1  The scoring function

uses a complete-state formulation, which meang this study, we seek to maximize a log-linear
that it searches over the space of possible trangombination of models typically used in state-of-
lations; while a typical beam search DP-decodethe-art phrase-based DP-engines. In particular,
will typically explore the space of prefixes of all in the first experiments we report, we maximize

possible translations. Usually, a local search opetthe very same function th&haraoh maximizes
ates on a single state, which in our case defines thgnd which is reported in Equation 1:

current translation and allows to move to neigh-
boring states according to some predefined oper-

ations. SCOT€(€, f) = )\lm logplm(f) +
This local search strategy has three interest- > )\gﬁ,)l log p§;1< fle) —

ing characteristics. First, it requires a constant Ao ] —

amount of memory, whereas a DP search requires Aa pale, f)

an amount at the very least linear in the source (1)

sentence length. Second, it has been reporteghere thels are the weighting coefficients;,,

that local search algorithms indeed often proposés a language modepy,,, are different transfer ta-

a reasonable solution in combinatorial problemsbles (that share the same parameters in our exper-

(Russell and Norvig, 1995). Third, the function iments),| f| stands for the length of the translation

we seek to optimize does not have to evaluate pafcounted in words), angl;(e, f) is a so-called dis-

tial translations, a point we develop later on. tortion model (we used the simple one described
On the down side, the greedy search algorithnmin (Koehn et al., 2003)).

is obviously not optimal. In some situations, in-

cluding ours, this is a risk we are willing to take.
The greedy search, which is sketched in FigBy inspecting translations produced by

ure 1, depends on the definition of three funcPharaoh , we defined a set of six opera-

tions: one that seeds the search with a curtions that can transform a current translation.

rent state geed ), a scoring functiongcore ), This is by no means an exhaustive set, and exten-

which takes a candidate translation as an argusions will be considered in future investigations.

ment and that we seek to maximize, and a funcin particular, we do not yet allow words (or

tion (neighborhood ), which returns a set of phrases) to be inserted or deleted, two operations

neighboring hypotheses to consider at each itethat are used by tHeeWrite decoder (Germann

ation. etal., 2001).

2.2 The neighborhood function
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. ‘ayant ‘ ‘ entamé ‘ ‘le processus ‘ ‘ont une‘ ‘bonne chance ‘ ‘de rattraper‘ ‘Cellx qui Ont‘ ‘commencé ‘ ‘ plus tot.‘

eee | have | [begun| [the process ] [to catch up with | [those who have | |begun] . Iﬁﬁ)

oee ‘have‘ ‘begun‘ ‘theprocess‘

[to catch up with | [those who have | [begun| [sooner.] (-36.24)

Figure 2: lllustration of an ill-formed translation producedPlgaraoh (second line) for an excerpt
of a French sentence (first line). The third line shows the translation produde®bgedy after one
iteration.

Move The beam search DP-decoder tends tdranslations considered per source phrase.
eliminate from the search space hypotheses that
cover hard-to-translate segments. Since the dé&i-replace With the same idea in mind, we al-
coder is forced to translate all the source matelow the translation of two adjacent source phrases
rial, it is often the case that the translation of thosd® change simultaneously. We hope that by
hard-to-translate segments is postponed until thehanging more than one unit, the search will
very end of the search, typically producing ill- likely escape a local maximum. The complex-
formed translations (see Figure 2). To overcomdty Of this operation i<O(T% x (N — 1)), that s,
this situation to some extent, we allow some targeguadratic in the number of translations considered
phrases to move within the current translation. Per source phrase.

Our implementation is very conservative: .
whenever two adjacent source phrases are tran plit One task a beam search DP-decoder

lated by phrases that are distdntye consider an(ilig—mf(iit of the time 'tmp“f!tli/_'ﬁ the se%;/
moving one of the translation closer to the other. mentation ot the source marerialinto phrases. We
allow our decoder to split in two parts a given

Swap It happens rather frequently that two ad-source phrase. While doing so, the two new
jacent source segments (words or phrases) do neburce phrases receive a translation found in the
form a phrase that belongs to the transfer tabletransfer table (we consider all of them). The com-
The order in which their respective translationsplexity of this operation i€ (N x S x T?), where

will be output will be strongly influenced by the S is the (average) number of words a source
compromise between the possible inversions thphrase has in the current hypothesis.

language model allows and the strong bias toward

monotonous translations the distortion model hag\€rge  As opposed to thesplit  operation,
For this reason, we defined an operation which altheé merge operation allows two adjacent source
lows to swap two adjacent target segments. Thehrases to be merged, in which case a new transla-
complexity of this operatichis O(N — 1), that tion is also picked from the translation table. This
is, linear in the numbeN of source phrases in OPerationisO(T" x (N —1)).

the current hypothesis. _
2.3 The seed translation

Replace This opgratlo_n simply allgyvs to 231 From scratch

change the translation given for a specific source

segment by another one found in the transfer In ReWrite s the seed translation is formed

table. This operation has a complexity of Py collecting for each word its best translation as

O(N x T), whereT is the maximum number of provided by the transfer table. This is the idea

e r— _ we implemented as well. There is one subtlety
As _deflned by a threshold value counted in words. Wehowever, when we deal with phrases: a segmen-

used 3 in our experiments. . .
3We measure complexity here in terms of the maximumtation of the source sentengeinto phrases must

number of hypotheses that will be considered, givenacur—__
rent one. A typical value ofT" in our experiments is 10.
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be performed. Since many source phrases over- The recursion involved in this computation
lap, there are many a priori segmentations we calends itself to an efficient computation by dy-
choose from. In our case, we select the segmemamic programming. Once the source segmen-
tation which involves the minimum number of tation is found, we simply pick for each source
source phrases belonging to the translation modgihrase the best translation found M. An il-

M that cover maximally the source sentertte  lustration of the segmentation obtained for a short

To do so, it suffices to considekt as a set source sentence is provided in Figure 3.

of spans (i, j) denoting the fact that a source . .
phraze in/<\/l]c>overs thegpositionistoj (counted 232 SeedingeGreedy with Pharaoh

in words) inS. We define an itenr, as a triple It is likely that a DP-search will outper-
(b, ¢, n) which respectively stords the beginning form our greedy implementation, hereafter named

of a spanb, s) ending in positiors; ¢, the number feGreedy . Therefore, itis natural to investigate
of source words covered so far, angthe number Whether any benefit would result from seeding
of source phrases used to coveup to position feGreedy with the best translation produced by
s. Intuitively, an itemr, stores the best cover- Pharaoh S
age found so far from the beginning of the source The idea of cascading two translation en-
sentence to positios, along with the number of 9inés has been pioneered within the word-
source phrases used so far. based Candide translation system (Berger et al.,
We compute the iterm g by the recursion de- 1994). Unfortunately, the authors did not de-

scribed in Equation 2, where we define for an iterrscribe their local search engine, neither did they
7 = (b, ¢, n), the operators(r), ¢(r) andn(r) to provide an evaluation of its benefits to the over-

all system. The cascading strategy received a
more dedicated treatment in Marcu (2001) and
Watanabe and Sumita (2003). In their work, the

be respectively, c andn.

Ts = authors were seeding a word-based greedy search
(0,0,0), algorithm with examples extracted from a trans-
(d, lation memaory hoping to bias the search toward a
max max co(tq) +s—d+1, better solution. Our motivation is slightly differ-
d<s: n(rg) + 1 ) ent however: we simply want to know whether the
(d,s) e M greedy strategy can overcome some search errors

(2)  made by a phrase-based DP-search.
The maximizations involved in Equation 2 are _
carried out over a set of items. We use the follow-3 Experimental setup

ing operator to compare two items: 3.1 Corpora

We concentrated our efforts on the shared task

max{ry, 7o} = of last year's workshop on Statistical Machine
o) celr) <e(m) or Translation (Koehn and Monz, 2006) which con-

2 c(m1) = ¢(r2) andn(r) >n(r2)  sisted in translating Spanish, German and French

7, otherwise texts into English and the reverse direction. The

(3) training material available is coming from the Eu-
The coverage is obtained by simply backtrack+oparl corpus. Four disjoint corpora were released
ing from itemrg), that is, by computing the set during this exercise, namelyain , a portion
BTs): of 688,031, 730,740 and 751,088 pairs of sen-
tences for French, Spanish and German respec-
tively; dev, a development corpus that we used
3. — { ¢ ife=0 for tuning; devtest , a corpus of 2,000 pairs of
{<b(7—e)’ e>} - B(T‘;(e)) otherwise SWe used the-trace  option of Pharaoh to access

with 6(e) = argmax_,. c(7,) # 0 @ the phrasal alignment corresponding to the best translation
4 found.
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F de plus, nos sysimes administratifs doivetre modernigs . nous devonsgalement donner
le bon exemple .
E in addition , our administrative systems must be modernised , and it is our duty to lead by
example .

So [de plus ] [nos sygimes administratifs] [doiventfre modernigs] [. nous devonggalement]
[donner le bon exemple .]

To [furthermore ,] [our administrative systems] [must] [modernization] [and we also need] [set a
good example .] -19.5068

S1 [de plus ,] [nos systmes administratifs] [doivent]éfre modernigs] [] [nous devons
également][donner le bon exemple .]

Ty [furthermore ,] [our administrative systems] [must] [modernizatiphJwe must also] [set a
good example .] SPLIT -17.4382

Sy [de plus ,] [nos systmes administratifs] [doivent]étre] [modernisés] [.] [nous devons
également] [donner le bon exemple .]

T, [furthermore ,] [our administrative systems] [muliiE] [modernized] [.] [we must also] [set
a good example .] SPLIT -15.8488

S3 [de plus ,] [nos systmes administratifs] [doivent]éfre] [moderniés] [.] [nous devons
également[donner] [le bon exemple .]

T3 [furthermore ,] [our administrative systems] [must] [be] [modernized] [.] [we must #igoé]
[a good example .] SPLIT -15.5885

Sy [de plus ,] [nos sysemes administratifs] [doivent]éfre] [moderniés] [.] [nous devons
également] [donner] [le bon exemple .]

T, [in addition ,] [our administrative systems] [must] [be] [modernized] [.] [we must also] [give]
[a good example .] REPLACE -15.5199

Figure 3: Steps involved by the translation of a French sentence (F); E is its reference translation. A

segmentationyy) is first chosen from the 49 different source phrases that cover partidlly i6.the

associated seed translation. The phrases in bold are those involved in the highest-scored operation at

each iteration. Over 4,100 hypotheses have been evaluated within a time period of 300 milliseconds.

sentences that we used for monitoring our systentke, 2002), and the translation tables (phrases up
andtest , the official test set of the 2006 sharedto 7 words long) were obtained by running the
task, that we used only for final tests. We furtherscripts provided. These tables contain 4 scores
split thetest corpus in two partstest-in ~,  (relative frequencies and lexical scores in both
the in-domain part which consists of 2,000 sen-direction) that each receives a weighting coef-
tences from the European parliament debates, arfitient. A fifth score is intended to serve as a
test-out , which counts 1,034 sentenasl- phrase penalty model. Thharaoh built-in
lected from editorials of the Project Syndicatedistortion model and a word penalty component

website. receive as well a weighting coefficient. Alto-
gether, 8 coefficients were tuned using the script
3.2 Phrase-based engine minimume-error-rate-training.perl

The reference system we used for comparison

purposes is the state-of-the-art phrase-based en-

gine which was made available by the organizers _

of the shared task. The language model (a tri- For most of our experiments, the threshold val-

gram) was trained using the SRILM toolkit (Stol- Y€S thaiPhara(')h uses were left to their built-in
defaults. This is the version of our DP-system that

5We removed 30 sentences with encoding problems.  we callBASE from now on.
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en—L L—en ourselves to translating into English, since this
Systems L | WER BLEU | WER BLEU corresponds to the most studied translation direc-
BASE fr | 55.12 30.16 51.47 29.23 tion in the SMT literature, and we did not notice
G-S fr | 57.38 24.23 53.99 24.52 clear differences in the reverse direction.

G-BASE | fr | 53.62 30.64 50.37 29.62 First of all, we observe that roughly 40% of

BASE es| 55.04 28.17 50.97 29.94 the translations produced IBASE get improved
G-S es|56.86 22.7753.66 24.80  in score (Equationl) byeGreedy . We were
G-BASE | es|53.14 28.72/50.04 30.30  expecting a much lower improvement propor-
BASE de! 62.38 17.32 60.12 24.54 tion. One explanation for that might be the
G-S del 66.13 13.34/59.90 19.23 stack-size limitPharaoh considers as a default

G-BASE | de| 61.85 17.51 58.33 24.97 (100). Keeping the first hundred best hypothe-
ses for each source coverage (i.e. the number
Table 1: Performances of different search algoof source words covered by a given hypothesis)
rithms measured on theevtest corpus, as a Might bias the search toward locally optimal hy-
function of the translation direction. The fig- Potheses. More expectedly, however, we observe
ures in bold are significantly better than the cor-that more than 90% of the seed translations com-
respondinggAsE configuration at the 99% confi- Puted by the technique described in Section 2.3.1
dence level. get improved byfeGreedy .

Regarding the selected operations at each itera-
tion, roughly 40% of them are replacement ones,
that is, the replacement of one translation by an-

4.1 feGreedy with or without Pharaoh other one. Thenove operation also highly bene-

, . ficial. The fact that more than 15% of the winning
We first comparefeGreedy with BASE by run- . . . . .
operations inG-BASE are split operations might

ning both decoders, with the same function to o : _
- . ) appear surprising at first. Recall that this oper-
maximize (see Equation 1). In one version of

o ation comes along with a possible change in the
the greedy searcls-s, the search was initiated g P g

) arget material and is therefore not just a mat-
from scratch (see Section 2.3.1). In a secon . . .
) . er of segmenting differently the source material.
version,G-BASE, the search was seeded with the

. We also observe that some operations are onl
best translation produced Bharaoh (see Sec- marginally useful. This is the callose jerge and y
tion 2.3.2). The results are reported in Table 1. ,

. L swap. The fact that theswap operation is not
Expectedly, for all translation directions, the P b op

d h alaorith | des t | productive just indicates that the phrase table is
greedy search aigorithm alone provides trans aélready doing a good job at capturing local word-
tions of significantly lower quality than the DP-

order differences. We do not have yet a clear ex-

search. This is consistent with the observation?mn(,ﬂion for the low impact of theverge oper-

made by (Foster et al., 2003) in word-based transé‘,[i on

lation experlme_nts. However, we observe that the Last, we can see from Table 2 that the distri-
greedy search Improves upon the best t.ranSIat'OBution of the number of iterations required by
tr;la: BASF T[(.)Uﬂ((jj.. Tht'.s seemz th bg (;(;n&stlen'i_forBASE andcG-s are very different. The former con-
all transiation directions and for both evajua Ionﬁguration requires only a few iterations to con-

metrics considered. For all translation directionsverge_ at most 2 iterations in approximatively

except German-to-English, the improvements A'%09% of the cases. For the latter only more than
. v 0 . 1

significant at the 99% confidence level. half of the translations are completed after 4 itera-

In or_der fo better appremat_e. the S|tuat|_on, W&ions. Both versions require less than 10 iterations
report in Table 2 more specific information on on average to produce a translation

what the greedy search accomplishes. We restrict It is worthwhile to note that, although we did

7In all our experiments, we used the bootstrap resampling10t Yet pay attention to translation speed within
method described in (Zhang and Vogel, 2004) to computeour current implementatioh,feGreedy — defi-
significance levels, evaluating 1,000 samplings of 700 sen-_____
tences each. 8t is a simple matter to improve the speed of

4 Experiments
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fr—en es—en de—en en—L L—en

G-B G-S| G-B G-S| G-B G-S Systems L | WER BLEU| WER BLEU
%up 42,6 93.5 37.1 90.8 42 95.8 BASE fr | 55.12 30.16 51.47 29.23
1 log-s 36 29 27 17 18 29 G-BASE | fr | 53.62 30.64 50.37 29.62
%it. <2 |44.6 13.5 50.7 13.8 43.1 6.5 G-Rev | fr | 53.65 30.85 50.30 29.70
%it. <3 |66.2 29.7 74.4 31.6 65.7 17.2 BASE es| 55.04 28.17/ 50.97 29.94
%it. <5 [90.8 59.7 93.3 65.7 91.7 45.0 G-BASE | es| 53.14 28.72 50.04 30.30
%it. < 10/98.8 95.0100.0 97.8100.0 87.5 G-REV |es|52.37 29.31 50.05 30.33
MOVE 42.2 - 440 —+ 421 - BASE de| 62.38 17.32 60.12 24.54
REPLACE |41.3 45.1 38.3 45.3 37.7 51.7 G-BASE | de| 61.85 17.51 58.33 24.97
SPLIT 149 52.8 16.3 52.4 18.6 46.5 G-REV |de|61.85 17.57/57.99 25.20
MERGE 09 17 08 18 10 11
SWAP 05 02 02 02 03 05 Table 3: Performances of theREV variant for

different translation directions, measured on the
Table 2: Profile of two variants géGreedy on devtest corpus.
thedevtest corpus.G-B is a shorthand foG-
BASE. %up stands for the percentage of sentences

that get improved by the greedy searchlog-s necessarily incremental. To illustrate this added
indicates the average gain in score (Equation 1)l€ibility, we added a reversed n-gram language

it. < n indicates the percentage of sentences immodel to the set of models of the scoring function

proved for which less than iterations were re- Maximized byPharaoh . We call this variant-
quired. The bottom part of the table indicates theREV:

percentage of operations that ranked best at an it- A réversed n-gram model simply predicts each
eration of the greedy search. word of the translation from right to left, as de-

scribed in Equation 5. At first glance, this might
seem like an odd thing to do, since there is prob-
nitely compares favorably tBASE in that re-  aply not much information a decoder can gain
spect. Currently, translating the 1,000 sentencegom this model. Yet, this is one of the simplest
of devtest on a Pentium computer clocked at models imaginable, which could not be easily in-
3 GHz requires 9 minutes wileGreedy ,com-  tegrated into a DP-decoder such Rsaraoh ,
pared to 78 minutes WitBASE. since the suffix of a hypothesis is unknown dur-
4.2 Further experimenting with feGreedy Ing the search.
In the previous section, we conducted a pair- T
wise comparison ofeGreedy with our refer- p(tlT) ~ Hp(ti|ti+1 coititn—1)
ence system, by providing the greedy decoder the i=1
same functiorPharaoh is maximizing. In this

i ¢ . A ducted | Because we added a new model to the linear
Section, we Teport experiments we conauctediin, , ,yination optimized bfeGreedy , we hadto
order to improvdeGreedy . Our starting point

< th f. " ¢ ih q h q tg}me the coefficients involved once more. To save
'S. € configuration 9 € greedy search seede ome computation time, however, we did not ex-
with the best translation produced bySE.

plore the full range of values for each coefficient,
but concentrated on values close enough to those
One strength of the greedy search is that it op" " htad aIread;; fg‘%”‘f‘r' -tl;lh e3results of this experi-
erates on a full candidate translation. This allowd '€t &€ reporte .|n g € _' ]
us to optimize a scoring function which is not qu all trans_lat_lon directions but Spanish-to-
English, the gain in performance, as measured by
feGreedy , since in our current implementation, any op- wgR, are very small if not negative. However, im-
eration applied to a hypothesis triggers the computation of : .
provements irBLEU, although mostly not signifi-

its score from scratch, while some straightforward book- i ) ) :
keeping would eliminate most of the computations. cant, are consistent for all translation directions.

®)

4.2.1 Adding new features
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4.2.2 A beam-search version dieGreedy cette question est , bienlis, parfaitement

As we already noted, one advantage of the Iégitime , mais il faut y @pondre de fagon cor-
greedy search is that it requires a set amount of€Cte et pecise . (source sentence)
memory, since it does not build a search graph ¢ this question is , of course , perfectly legit-
like DP-search engines do (eRharaoh ). This imate , but it must be answered properly and
is an interesting advantage, but keeping only a carefully. Pharaoh , -16.1])
single-best current translation is somehow too ¢ Subject is of course , perfectly legitimate ,
heavy-handed a response to the memory problem Put we must respond to properly and carefully.
Therefore, in this experiment, we tested a variant (Scratch-1;18.22
of the greedy search, technically known as local © subject is of course fully justified , but it must
beam search (Russell and Norvig, 1995). In this Pe answered properly and carefully. (scratch-3,
greedy search, a beam of at médtest hypothe-  -20.58
ses are kept at each iteration. The search tries to® Subject s of course perfectly quite legitimate ,
improve on each of them, until no improvement Put it must be answered properly and carefully.
can be found. We call this versi@BEAM. (scratch-2;21.57)

We populate the beam withseed hypotheses.

One is the best translation proposeddnsE, as Figure 4: 4 seed translations computed for the
described in section 2.3.2. The— 1 others are source (French) sentence at the top along with
derived from the source coverage we compute, atheir scorescratch-nstands for a seed translation
described in Section 2.3.1. To form thé iseed computed from scratch, picking for each source
translation, we select the/i-best translation of Phrase belonging to the coverage, thik transla-
each source phrase, as found in the transfer tabltion found in the transfer table.

Obviously, they are many other ways we could

proceed to produck seed translations, including roughly 20% of the translations produced by
considering thek-first hypotheses produced by geam are different from those produced sy
BASE. An example of seed translations producedsase. Among these modified translations, 87%
for one short sentence is reported in Figure 4. Imave a higher score (Equation 1). The fact that
this example, as is often the case, the seed hypotior some sentences;BEAM missed an optimum
esis proposed bgASE is ranked higher than the found byc-BASE is simply due to the greediness
one computed from scratch. of the search along with a limited beam size. We
No improvement irBLEU andWER have been observed that by increasing the beam size, the
observed over the 1-best greedy search seede@imber of downgraded translations produced by
with Pharaoh (G-BASE). This is disappointing, G-seAM decreases. By simply choosing the best-
but not entirely surprising, sincBASE already scored translation produced by eitt@BASE or
does a good job, and tha-BASE further im-  G-Beam, we did not manage to improve signifi-
proved on it. What is more interesting, however,cantlysLEu andwER figures.
is that the beam version of our greedy search man-
aged to find higher-scored translations (according-2-3 Final tests
to Equation 1) thars-BASE does. On one hand, We conclude our exploration deGreedy
this is satisfactory from a search point of view. Onby running on thdest corpus the most salient
the other hand, it is disturbing to note that searctversions we tested on the development corpus:
errors are at some point beneficial! The adequacpAsE, the Pharaoh DP-decoderG-BASE, the
of the evaluation metrics we considered might begreedy search engine seeded with the best transla-
one reason for this observation. However, we betion BASE found,G-BEAM-5, the local beam vari-
lieve that the problem is more likely due to severeant offeGreedy , with a beam size of 5, ang-
(well-known) shortcomings of the scoring func- REV, the greedy variant using a reversed language
tion we seek to maximize, including its blindnessmodel.
to syntactical quality. Results are reported in Table 4 and 5 for
Averaged across all translation directions,the in- and out-domain test material respectively.
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en—L L—en en—L L—en
Systems |L |WER BLEU|WER BLEU Systems |L | WER BLEU|WER BLEU
BASE fr | 54.85 30.90 51.69 29.96 BASE fr | 60.29 22.31 56.66 20.78

G-BASE fr | 53.38 31.42 50.46 30.27 G-BASE fr | 57.80 23.44 54.70 21.38
G-BEAM-5 | fr | 53.46 31.26| 50.40 30.13 G-BEAM-5 | fr | 57.68 22.91 54.44 21.28

G+B5 fr | 53.43 31.28 50.36 30.17 G+B5 fr | 57.61 23.03 54.43 21.33
G-REV fr | 53.49 31.52 50.48 30.25 G-REV fr | 568.12 23.25 54.66 21.37
BASE es| 54.23 29.64 51.04 30.54 BASE es| 57.07 24.20 51.11 25.17

G-BASE es| 52.77 30.14 50.02 30.87 G-BASE es | 54.83 25.09 49.77 25.59
G-BEAM-5 | es| 52.61 30.24| 50.12 30.89 G-BEAM-5| es | 54.16 24.91| 49.74 25.74

G+B5 es|52.61 30.25 50.11 30.93 G+B5 es|54.11 24.95 49.72 25.69
G-REV es| 52.67 29.79| 50.07 30.84 G-REV es| 53.46 26.33 49.80 25.64
BASE de| 62.32 17.68 60.54 24.45 BASE de| 67.09 11.00 65.62 16.00

G-BASE de| 61.73 17.88| 58.85 24.66 G-BASE de|65.79 11.49 63.51 16.38
G-BEAM-5 | de| 61.98 17.82 57.62 24.59 G-BEAM-5 | de| 66.12 11.24| 61.54 16.72
G+B5 de| 61.95 17.84 57.62 24.58 G+Bb5 de|66.10 11.33|61.53 16.74
G-REV de| 61.77 17.89| 58.48 24.82 G-REV de| 65.93 11.40| 62.96 16.38

Table 4. Performances of different search algoTable 5: Performances of different search algo-
rithms measured on theest-in corpus. Fig- rithms measured on thest-out  corpus. Fig-
ures in bold are significantly better than theirures in bold are significantly better than their
BASE counterpart at the 99% confidence level. BASE counterpart at the 99% confidence level.

First, we observe that the greedy variaasase ~ © Slightly improves upon the-BEAM-5 variant
outperforms theBASE algorithm, for both in- for almost all translation directions, but the gain
and out-domain. The improvements imgr IS not significant. The corresponding figures are
andBLEU are significant (at the 99% confidence reported as the+B5 variant in Tables 4 and 5.
level) for all translation directions, but German-
to-English. This is consistent with our previous

experiments on the development corpus. In this study, we addressed the problem of
Second, the beam version f#Greedy , al- searching the space of possible translations with
though significantly better thaBASE in most a greedy search algorithm designed to maxi-
cases, performs usually marginally worse tharmize the log-linear function many state-of-the-
the corresponding-BASE variant. The obser- art phrase-based systems use. We discussed
vation we made on the development corpus stilsome advantages of search algorithms working
holds: the beam variant of the search manages ton a complete-state representation as our greedy
find translations that are better scored by Equasearch does. We conducted experiments show-
tion 1. On the out-domain (resp. in-domain) cor-ing that it could improve the best translation
pus, 34% (resp. 17%) of the translations profound by the more demanding multi-stack beam-
duced byc-BEAM-5 did improve in score com- search dynamic-programming algorithm embed-
pared with theirG-BASE counterpart. Less than ded in decoders such Bharaoh or Ramses.
4% (resp. 3%) received a lower score. The fact Perhaps the main contribution of this study is to
that, on the out-domain corpus, twice as manyoint out the potential such an easy search algo-
translations receive an higher score with the beavithm has over more demanding decoders. Until
version is encouraging, even if it does not clearlynow, this was an idea that had not received much
pay off in terms of evaluation metrics. attention in the phrase-based SMT community.
Picking the highest-scored translation (Equa- We plan to extend this work in several direc-
tion 1) proposed by eithes-BASE or G-BEAM-  tions. Actually, one initial motivation for this

5 Conclusions

112



study was to explore post-processing operationBhilipp Koehn and Christof Monz. 2006. Manual
that could apply to the output of a translation and automatic evaluation of machine translation be-

. . . . tween European languages. Pnoceedings of the
englne., in prder to recover systematlc errors,. N acL Workshop on Statistical Machine Translation
a way inspired by transformation-based learning pages 102-121, New York City, June.

(Brill, 1995). On step toward accomplishing this .
hilipp Koehn, Franz Joseph Och, and Daniel Marcu.

consists in increasing the number of Opera.t'o.ng 2003. Statistical Phrase-Based TranslationPrio-
that our greedy search can perform, associating ceedings of HLTpages 127—133.

with each of them a coefficient that we can ad-

; e ; hilipp Koehn. 2004. Pharaoh: a Beam Search De-
just on a development corpus. This is the idea wé coder for Phrase-Based SMT. Rroc. of the 6th

want to explore further. _ AMTA pages 115-124, Washington, DC.
We also want to cast our greedy decoder within
the open-source framework calldbod, whose Daniel Marcu. 2001. Towards a unified approach to

inciole is to offer d d that t d memory- and statistical-based machine translation.
prinCiple IS to ofier decoders that areé easy to mod- |, proceedings of the 39th Annual Meeting of the

ify and extend. Therefore, our goal will be to re-  ACL, pages 378-385, Toulouse, France.

lease a reengineered versiofeGreedy . .
Sonia Niessen, Stephen Vogel, Hermann Ney, and

Christof Tillmann. 1998. A DP-based search al-
gorithm for statistical machine translation. Mmo-

; ; ceedings of the 36th Annual Meeting of the ACL and
This study has been partially funded by_a NSERC 17th COLING pages 960966, Morétal, Canada.
grant. We are grateful to Pierre Poulin for his

fruitful comments on this work. Marian Olteanu, Chris Davis, lonut Volosen, and Dan

Moldovan. 2006. Phramer — an open source sta-

tistical phrased-based translator. Rroceedings of

the HLT/NAACL Workshop on Statistical Machine

Translation pages 150-153, New York, USA.

Adam L. Berger, Peter F. Brown, Stephen A. Della . _ .
Pietra, Vincent J. Della Pietra, John R. Gillett, Aléxandre Patry, Fabrizio Gotti, and Philippe
John D. Lafferty, Robert L. Mercer, Harry Printz, Langlais. 2006..M_ood: A mpdular objept—or|ented
and Lubg Ures. 1994. The Candide system for decoder for statistical machine translation. St
machine translation. IRroceedings of HL,Tpages LREG pages 709-714, Genoa, Italy, May.
157-162, Morristown, NJ, USA.
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Abstract

We introduce an adaptable monolin-
gual chunking approach—Alignment-
Guided Chunking (AGC)-which
makes use of knowledge of word
alignments acquired from bilingual
corpora. Our approach is motivated
by the observation that a sentence
should be chunked differently de-
pending the foreseen end-tasks.
For example, given the different
requirements of translation into
(say) French and German, it is in-
appropriate to chunk up an English
string in exactly the same way as
preparation for translation into one
or other of these languages.

We test our chunking approach
on two language pairs: French—
English and German—English, where
these two bilingual corpora share
the same English sentences. Two
chunkers trained on French—English
(FE-Chunker) and German-English
(DE-Chunker) respectively are used
to perform chunking on the same
English sentences. We construct two
test sets, each suitable for French—
English and German—English re-
spectively. The performance of the
two chunkers is evaluated on the ap-
propriate test set and with one ref-
erence translation only, we report F-
scores of 32.63% for the FE-Chunker

and 40.41% for the DE-Chunker.

1 Introduction

Chunking plays an important role in pars-
ing, information extraction and information
retrieval. Chunking is often a useful prepro-
cessing step for many bilingual tasks, such as
machine translation, cross language informa-
tion retrieval, etc.

We introduce an adaptable chunking ap-
proach guided by word alignments automat-
ically acquired from a bilingual corpus. Our
approach is motivated by the observation that
a sentence should be chunked differently de-
pending the end-task in mind. Our approach
employs bilingual word alignment in training
and is tested on the monolingual chunking
task. Our goal is to build adaptable mono-
lingual chunkers for different language pairs,
with the aim of facilitating bilingual language
processing tasks.

We investigate our chunking approach on
two language pairs: French—English and
German—English, where these two bilin-
gual corpora share the same English sen-
tences. Two chunkers trained on French—
English (FE-Chunker) and German—English
(DE-Chunker) respectively are used to per-
form chunking on the same English sentences.
We construct two test sets, each suitable for
French—English and German—English respec-
tively. The performance of the two chunkers
is evaluated on the appropriate test set and
with one reference translation only, we re-
port F-scores of 32.63% for the FE-Chunker
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and 40.41% for the DE-Chunker. We also
extend our chunking approach with Multi-
level Chunking, which is more tolerant of any
chunking errors obtained.

The remainder of this paper is organized as
follows. In Section 2, we review the previous
research on chunking including monolingual
chunking and bilingual chunking. Section 3
describes our chunking method. In Section 4,
the experimental setting is described. In Sec-
tion 5, we evaluate our chunking method on
a one-reference ‘gold standard’ testset. Sec-
tion 6 concludes the paper and gives avenues
for future work.

2 Previous Research

2.1 Monolingual Chunking

Most state-of-the-art monolingual chunking
methods are linguistically motivated. The
CoNLL-2000 shared task (Tjong Kim Sang
and Buchholz, 2000) defined chunking as di-
viding text into syntactically related non-
overlapping groups of words. Chunks are
directly converted from the Penn Tree-
bank (Marcus et al., 1993) and each chunk is
labelled with a specific grammatical category,
such as NP, VP, PP, ADJP etc. This chunk-
ing method is sensitive to the grammars of a
specific language and performs chunking in a
monolingual context.

Marker-based chunking is another syntax-
aware chunking strategy. This chunking ap-
proach is based on the “Marker Hypothesis”
(Green, 1979), a psycholinguistic constraint
which posits that all languages are marked
for surface syntax by a specific closed set
of lexemes or morphemes which signify con-
text. Using a set of closed-class (or “marker”)
words, such as determiners, conjunctions,
prepositions, possessive and personal pro-
nouns, aligned source-target sentences are
segmented into chunks. A chunk is created at
each new occurrence of a marker word, with
the restriction that each chunk must contain
at least one content (or non-marker) word.
Although marker-based chunking has been
used in bilingual tasks such as machine trans-
lation between European languages (Gough

and Way, 2004; Groves and Way, 2005;
Stroppa and Way, 2006), which are relatively
similar with regard to marker words and word
orders, it is less appropriate for language
pairs as different as Chinese and English (Ma,
2006).

2.2 Bilingual Chunking

Bilingual chunkers are usually based on pars-
ing technology. (Wu, 1997) proposed Inver-
sion Transduction Grammar (ITG) as suit-
able for the task of bilingual parsing. The
stochastic ITG brings bilingual constraints to
many corpus analysis tasks such as segmen-
tation, bracketing, and parsing, which are
usually carried out in a monolingual context.
However, it is difficult to write a broad bilin-
gual ITG grammar capable of dealing with
long sentences. (Wang et al., 2002) proposed
an algorithm integrating chunking and align-
ment and obtained good precision. However,
this method needs quite a lot of syntax infor-
mation and prior knowledge. (Liu et al., 2004)
proposed an integrated probabilistic model
for bilingual chunking and alignment indepen-
dent of syntax information and grammatical
rules.

3 Alignment-Guided Chunking

3.1 Notation

While in this paper, we focus on both French—
English and German—English, the method
proposed is applicable to any language pair.
The notation however assumes the French-
English task in what follows.

Given a French sentence f{ consisting of
I words {f1,..., fr} and an English sentence
e{ consisting of J words {e1,...,es}, Ap_p
(resp. Ap_ ) will denote a French-to-English
(resp. an English-to-French) word alignment
between f{ and e{. As 1-to-n alignments are
quite common, Ap_,g can be represented as
a set of pairs a; = (f;, E;) denoting a link be-
tween one single French word f; and a few En-
glish words E; (and similarly for Ag_, ). The
set E; is empty if the word f; is not aligned
to any word in ef.

Given a French—English sentence pair

(fi,ef), suppose fi is aligned to a set of En-
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glish words E; = {ej,...,€j4m}, and EiIJrl =
EinU---UEr = {eg,...,ex1n} denotes a
union of English words that are aligned to
the set of French words {fit1..., fr}. There
should be a partition between f; and f; 1, iff.
k > j+m. We can partition the English sen-
tence using the same method.

Given a French—FEnglish sentence pair and
the word alignment between them, we can
partition both French and English sentences
following the criteria described above. As this
chunking is guided by the word alignment, we
call it Alignment-Guided Chunking.

Assume the French-English sentence pair
and their word alignment in (1):

(1) French: Cette ville est chargée de
symboles puissants pour les trois
religions monothéistes .

English: The city bears the weight
of powerful symbols for all three
monotheistic religions .

Word alignment: 0-0 1-1 2-2 3-
4 4-5 5-7 6-6 7-8 89 9-10 10-12
11-11 12-13

The AGC chunks derivable via our method
are displayed in Figure 1.

Cette ||| ville ||| est ||| chargée ||| de ||| symboles puissants |||

pour ||| les ||| trois ||| religions monothéistes ||| .

The ||| city ||| bears ||| the weight ||| of ||| powerful symbols |||
for ||| all ||| three ||| monotheistic religions ||| .

Figure 1: Example of AGC chunks

Note that the method is able to cap-
ture adjective-noun combinations in each lan-

guage, as well as the determiner-noun pair in
English.

3.2 Data Representation

(Ramshaw and Marcus, 1995) introduced a
data representation for baseNP chunking by
converting it into a tagging task: words in-
side a baseNP were marked I, words out-
side a baseNP receive an O tag, and a
special tag B was used for the first word

inside a baseNP immediately following an-
other baseNP. (Tjong Kim Sang and Veen-
stra, 1999) examined seven different data rep-
resentations for noun phrase chunking and
showed that the choice of data representation
has only a minor influence on chunking per-
formance.

In our chunking approach, every word is
classified into a chunk and no fragments are
left in a sentence. Accordingly, we do not
need the tag O to mark any word outside a
chunk. We can employ three data representa-
tions similar to (Tjong Kim Sang and Veen-
stra, 1999) named IB, IE, IBE1, IBE2, where
the I tag is used for words inside a chunk.
They differ in their treatment of chunk-initial
and chunk-final words as shown in Table 1.

In our experiments, we use IE to represent
the data, so that the problem of chunking is
transformed instead into a binary classifica-
tion task. The IE tag representation for the
English sentence in Figure 1 is shown in (2):

(2) The/E  city/E  bears/E  the/I
weight/E  of/E  powerful/I sym-
bols/E for/E  all/E  three/E

monotheistic/I religions/E ./

Again, note the dependence of determiners
and adjectives on their following head noun.

3.3 Parameter Estimation

In this section, we briefly introduce two well-
known machine learning techniques we used
for parameter estimation, namely Maximum
Entropy (MaxEnt) and Memory-based learn-
ing (MBL). Both of them are widely used in
Natural Language Processing (NLP).

Maximum Entropy was first introduced in
NLP by (Berger et al., 1996). It is also
used for chunking (Koeling, 2000). Memory-
based learning (e.g. (Daelemans and Van den
Bosch, 2005)) is based on the simple twin
ideas that:

e learning is based on the storage of exem-
plars, and

e processing is based on the retrieval of ex-
emplars, or for similarity-based reason-
ing, on the basis of exemplars.
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1B all chunk-initial words receive a B tag

1E all chunk-final words receive a E tag

IBE1

all chunk-initial words receive a B tag, all chunk-final words receive a E tag;
if there is only one word in the chunk, it receives a B tag

IBE2

all chunk-initial words receive a B tag, all chunk-final words receive a E tag;
if there is only one word in the chunk, it receives a E tag

Table 1: Data Representation for Chunking

MBL can be used simply and effectively to
perform a range of classification tasks.

3.4 Feature Selection

Feature selection is important for the perfor-
mance for both machine learning techniques.
In practice, the features we used are shown in
Table 2. The information we used was con-
tained in a 7-word window, i.e. the leftmost
three words and their Part-of-Speech (POS)
tags, the current word and its POS tag, and
the rightmost three words and their POS tags.

3.5 Multi-level Chunking
3.5.1 Notation
I

Given a sentence sj containing I words
{wy,...,wr}, chunking can be considered as
the process of inserting a chunk boundary
marker ¢; between two consecutive words
w;, w;11. The probability of inserting a chunk
boundary marker ¢; between two consecutive
words w;, w; 1 (i.e. the partition probability)
can be defined as:

p(cils1) = pya(eilst)
_ e[t Amhn(cis s1)]
> eXp[Z%ﬂ Anln (¢}, 57)]

For sentence s, we can derive a set of par-
tition probabilities with I — 1 elements:

PP ={p(ci|s)),...,p(ci—1]s)}

By setting different thresholds for our par-
tition probabilities, we can obtain different
chunking results for the same sentence. This
threshold can be adjusted depending on the
task at hand with the result that different
chunking patterns for the same sentence are
obtained. We call this chunking model Multi-
level Chunking.

If we relate this model to our IE data rep-
resentation (cf. (2) above), it is equivalent to
determining the probability of a word being
labelled E. While most chunking approaches
are essentially classification-based, our model
attempts to transform the classification-based
approach into a ranking problem and decide
the partition point of a sentence by examining
competitive scores at each point. We call this
chunking approach Ranking-based Chunking.

The set of parameters in this model include
(i) the set of partition probabilities, and (ii)
estimates of thresholds for partition probabil-
ities bearing in mind the specific task to be
performed.

Figure 2 gives an example of the distribu-
tion of the partition probability.

The ||| city ||| bears||| the ||| weight ||| of ||| powerful ||
0.7069 0.5307 0.5467 0.4527 03777 0.4098  0.4162

symbols ||| for || all ||| three ||| monotheistic ||| religions ||| .
0.4318 0.4253 0.3807 0.5655 0.5078  0.9796

Figure 2: Example of Multi-level chunking

If we take 2 words as our average chunk
length, we can chunk sentence (2) as shown
in Figure 3.

The ||| city ||| bears ||| the ||| weight of powerful symbols for all

three ||| monotheistic religions ||| .

Figure 3: Example of chunking result using
Multi-level chunking

Note that several words weight ... three
have been combined into one chunk in Fig-
ure 3 based on the partition probabilities
shown in Figure 2.
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‘Word

wi—3

Wi | Wi+l | Wit2 | Wit3

POS | t; 3 | tio | tia

ti | tiv1 | tiy2 | tivs

Table 2: Features for chunking

3.5.2 Threshold Estimation

The average length of chunks can be esti-
mated from training data acquired following
the criteria described in Section 3.1. With an
estimation of average chunk length, we can set
a chunking threshold to chunk a sentence.

4 Experimental Setting

4.1 Evaluation

Using the Alignment-Guided Chunking ap-
proach described in Section 3, we can
train two different chunkers on French—
English (FE-Chunker) and German-English
(DE-Chunker) bilingual corpora respectively.
We use the two chunkers to perform chunk-
ing on the same English sentences. Two test
sets are constructed, each suitable for the FE-
Chunker and the DE-Chunker respectively.
The performance of the two chunkers is eval-
uated on the appropriate test set.

4.2 Gold Standard Test Set

For each sentence F in the test set, there could
be N translation references 7V. For each sen-
tence pair < E,r; >, a unique word alignment
A; can be acquired. Following the criteria de-
scribed in Section 3.1, we can derive N chunk-
ing results C{¥ using < F, A; > (i € [0, N)).
All these chunking results should be consid-
ered to be correct. Chunking results for F
using our approach are evaluated on C{¥ us-
ing just one ‘gold standard’ reference.

We firstly construct the test set automat-
ically using the criteria described in Sec-
tion 3.1. After that we check all the sentences
manually to correct all the chunking errors
due to word alignment errors.

4.3 Data

The experiments were conducted on French—
English and German—English sections of the
Europarl corpus (Koehn, 2005) Release V1.

"http://people.csail.mit.edu/koehn /publications
/europarl/

This corpus covers April 1996 to December
2001, and we use the Q4/2000 portion of the
data (2000-10 to 2000-12) for testing, with the
other parts used for training. The English
sentences in the French—English and German—
English corpora are not exactly the same due
to differences in the sentence-alignment pro-
cess. We obtain the intersection of the En-
glish sentences and their correspondences to
construct a new French-English corpus and
German—English corpus, where these two cor-
pus now share exactly the same English sen-
tences.

In order to test the scalability of our chunk-
ing approach, we first use 150k of the sentence
pairs for training, which we call the Small
Data set. Then we use all the sentence pairs
(around 300k sentence pairs) for training. We
call this the Large Data set.

We tag all the English sentences in
the training and test sets using a maxi-
mum entropy-based Part-of-Speech tagger-
MXPOST (Ratnaparkhi, 1996), which was
trained on the Penn Treebank (Marcus et al.,
1993). We use the GIZA++ implementation
of IBM word alignment model 4 (Brown et
al., 1993; Och and Ney, 2003)? and refinement
heuristics described in (Koehn et al., 2003)
to derive the final word alignment.

We used the Maximum Entropy toolkit
‘maxent’,®> and the Memory-based learning
toolkit TIMBL? for parameter estimation.

4.4 Statistics on Training Data

To demonstrate the feasibility of adapting our
chunking approach to different languages, we
obtained some statistics on the chunks of two
training sets derived from French-English (F-
E, 300k-sentence pairs) and German—English

2More specifically, we performed 5 iterations of
Model 1, 5 iterations of HMM, 5 iterations of Model
3, and 5 iterations of Model 4.

®http://homepages.inf.ed.ac.uk /50450736
/maxent_toolkit.html

“http://ilk.uvt.nl/timbl/
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(D-E, 300k-sentence pairs) corpora respec-
tively. There are 3,316,887 chunks identified
in the F-E corpus and 2,915,325 chunks in the
D-E corpus. A number of these chunks over-
lap: 42.08% in the F-E corpus and 47.87% in
the D-E corpus (cf. Table 3). The number
of overlapping chunks (OL chunks) between
these two corpora is 1,395,627.

FE DE
No. of Chunks | 3,316,887 | 2,915,325
OL Chunks[%] | 42.08% | 47.87%

Table 3: chunk statistics

We can also estimate the average chunk
length on training data. Using the F-E cor-
pus, the average chunk length for English is
1.84 words and 2.10 words using the D-E cor-
pus. This demonstrates definitively that our
approach does carve up sentences differently
depending on the target language in question.

5 Experimental Results

5.1 Results

Two machine learning techniques—Maximum
Entropy (MaxEnt) and Memory-based learn-
ing (MBL)—are used for chunking. In order
to test the scalability of our chunking model,
we carried out experiments on both the Small
data and Large data sets described in Sec-
tion 4.3.

The detailed results are shown in Table 4.
Here we can see that the F-score is quite low
because we have just one reference in the test
set (see Section 4.2). Furthermore, we see no
significant improvement with the maximum
entropy method when more data is used.

F-scores for German chunks are on the
whole between 25 and 33% higher than for
French. For German, when using MaxEnt
Precision scores are significantly higher than
Recall, but the opposite is seen when MBL
chunks are used. For French, Recall scores
are higher in general than those for Precision.

Figure 4 gives an example of chunking re-
sults using MaxEnt. Note the differences
between this output and that in Figure 3:
the determiner the has now been properly

grouped with the following N-bar weight of
powerful symbols ..., and similarly all belongs
more closely to three monotheistic religions
than it did before.

The ||| city ||| bears ||| the weight of powerful symbols for |||

all ||| three ||| monotheistic ||| religions ||| .

Figure 4: Example of chunking result

5.2 Multi-level Chunking

As an extension to our classification-based
chunking method, multi-level chunking can be
regarded as an application of ranking. We ob-
tain the global chunk length from the training
data to derive the optimal partition thresh-
old. We use the average chunk length from
the training data described in Section 4.4, i.e.
for the French—English task, the average En-
glish chunk length is 1.84 words, whereas it is
2.10 words for German—English. The results
of applying the multi-level chunking method
(Multi) are shown in Table 5.

By using the multi-level chunker, we can see
a slight increase in recall together with a sharp
decrease in precision. This demonstrates that
deriving chunks using just a global average
chunk length is likely to be sub-optimal for
any given sentence.

6 Conclusions and Future Work

In this paper, we have introduced a novel
chunking approach guided by the word align-
ment acquired from bilingual corpora. We in-
vestigate our chunking approach on two lan-
guage pairs: French—English and German—
English, where these two bilingual corpora
share the same English sentences.
machine learning techniques—Maximum En-
tropy and Memory-based learning—were em-
ployed to perform chunking. We demon-
strate the impact of chunking results on the
English side due to the differences between
French—FEnglish word alignment and German
English word alignment, demonstrating the
merit of such a chunking approach in a bilin-
gual context. We evaluate the performance
of our chunking approach on a one-reference
gold standard test set and report an F-score

Two
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Accuracy Precision Recall F-score
FR DE FR DE FR DE FR DE
MaxEnt-Large | 55.37 | 68.41 | 30.89 | 47.57 | 34.57 | 35.12 | 32.63 | 40.41
MBL-Large 52.70 | 65.75 | 24.08 | 38.00 | 30.43 | 41.61 | 26.88 | 39.72
MaxEnt-Small | 55.08 | 68.37 | 30.83 | 47.37 | 35.26 | 34.93 | 32.90 | 40.21
MBL-Small 52.53 | 65.56 | 23.96 | 37.62 | 30.41 | 40.83 | 26.80 | 39.16
Table 4: Results of Classification-based Chunking[%)]
French German
Precision | Recall | F-score | Precision | Recall | F-score
MaxEnt 30.89 34.57 | 32.63 47.57 35.12 | 40.41
MBL 24.08 30.43 | 26.88 38.00 41.61 | 39.72
MaxEnt-Multi 28.41 34.69 | 31.24 38.14 38.11 | 38.12
MBL-Multi 22.69 28.18 | 25.14 34.36 38.46 | 36.29

Table 5: Classification-based Chunking vs. Ranking-based Chunking[%)]

of 32.63% for the FE-Chunker and 40.41%
for the DFE-Chunker. We also extend our
chunking approach with Multi-level Chunking,
which is more tolerant of the chunking errors,
but lower Precision scores are seen across the
board.

As for future work, we want to experiment
with other methods of word alignment (e.g.
(Tiedemann, 2004; Liang et al., 2006; Ma et
al., 2007)) in order to establish which one is
most appropriate for our task. We also want
to apply this method to other corpora and
language pairs, especially using IWSLT data
where for 4 language pairs we have 16 ref-
erence translations. We anticipate that our
chunking approach is likely to be of particu-
lar benefit, at least in theory, in a statistical
machine translation task given the complex-
ities of the decoding process.
the principal remaining concern is whether
the better motivated yet considerably smaller
number of bilingual chunks derived via our
method will lose out in a real task-oriented
evaluation compared to a baseline system
seeded with phrase pairs produced in the
usual manner.

Nonetheless,
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Abstract

This paper describes a novel ap-
proach to syntactically-informed
evaluation of machine translation
(MT). Using a statistical, treebank-
trained parser, we extract word-word
dependencies from reference trans-
lations and then compile these
dependencies into a representation
that allows candidate translations to
be evaluated by string comparisons,
as is done in n-gram approaches to
MT evaluation. This approach gains
the benefit of syntactic analysis of
the reference translations, but avoids
the need to parse potentially noisy
candidate translations. Preliminary
experiments using 15,242 judgments
of reference-candidate pairs from
translations of Chinese newswire text
show that the correlation of our ap-
proach with human judgments is only
slightly lower than other reported
results. With the addition of multiple
reference translations, however, per-
formance improves markedly. These

Chris Brew
Department of Linguistics
The Ohio State University

Columbus, OH, USA
cbrew@ling.osu.edu

results are encouraging, especially
given that our system is a prototype
and makes no essential use of syn-
onymy, paraphrasing or inflectional
morphological information, all of
which would be easy to add.

1 Introduction

Effective automatic translation evaluation
(ATE) systems are crucial to the development
of machine translation (MT) systems, as
the relative performance gain of each minor
system modification must be tested quickly and
cheaply. A professional human evaluation of
MT system output after each such modification
is too expensive and time-consuming for
rapid, cost-effective deployment of translation
software.

For the past few years, n-gram precision met-
rics for MT evaluation such as BLEU (Pap-
ineni et al., 2002) and the related NIST met-
ric (Doddington, 2002) have been the standard
approach to ATE. In essence, BLEU and NIST
measure the quality of a candidate translation
as a function of the number of n-grams (typi-
cally, 1 < n < 4) it shares with a set of (one
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or more) reference translations. These metrics
require a one-time investment of creating a ref-
erence corpus of translations to test the system
against, but are fully automatic once this corpus
has been created and are very portable, requir-
ing only word tokenisers for the reference set
(if it is not already tokenised).

The portability of n-gram-based models,
however, is one side of a trade-off with ro-
bustness: candidate translations are rewarded
or penalised according to how well they match
the exact, contiguous word sequences in the
reference set. Candidates that contain legit-
imate word order variation will be penalised
for not having these exact matches. Increas-
ing the size of the reference set so as to cap-
ture more translational variation (as suggested
by Thompson (1991)) is one possibility, but
this is an expensive and time-consuming al-
ternative. Moreover, given that adjuncts (e.g.,
adverbial modifiers), stacked attributive adjec-
tives and a host of other grammatical ele-
ments can often “move around” without sig-
nificantly affecting the meaning of a sentence,
the strategy of padding the reference set with
more examples for a word n-gram approach can
only accommodate a fraction of the legitimate,
syntactically-licensed variation in word order
that a candidate translation should be allowed
to display.

It seems reasonable, then, to explore ap-
proaches to ATE that exploit syntactic infor-
mation so as not penalise legitimate syntactic
variation. This paper describes such an ap-
proach. We describe here a prototype sys-
tem called BLEUATRE! (“bluish™), a novel ap-
proach to syntactically-informed automatic ma-
chine translation evaluation that uses syntac-
tic word-word dependencies from parses of ref-

Associate with

'Standing ~ for ~ BLEU’s
Tectogrammatical RElations.

erence translations. In this approach, we use
a statistical Combinatory Categorial Grammar
parser (Clark and Curran, 2004) to parse the
reference set and extract word-word depen-
dencies based on hierarchical head-dependent
relationships (or “tectogrammatical” relation-
ships). These dependencies are then compiled
out into bags of dependent words that must ap-
pear to the left and right of each head word —
essentially enforcing a partial linear ordering
of dependents with respect to their heads. The
quality of a candidate translation is then eval-
uated according to the number of these head
word-dependent word partial orderings that it
recalls. This approach is novel in that it only re-
quires parses of reference translations, avoiding
the need to parse (potentially noisy) candidate
translations.

Preliminary experiments using 15,242 judg-
ments of reference-candidate pairs from trans-
lations of Chinese newswire text show that
BLEUATRE’s correlation with human judg-
ments is competitive with, but lower than,
other reported results. With the addition of
multiple reference translations for each sys-
tem judgment, however, performance improves
markedly. These results are encouraging, es-
pecially given that BLEUATRE is a prototype
and makes no essential use of synonymy, para-
phrasing or inflectional morphological infor-
mation. The essential contribution of this paper
is a description of how syntactic dependencies
can be “flattened” to a form suitable for evalu-
ating unparsed candidate translation sentences.
We anticipate that this approach can be prof-
itably combined with other syntactic and non-
syntactic approaches to ATE.

The remainder of this paper is organised
as follows: Section 2 describes how we use
the parser to extract dependencies and how
BLEUATRE uses these dependencies for eval-
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Please fill your  name in
(s\np)/(s\np)  (s\np)/np  np/n n (s\np)\ (s\np)
——>
s\np
s\np Ny
s\np
Please fill in your  name
(s\np)/(s\np) ~ (s\np)/mp  (s\np)\(s\np)  np/n "
B<x P
(s\np)/np
>
s\np
>
s\np

(det name, your,)
(dobj fill, name,)
(ncmod _fill, in,)
(xcomp _ please, fill,)

(det name, your,)
(dobj fill, name,)
(ncmod _fill, in,)
(xcomp _ please, fill,)

Figure 1: A CCG derivations and correspond-
ing dependency graphs for the word order
variants Please fill your name in and Please fill
in your name.

(Key: det=‘determiner’, dobj=‘direct ob-
ject’, ncmod=‘non-clausal modifier’ and
xcomp=‘externally controlled clausal comple-
ment’.)

uation. Section 3 describes related work. Sec-
tion 4 describes our preliminary experiments,
and Section 5 is a conclusion that also briefly
outlines future work.

2 Extracting and Using Dependencies
for ATE

In our experiments, we use a statistical
Combinatory Categorial Grammar (CCG)
parser (Clark and Curran, 2004). CCG (Steed-
man, 2000) is a “mildly context-sensitive”
formalism that provides elegant analyses of
coordination  (including “non-constituent”
coordination), extraction, right node raising
and other constructions that have proved
challenging in other frameworks.

Figure 1 illustrates the CCG derivation and
corresponding Briscoe and Carroll-style gram-
matical role dependencies that the Clark and
Curran (C&C) parser outputs for the sentence
Please fill your name in.> A parse of the seman-
tically identical Please fill in your name would
give the identical dependency graph (modulo,
of course, the different string indices on the
words).

Note, however that, if the first sentence is a
reference translation and the second sentence is
a candidate translation, then an n-gram-based
approach to ATE would heavily penalise this
minor variation in word order, even though it
is identical both in syntactic dependency struc-
ture and semantic content. This is because, al-
though the two sentences share all the same un-
igrams, the second sentence only contains two
of the four bigrams from the reference sentence
(and none of the 3-grams or 4-grams), giving
it a relatively low BLEU score. A method that
compared the overlap of the syntactic depen-
dencies of the two sentences, however, would
not penalise this minor word-order variation at
all.

Note, however, that only a correct parse of
the second sentence would give the identical
dependency graph as the first. In fact the c&cC
parser, despite its state of the art performance,’
does not parse this well-formed sentence cor-
rectly. Instead, due to part-of-speech tagging
errors, it improperly treats ‘in’ as a preposition
and not a particle, giving a parse that treats ‘in
your name’ as a PP modifying a non-phrasal
verb ‘fill’. This induces the following (incor-

ZFor the uninitiated, the horizontal (underlining) lines
are analogous to branchings in a traditional tree represen-
tation of a syntactic derivation, where the ... < ... and
... > ... annotate the direction and type of the combina-
tory mechanism that produced each such “branching”.

*With =~ 85% balanced F-score in recovering both lo-
cal and long-distance labelled dependencies.
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rect) dependency graph:

(det name, your,)
(dobj fill, in,)

(dobj _ in, name,)
(xcomp _ please, fill, )

Ignoring the errors in the labels of the depen-
dency arcs, we can see that the unlabelled de-
pendency structure is also wrong: the direct de-
pendency between ‘fill’ and ‘name’ is lost.

The fact that parsers can and often do err
on well-formed sentences suggests that their
performance will degrade considerably on less
well-formed MT system output. This moti-
vates the principle innovation of BLEUATRE:
namely, we compile out the dependency triples
from the parse of a candidate translation into
bags of dependent words that must appear ei-
ther to the left or right of each head word. This
is essentially a partial linear ordering of depen-
dents with respect to their heads. The essential
point of this approach is that it avoids parsing
MT system output. The following illustrates
this process on our hypothetical reference sen-
tence Please fill your name in:

0 left ‘Please’ right {fiIl}
0 left “fill’ right ‘in’,‘name’ }
{‘your’} left ‘name’  right 1]

These partial orderings of dependents — which
we shall sometimes call “left and right con-
texts” — allow candidates to be evaluated by
a simple string search, verifying whether each
of the dependents is either to the right or to
the left of the head word as the case may be.
The score of a candidate with respect to a ref-
erence is the number of such left-right order-
ings that it recalls multiplied by an exponen-
tially decaying “length penalty”, which is in-
spired by BLEU’s brevity penalty. The intu-
ition is that, the longer a candidate translation
is, the more of the reference dependency or-

derings it is likely to recover, and, thus, can-
didate sentences longer than the reference must
be penalised. Candidates shorter than the ref-
erence, in effect, penalise themselves, as they
do not contain as many words that could match
those in the left-right contexts, and, as such, no
brevity penalty is assessed. In symbols, a can-
didate c’s dependent ordering score for a single
head word & that is in the reference r is the fol-
lowing:

DEPc,h,r =

> Acldi,h)+ > pe(dj,h)

d;elf(h) djert(h)

where c is the candidate translation, 1f(h) is the
left context of A in r, rt(h) is the right context of
hin 7, and the functions A.(d;, h) and p.(d;, h)
have value 1 if both i € c and d; (or d;, respec-
tively) is to the left (or right) of A in ¢, and 0
otherwise.*

The BLEUATRE recall score of a candidate ¢
with respect to a reference 7 is then:

BLEUATRE,., =

Zher DEP., , )
> oher [{d:delf(h)vderth)}|

Where LP. ,, the length penalty of a candidate
with respect to a reference, is simply BLEU’s
brevity penalty with the roles of the candidate
and reference lengths reversed:

LPc,r' (

1, if len(c) < len(r
O T
e

As a concrete example, take our hypothetical
candidate translation Please fill in your name.
This candidate scores a perfect 1.0, because

_len(c)

len(r) ) , otherwise

“Essentially, these functions signal whether the depen-
dent is properly ordered with respect to the head in the
candidate translation.
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‘fill’ is to the right of ‘Please’, ‘in’ and ‘name’
are to the right of ‘fill’ and ‘your’ is to the left of
‘name’ , and the sentences have the same length.
Thus the syntactically licit word order variation
is not penalised. Imagine further a less well-
formed candidate translation from Dutch

‘Vul even uw naam in’ = ‘Fill please your
name in’. Even though this candidate has only
1 bigram (and no 3- and 4-grams) in common
with the reference (thus, giving it a low BLEU
score), it still receives a fairly high BLEUATRE
score of 0.75, since only ‘please’ and ‘fill’ are
out of the order specified by the parse of the
reference. This accords with our intuitions
that ‘Fill please your name in’ is only mildly
“Dutch-sounding” and conveys the gist of the
reference.

3 Related Work

There is a growing concern in the MT research
community as to the correlation of BLEU with
human judgments of translation quality, even
at the document level (Callison-Burch et al.,
2006). This is of particular concern, as statis-
tical MT systems are now trained to minimise
error with respect to ATE metrics (Och, 2003).

There have been many attempts to improve
upon the performance of BLEU. The NIST
metric mentioned above (Doddington, 2002)
uses n-gram precision scores as BLEU does, but
it weights the information contributed by cer-
tain n-grams. In this approach, rare n-grams
count more than frequent n-grams in a candi-
date’s precision score. Turian et al.’s (2003) ap-
proach (called General Text Matcher or GTM)
is to compute both precision and recall of a
candidate’s match to the reference set, scor-
ing contiguous sequences higher than discon-
tiguous matches. Kulesza and Shieber (2004)
describe a machine learning-based approach to

combining various metrics such as BLEU-style
n-gram precision (1 < n < 5), word error
rate, position-independent word error rate, etc.
These values are passed as features to a support
vector machine (Vapnik, 1995) which learns
to discriminate human from machine-generated
translations. The farther a candidate transla-
tion’s feature encoding is on the human side of
the hyperplane separating human from machine
translations, the better it is judged to be.

(Banerjee and Lavie, 2005) describes ME-
TEOR, a word-based generalised unigram
matching approach that rewards sentence align-
ments between references and candidates that
minimise the number of crossing word align-
ments. Stemming and WordNet synonyms are
used to improve the match between translations
that may differ only in their lexical choice or
grammatical use of a particular base word form.
All of these approaches, however, are still based
on matching a candidate to a reference at the
word level, and, as such, they are ultimately still
susceptible to reduced performance due to syn-
tactically acceptable variation.

Thus, some authors have attempted to
use syntactic information in ATE. Liu and
Gildea (2005) parse both reference and candi-
date translations. The count of subtrees up to a
fixed, uniform depth that the candidate recalls
is one metric used. Also, by decomposing each
parse tree into a vector of counts of all subtrees,
the authors compute the cosine between the ref-
erence and candidate vectors. Both metrics are
also computed for dependency parses, as ex-
tracted from the phrase-structure parses of the
candidate and reference translations. Finally,
the authors compute the fraction of dependency
chains (up to some fixed length) in the refer-
ence that are also in the candidate. The authors
report improved correlation with human judg-
ments as compared with BLEU.
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Recently, Owczarzak et al. (2007) have
reported using Lexical Functional Grammar
(LFG) grammatical functional dependency
triples to evaluate translation quality. Their ap-
proach is also to parse both the reference and
candidate translations. They directly compute
the dependency precision and recall of the can-
didate translation with respect to the reference.
These authors perform an extensive comparison
of their system to various ATE metrics over the
Linguistic Data Consortium’s Multiple Trans-
lation Chinese corpus (parts 2 and 4). When
supplementing the dependency matches with
WordNet synonyms, they achieve the highest
correlation to human judgments in fluency and
second place in an average of fluency and ac-
curacy, as compared to BLEU, NIST, GTM,
Translation Error Rate (TER, (Snover et al.,
2006)) and METEOR. We have used this same
corpus and, as such, can compare our results
to theirs, as well as the other approaches they
tested over this corpus. Our approach is distin-
guished from these last two approaches in that
we do not attempt to parse candidate transla-
tions.

4 Preliminary Experiments

To test our system, we used sections 2 and 4
of the TIDES 2003 Chinese-to-English Multi-
ple Translation corpus (MTC) of newswire text
(released by the LDC). This corpus contains
various commercial off-the-shelf (COTS) and
research MT systems’ translations of a set of
Chinese source sentences. There are 4 human-
produced reference translations for each source
sentence. There are also human translation
quality (fluency and accuracy) judgments for
a subset of the machine-produced translations.
We use these quality judgments to track the per-
formance of BLEUATRE.

4.1 Experiment 1

The human judges were only shown a sin-
gle “best” reference translation (as determined
by an independent expert), and, so, following
Owczarzak et al. (2007), we compute Pearson’s
correlation coefficient of the BLEUATRE score
to each reference-candidate-judgment triple for
our first experiment. This gives 15,242 total
points of comparison (triples). This number is
less than the 16,800 triples used by Owczarzak
et al. (2007), as the c&C parser was only able
to find a spanning analysis for 98.2% of the ref-
erence sentences, and many of these reference
sentences are used several times as a gold stan-
dard for the human evaluators.?

The results of BLEUATRE’s correlation to
human fluency, accuracy and an average of the
two are displayed in Table 1. To the extent
that our approach is comparable with the re-
sults in (Owczarzak et al., 2007), we have listed
their relevant results for comparison. Note that
TER is negatively correlated with human judg-
ments. This is because 0 is a perfect TER score.
Owczarzak et al.(2007) note, however, that this
still allows comparison of the absolute values
of the correlation coefficients. Our system uses
word-word dependencies, with no recourse to
external morphological or thesaurus-based re-
sources, such as WordNet. We therefore com-
pare only with systems that use the same type
of input. Future work may use a wider range
of lexical resources and allow a wider range of
meaningful comparisons.

We note that BLEUATRE does as well as

>The parser employs a back-off strategy that expands
the parse search space incrementally to five back-off lev-
els. After five unsuccessful back-off retries, however, the
parser returns a failure notice and moves on to the next
sentence. These settings are the off-the-shelf settings of
the C&C parser with an additional, less-restrictive back-
off level, as well as with a larger maximum size on the
parse chart.
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FL HAC AVE FL HAC AVE

BLEU 0.155% | MET 0.278* | MET 0.242* UFS 0.143 | BA 0.208 | BA 0.190

OEtA1 0.154* | NIST 0.273* | NIST 0.238* LFS 0.142 | UFS 0.196 | UFS 0.189

MET 0.149% | GTM 0.260* | OEtAl 0.236* BA 0.130 | LFS0.194 | LFS 0.188

NIST 0.146* | OEtAl 0.224* | GTM 0.230*

GIM 0.146* | BA 0.202 BLEU 0.197% Table 2:  Pearson’s correlation between

TER -0.133* | BLeu 0.199% | BA 0.186 BLEUATRE, and C&C parser-based f-score

BA 0.128 TER -0.192* | TER -0.182* evaluation (labelled and unlabelled). Key:

BA=BLEUATRE; LFS=Labelled F-score;

Table 1: Pearson’s correlation between  UFS=Unlabelled F-score; (correlations to)

various evaluation metrics and human judg-
ments. BLEUATRE’s results are our own.
* indicates that the results are as reported
in (Owczarzak et al., 2007) for the same
set of reference-candidate-judgment triples
(modulo c&cC parsing failures). (Key:
BA=BLEUATRE; OEtAl=Owczarzak et
al’s “predicate-argument dependency” sys-

tem; MET=METEOR without WordNet
or stemming; FL= Human fluency judg-
ments; HAC=human accuracy judgments;

AVE=Average of FL and HAC. Other abbrevi-
ations are given above.)

TER in fluency and both TER and BLEU in ac-
curacy and fluency-accuracy average.®

Perhaps surprisingly, BLEUATRE correlates
better with human accuracy judgments than
with fluency judgments. We would expect ap-
proaches that pay appropriate attention to syn-
tax to do well on fluency, because it is closely
associated with grammatical well-formedness.
We suspect that that BLEUATRE is still too con-
servative about word order variation. It seems
to over-enforce partial orderings of dependents
with respect to their heads ’. It appears that hu-

®0nly a change of 0.015 or greater is significant at
the 95% confidence level for both ours and Owczarzak
et al.’s (2007) results.

"E.g. “Fill your name in, please” does not satisfy the
partial (right-hand side) ordering of ‘fill’ to ‘Please’ as ex-

FL=Human fluency judgments; HAC=human
accuracy judgments; AVE=Average of FL
and HAC. Only a difference of +0.016 is
significant with 95% confidence (no significant
differences).

man raters are better able to overlook this kind
of variation, and that this emerges in their flu-
ency judgments.

4.2 Experiment 2

An obvious question raised by the above re-
sults is whether our decision not to parse candi-
date translations is helpful — it may be that the
differences between Owczarzak et al. (2007)’s
results and ours are not due to this feature
of the system but rather to other differences
such as the nature of the parsers or grammat-
ical formalisms used (LFG vs. CCG). To in-
vestigate this, we compare BLEUATRE’s cor-
relation to human judgments to that of a re-
implementation of the Owczarzak et al. (2007)
approach by computing the f-score between
parses of the candidate translations and the
corresponding reference translations using the
Cc&cC parser. We compute this score for both
labelled and unlabelled dependencies and com-
pare it with BLEUATRE’s correlation to a sub-
set of the reference-candidate-triples where

tracted from our hypothetical reference translation above.
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both BLEUATRE and the f-score methods were
able to provide a score.® This results in a
set of 14,138 scores by BLEUATRE and the
f-score methods compared against reference-
candidate-judgment triples.

Table 2 gives the correlation of BLEUATRE
and the two f-score methods to the rele-
vant 14,138 human judgments.  Although
BLEUATRE differs slightly from the other
methods, none of the differences is statistically
significant. This confirms our intuition that
BLEUATRE is proving effective at extracting
and applying syntactic criteria when assigning
scores to candidate translations. In effect, it is
an alternative means of doing the job for which
(Owczarzak et al., 2007) use the parser.

4.3 Experiment 3

In a third experiment, we include multiple ref-
erence translations to provide more partial or-
derings, thus minimising BLEUATRE’s sensi-
tivity to partial orderings extracted from a sin-
gle reference translation. For this, we simply
compute BLEUATRE scores for each candidate-
reference pairing and pick the highest score
as the BLEUATRE multiple-reference score.
Owczarzak et al. (2007) do not describe such an
experiment, and so our results are not compara-
ble to theirs. Liu and Gildea (2005), however,
do perform such an experiment, as do Banerjee
and Lavie (2005). Accordingly, we performed
two sub-experiments for comparison with these
authors’ work:’

8As the C&C parser only achieves 98% coverage on
the reference set and 91% on the test set, we compare
BLEUATRE and the f-score approach on the intersection
of the parsed reference and candidate examples.

9Keeping in mind that the data sets are not identical
due to C&C parsing failures. These failures, however,
only lead to a few instances where there is no parsable
reference sentence for a candidate. 915 sentences in E14
and 910 sentences in E15 were given BLEUATRE scores.
Liu and Gildea report having 925 sentences per section,

E14-FL E15-FL

BA 0.199 BA 0.188
LG_dt 0.159* LG_pt 0.144%
LG.dc 0.157* LG.dt 0.137*
LG_pt 0.147* LG.dc 0.128*
BLEu 0.132% BLEU 0.122%
LG_dtve 0.090*% | LG_ptve 0.089%*
LG_ptve 0.065*% | LG_dtve 0.066%*

Table 3: Correlation of BLEUATRE and Liu
and Gildea’s metrics to human fluency judg-
ments for systems E14 and E15. (Key: * in-
dicates that the score is from (Liu and Gildea,
2005); BA=BLEUATRE; LG=Liu and Gildea
— different approaches: _dt=dependency sub-
trees, ve=vector-cosines, _pt structural sub-
trees; _de=dependency chains.)

First, following Liu and Gildea (2005), we
ran BLEUATRE to compute scores for sys-
tems E14 and E15 on part 4 of the Chinese
Multiple Translation corpus using three ref-
erence translations (namely, those from EO1,
EO03 and E04). We compare the segment-level
BLEUATRE scores to human fluency scores for
those same sentences.!? We list these scores
next to their best reported per-system scores
(including their figures for BLEU over the same
set) in Table 3.'!

Second, we compute BLEUATRE scores in-
dividually for systems E09, E11, E12, E14, E15
and E22 (MTC, Part 4) using all four reference
translations in EO1-E04. We list the average

which means we have a loss of coverage of 1% and 2%,
respectively, on these sections.

'L iu and Gildea also compute “overall” scores, which
they describe as the sum of the fluency and accuracy
score. We do not compare with these numbers.

"In our correlation tests, a difference of 0.06 is signifi-
cant at the 95% confidence level. It is difficult to say how
this compares with Liu and Gildea’s results, but their data
set is essentially the same as ours.
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BLEUATRE | METEOR
E09 | 0.338 0.351
E11 | 0.193 0.253
E12 | 0.216 0.264
E14 | 0.257 0.285
E15 | 0.238 0.237
E22 | 0.273 0.284
AVE | 0.253 0.279

Table 4: BLEUATRE and METEOR’s correla-
tion to an average of human judgments of flu-
ency and accuracy for various MT systems.

FL HAC | AVE
0.235 | 0.328 | 0.315
Table 5: BLEUATRE correlation to across-

judge human judgments using multiple refer-
ences (MTC 2 and 4). Key: FL= Human flu-
ency judgments; HAC=human accuracy judg-
ments; AVE=Average of FL and HAC.

of these scores next to the relevant METEOR
score (without WordNet or Porter stemming) in
Table 4. This set of systems is different from
those reported in (Banerjee and Lavie, 2005)
— which also includes system E17 — as we
do not have E17 in our LDC corpus. The ME-
TEOR scores were obtained by running ME-
TEOR (v 0.5) on the above-mentioned data.
These scores demonstrate that, with multi-
ple reference translations, BLEUATRE’s perfor-
mance improves markedly and becomes com-
petitive with other systems that report results
using multiple references. It is notable that only
a difference of £0.016 is significant with 95%
confidence (p < 3.609e-11) for both systems
(BLEUATRE and METEOR). Thus, the differ-
ence in performance between our system and
METEOR is not shown to be significant here.
Finally, for all judgments in MTC Parts 2

and 4, Table 5 gives BLEUATRE’s correlation
with an average of each of the human fluency
and accuracy judgments, as well as to the av-
erage of the averages of each fluency-accuracy
pair while using all four references. We are not
aware of any study that has reported these fig-
ures. We simply offer them for comparison.

5 Conclusion and Future Work

We have shown that it is possible to extract syn-
tactic dependency information from a reference
translation and compile it to a form that allows
candidate translations to be evaluated by sim-
ple string searches. While our approach cur-
rently does not achieve state-of-the-art perfor-
mance with only one reference translation, we
are encouraged by the fact that it is at least
competitive with other methods such as TER
and BLEU, and its performance is not signifi-
cantly different from a direct parse-to-parse f-
measure comparison on the same data set, us-
ing the same parser. Further, when BLEUATRE
is allowed to maximise its score over multi-
ple reference translations, its performance im-
proves markedly. Here it is competitive with
state-of-the-art approaches such as METEOR
(v 0.5), and perhaps superior to more compli-
cated syntax-based methods such as that in (Liu
and Gildea, 2005), all while avoiding the over-
head of parsing at evaluation-time.

A strength of our approach is that it is com-
patible with any parsing approach that out-
puts dependency triples and relative string po-
sitions. To improve the performance of our sys-
tem, we would like to experiment with different
parsers, as well as with stemming, electronic
thesauri such as WordNet, and sources of syn-
onymy and paraphrasing such as that described
in (Owczarzak et al., 2006).

Finally, some dependencies (e.g. determiner-
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noun dependencies) are unsurprising and per-
haps “easier” to get right, so they should ar-
guably not contribute much to assessments of
progress in the field. We would like to explore
schemes for using NIST-like weights to reward
candidate translations for recalling more “valu-
able” dependencies such as, e.g., verb-object
dependencies that are systematically missed by
well-known benchmark systems.
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grams, built over full-form words; while we use Ron

overlapping n-grams over lemma-tag pairs. Also, in

their system, in order to account for translatioved

4 gences, words and phrases in the SL and TL ardisubs
tuted by synonyms and near-synonyms, which have

been previously learned from TL and SL monolingual

corpora.

We present an experimental Machine Translatio
prototype system that is able to translate betv&gam-
ish and English, using very basic linguistic resesr In
our approach, no structural transfer rules are use
deal with structural divergences between the twe la
guages: the target corpus is the basis both facdex
selection and for structure construction. Our etyat
emphasises modularity and language independence andFor the preprocessing of the Spanish input, onty ve
thus, is translatable to languages with very lifleP  basic linguistic resources are needed, namely anly
development. POS tagger and lemmati$ewhose output is a string of
Spanish lemmas or base forms, with disambiguated PO

Our system is currently being developed in th? . . . . : )
. . ags and inflectional information. Morphologicakdin-
framework of Meps . (_Vanqleghmste &t al., 2008pe biguation is performed by selecting the most plalesi
goal IOf the Merfls bprOjectf Is to aclhlevelcorpus-Uasereading for each word given the context. At a subse
translation on the basis of a monolingual targepas . s
and a bilingual dictionary only. The bilingual dartary quent step, morphological tags are mapped intthe

- . . role/EAGLES tagsétused by the bilingual dictionary.
functions as a flat translation model that provides n this mapping step, information about POS, whidh

ansitonslor eech souce o, The most atbe Lsaq Gl icionary ook, s seprteanit
. gn : inflectional information which will be used onlyté, in
ing the statistical models built off the TL corpus token generation

Clearly, syntactic divergences between the source
and target languages are among the major challenqs
that this minimalist translation strategy facesangfer
systems typically address structural translatioverdi

gences via explicit bilingual mapping rules, eithand- ; ; o .
written or example-based. In the Spanish-Englishicpr commercial machine readable dictionary, the Spanish

type, we are able to do without a rule-based siratt English Concise Oxford Dictionary (Rollin, 1998).

transfer component by handling translation divecgsn The output of the SL preprocessing and dictionary
in the TL generation component. look-up is a set of translation candidates in fooin

By pushing the treatment of translation mismatchesétr"(}gs ?f gngl|§hh Ilgl(rnmast and POS tags, ordered ac-
to the TL end component of the system, we make the ' 2ing 10 Spanish-iike syntax.
treatment independent of the source language and co As mentioned, translations that imply changes of
sequently much more general. This solution is e li structure are among the main difficulties of usangi-
with other Generation intensive systems such as (Hingual lexicon instead of a true translation model
bash & Dorr, 2002). Like us, they are able to digge These structure changes can ultimately be redwuced t
with expensive sophisticated resources for the &our
Language, however, unlike us, they need rich Target
Language resources, such as lexical semantics; cate « deletion and insertion of Function Words

gorial variation and subcategorisation frames. (FW)*, and

Lexical translation is performed by a lemma-to-
fima dictionary, which contains information abthe
POS of both the source and the target word. Thie-bil
gual dictionary has been automatically extractedhfia

local movement of Content Words (CW),

Our approach is also close to the work presented by
(Carbonell et al., 2006). In their case, the outpiuthe
bilingual dictionary is decoded via long overlappin-  * Our current tagger-lemmatiser is CastCG (Alsinal et
2002), a shallow morphosyntactic parser for Spatiaked on
the Constraint Grammar formalism.

! The English corpus is a lemmatized version oftiish % hitp://www.Isi.upc.es/$\sim$nip/freeling/parole fesal
National Corpus tagged using the CLAWSS tagsebtitains  * The following parts-of-speech are typically comsitl to be
over 6 million sentences. function words: articles, conjunctions, determin@renouns,
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* movement of sentence constituents. probably because the word orders of the two langsiag
involved are not extremely different. The variasoof

. Our strategy, Wh.iCh makes crucial use of the_d’tstin the different settings on this baseline are consetiy
tion between funct!on and content words, providgd bsmall. The experiment shows the potential of the ap
the POS tagger, is based on the use of the targ

. EF’oach although also brings to light aspects teadro
language model to validate any change of struatere be addressed, such as optimization of weighs aod sc
curring between SL and TL, instead of writing saurc '

language dependent mapping rules. 'ng-

A series of target language models are built bgiad References

ing all the n-grams for £ n< 5. An n-gram can belong
to one of the f0||owing types: Alsina, A., Badia, T., Boleda, G., Bott, S., Gil,.,A

Quixal, M. and Valenti, O. (2002) CATCG: a general
* a sequence of lemma/tag (e.g. always/ADV + pyrpose parsing tool applied. Rnoceedings of Third
wear/VV + a/AT + hat/NN) International Conference on Language Resources
e asequence of lemmaltag except for one position and Evalugtlon. Vol. ll, pages 1130-1134, Las Pal-
of tag alone(e.g. ADV + wear/VV + /AT + ™Mas, Spain.
hat/NN) Carbonell, J., Klein, S., Miller, D., Steinbaum, ,M.
Grassiany, T. and Frei, J. (2006) Context-based ma-
chine translation. IrProceedings of the 7th Confer-
ence of the Association for Machine Trandation in
» personal pronouns (PNP) which are always the Americas. Visions for the Future of Machine
lemma/tag Translation, pages 19-28, Cambridge, Massachu-

» cardinals (CRD), ordinals (ORD) and unknown setts, USA.
words (UNC) which are always indexed as taddabash, N. and Dorr, B. (2002) Handling translation
alone. divergences: Combining statistical and symbolic
techniques in generation-heavy machine translation.
In Proceedings of the 5th Conference of the Associa-
tion for Machine Trandation in the Americas on Ma-
chine Tranglation: From Research to Real Users,
London, UK. Springer-Verlag.

Melero, Maite, Oliver, Antoni, Badia, Toni and Suifio
9 Teresa (2007) Dealing with Bilingual Divergences in
MT using Target language N-gram Models.Rro-
ceedings of the METISII Workshop: New Ap-
proaches to Machine Trandation. CLIN 17 -
Computational Linguistics in the Netherlands. (pp.

During the indexing process, tokens are usually in-
dexed as either lemma/tag or tag alone. Exceptogis

To account for structure modifications, we allow
permutation of CWs between two consecutive bounda-
rie?, as well as insertion and deletion of a predefined
set of FWs.

In the experiment described in (Melero et al. 2007
we compared the effect of each structure modifyin
operation in isolation and combined (see resuliEaible
1). It was run on a test corpus of 227 sentenams, f
which a set of 3 translation references per septaras
manually created by three independent translators.

Test set Base Ins Del Perm All 19-26) Leuven, Belgium

Grammar| 0.4698| 0.4518 0.4746 04818 0.4658Rollin, N. (1998) The Concise Oxford Spanish Dintio
Technic 0.3072| 0.2928 0.3085 0.3205 0.3088 )

Wiki 02720 | 0.2585| 0.27200 02960 0.27d9 Vandeghinste, V., Schuurman, I., Carl, M., Markauato
Table 1: BLEU scores for the different settings tou, S. and Badia, T. (2006) METIS-II: machine-

. ) ) translation for low-resource languages. In
In this experiment, we chose as baseline the eslilt  p, ceeq ngs of the Fifth International Conference on
the search on the TL corpus with no structure chmang Language Resources and Evaluation, pages 1284—
operations. This baseline turned out to be quitgh,hi 1289, Genoa, Italy. ’

prepositions and, specific to English, the exiséifthere)
and the infinitive markert¢).

® The 5-gram model is used only to build the Insertind
Deletion models.

® Boundary detection is performed on the basis @S
information at hand. A boundary is defined by a paiadja-
cent POS tags (e.g. NounArticle), which are correidi¢o
unambiguosly indicate a transition between two eontve
constituents.
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Abstract

In this paper, we present a
Japanese—English machine trans-
lation system that combines rule-based
and statistical translation. Our system
is unique in that all of its components
are freely available as open source
software. We describe the development
of the rule-based translation engine
including transfer rule acquisition
from an open bilingual dictionary.
We also show how translations from
both translation engines are combined
through a simple ranking mechanism
and compare their outputs.

1 Introduction

While there have been many advances in the field
of machine translation, it is widely acknowledged
that current systems do not yet produce satisfac-
tory results. At the same time, many researchers
also recognize that no single paradigm solves all
of the problems necessary to achieve high cov-
erage while maintaining fluency and accuracy in
translation (Way, 1999). It is our position that
translation is a problem of meaning preservation,
and that deep NLP is essential in meeting goals of
high quality translation.

Our ultimate aim is to have a robust, high
quality and easily extensible Japanese<English
machine translation system. Current stochastic
MT systems are both robust and of high qual-
ity, but only for those domains and language pairs
where there is a large amount of existing parallel

text. Changing the type of the text to be trans-
lated causes the quality to drop off dramatically
(Paul, 2006). Quality is proportional to the log of
the amount of training data (Och, 2005), which
makes it hard to quickly extend a system. Rule-
based systems can also produce high quality in a
limited domain (Oepen et al., 2004). Further, it
is relatively easy to tweak rule-based systems by
the use of user dictionaries (Sukehiro et al., 2001),
although these changes are limited in scope.

Our approach to producing a robust, high qual-
ity system is to concentrate on translation qual-
ity and system extensibility, without worrying so
much about coverage. We are able to do this be-
cause of the availability of a robust open source
statistical machine translation systems (Koehn
et al., 2007). As long as we can produce a sys-
tem that produces good translations for those sen-
tences it can translate, we can fall back on the
SMT system for sentences that it cannot translate.

This leaves the problem of how to build a sys-
tem that is both high quality and easily extensible.
To gain high quality, we accept the brittleness of a
rule-based semantic transfer system. In particular,
by using a precise grammar in generation we en-
sure that the output is (almost always) grammat-
ical. Rule types are hand-made. As far as possi-
ble we share types with the Norwegian—English
system developed in the LOGON project (Oepen
et al,, 2004). To make the system (relatively)
easily extensible, we construct transfer rules in-
stances from a plain bilingual dictionary. As far as
possible, we aim to concentrate our rule building
efforts on closed-class words, and then fill in the
open class transfer rules by automatic conversion
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Figure 1: The Jaen machine translation architecture

of the bilingual lexicon. Finally, in future work,
we will learn extra rules from aligned corpora.

In order to make this possible, we are work-
ing with an existing large scale collaborative
Japanese-multilingual dictionary project (JMdict:
Breen, 2004).

This paper is organized as follows. In Sec-
tion 2, we present related research. In Section
3, we outline the development of our core sys-
tem, and we introduce the DELPH-IN machine
translation initiative that provided the resources
used in its construction. In Section 4 we describe
the expansion of our prototype system to target
the Japanese-English section of the ATR Basic
Travel Expression Corpus (BTEC¥*). In Section 5
we outline its integration with the Moses statisti-
cal machine translation system, and we compare
translation results of these two systems in Section
6. We briefly discuss future work in Section 7,
and, finally, we conclude this paper in Section 8.

2 Related Research

Recently, several large open source machine
translation projects have been started. Sec-
tion 3.1 describes the LOGON system, which
provides many of the components for our
Japanese—English system, Here, we will discuss
two other large systems: OpenTrad and OpenLo-
gos.

OpenTrad is a Spanish open source transla-
tion initiative consiting of a general MT frame-
work and two engines (Armentano-Oller et al.,
2005). The engines are Apertium, a shallow trans-
fer system used for Castillan Spanish«Catalan,
Galician, and Portuguese, with other languages
recently added, including English and French.
There is also a structural transfer system used for

Castillan Spanish<»Basque. Both systems share
components (tokeniser, deformatter, reformatter,
etc.) and are released under the GPL.

OpenLogos! is a 30 year-old commercial trans-
fer system (Scott, 2003) that has recently been re-
leased as open source. It can translate from Ger-
man or English into a number of languages in-
cluding French, Italian, Spanish, and Portuguese.
The system is released under a dual license (com-
mercial/GPL).

Our project is much smaller than either of
these, still being closer to its research roots.

3 Japanese—English RBMT with
DELPH-IN

The first version of this system is described in de-
tail in Bond et al. (2005). The architecture of our
Japanese—English system (hereafter referred to
as “Jaen”) is semantic transfer via rewrite rules,
as shown in Figure 1. The source text is parsed
using an HPSG grammar for the source language,
and a semantic analysis in the form of Minimal
Recursion Semantics (MRS) is produced. That se-
mantic structure is rewritten using transfer rules
into a target-language MRS structure, which is fi-
nally used to generate text from a target-language
HPSG grammar.

Statistical models are used at various stages in
the process. There are seperate models for anal-
yses, transfer and generation, combined as de-
scribed in Oepen et al. (2007). At each stage we
prune the search space, only passing n different
results (5 by default) to the next stage.

Although we mainly discuss Jaen in this paper,
we have also built a reverse system, Enja, using
the same components.

"http://logos-os.dfki.de/

135



3.1 System Components

The grammars and processing systems we use are
all being developed within the DELPH-IN 2 project
(Deep Linguistic Processing with HPSG Initia-
tive) and are available for download. The lexicon
is from an unconnected project (JMdict ).

3.1.1 Processing Engines

Jaen uses the LKB (Copestake, 2002) for both
parsing and generation. The entire source is re-
leased under a very open license, essentially the
same as the MIT License. The transfer engine is
the MRS rewrite translation engine from the LO-
GON * Norwegian—English MT (Oepen et al.,
2004), which is integrated with the LKB.

3.1.2 Grammars

We use HPSG-based grammars of Japanese and
English, also from the DELPH-IN project (JACY;
Siegel (2000) and the English Resource Gram-
mar (ERG; Flickinger (2000)). Both grammars
were originally developed within the Verbmobil
machine translation effort, but over the past few
years have been used for a variety of tasks, in-
cluding automatic email response and extracting
onotlogies from machine readable dictionaries.

The grammars are being developed by seper-
ate groups of researchers, but both are part of
the Matrix multilingual grammar engineering ef-
fort (Bender et al., 2002). The Matrix consists
of a skeleton of grammatical and lexical types,
combined with a system of semantic represen-
tation known as Minimal Recursion Semantics.
The Matrix constitutes a formal backbone for a
large scale grammar of, in principle, any lan-
guage. New grammar resources (e.g., for Italian
and Norwegian) were built using the Matrix as a
‘starter-kit for grammar writing’. Three existing
grammars (English, German, and Japanese) were
adapted to the Matrix restrictions.

Other linguistic resources that are available as
part of the DELPH-IN open-source repository in-
clude a broad-coverage grammar for German and
a set of ‘emerging’ grammars for French, Korean,
Modern Greek, Norwegian, Spanish, Swedish,
and Portuguese.

Zhttp://www.delph-in.net
3http://www.csse.monash.edu.au/~jwb/j_jmdict.html
“http://www.emmtee.net

3.1.3 Lexicon

We use JMDict, the Japanese—Multilingual
dictionary created by Jim Breen (Breen, 2004) to
automatically acquire transfer rules. JMDict has
approximately 110,000 main entries, with an ad-
ditional 12,000 entries for computing and com-
munications technology, and dictionary of over
350,000 proper names. The dictionary is primar-
ily used by non-native speakers of Japanese as an
aid to read Japanese. It is widely used, and is in-
creasing in size at the rate of almost 1,000 entries
a month (Bond and Breen, 2007).

Because the end users of the dictionary are peo-
ple, the translations are often more informative
than the most common translation equivalents.
For example, [ 3 isha “doctor” is translated
as “medical doctor”, and 77 > AGE furansugo
“French” “French language”, in oder to disam-
biguate them from “Doctor [of Philosophy]” and
“French [National]” respectively. These are both
correct translations, but they are not necessarily
ideal for an MT system: in context, the meaning
is normally clear and a translation of just “doctor”
or “French” would be preferable.

3.2 Transfer Formalism

MRS (Copestake et al., 2005) is a precise,
but underspecified, language-specific semantic
representation. MRS structures are flat, un-
ordered collections of elementary predications
(EPs) with handles (h) indicating scopal re-
lations, events (e), and entities (X). Fig-
ure 2 gives the MRS for the sentence “Re-
search is fun.” The sentence is a statement,
and the message, propositionm.rel (e2)
indicates this. tanoshii_a_rel (e2,x6)is
an event, and takes kenkyuu_s_rel (x6) as its
subject. noun-relation (x6) nominalizes
kenkyuu_s_rel (x6), which is normally an
event, turning it into an entity. MRS provides sev-
eral features that make it attractive as a transfer
language, such as uniform representation of pro-
nouns, specifiers, temporal expressions, and the
like over grammars. More details can be found in
Flickinger et al. (2005).

3.3 Transfer Rules

As illustrated in Oepen et al. (2004), transfer rules
take the form of MRS tuples:
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fiffge A% LW

[ LTOP: hl
INDEX: e2 [ e TENSE: PRES
MOOD: INDICATIVE
PROG: — PERF: - ]
RELS: <
[ PRED proposition_m_rel
LBL: hl
ARGO: e2
MARG: h3 ]
[ PRED "_kenkyuu_s_rel"
LBL: hi4
ARGO: x5
ARG1l: u7
ARG2: u6 ]
[ PRED "noun-relation"
LBL: h8
ARGO: x5
ARG1l: h9 ]
[ PRED proposition_m_ rel
LBL: h9
ARGO: x5
MARG: hl10 ]
[ PRED udef_rel
LBL: hll
ARGO: x5
RSTR: hl2
BODY: hl3 ]
[ PRED "_tanoshii_a_rel"
LBL: hl4
ARGO: e2

ARGl: x5 ] >
HCONS: < h3 geqg hl4, hl0 geq h4,
hl2 geg h8 > ]

Figure 2: MRS for AF5% B3 28U\ research is fun
“kenkyuu ga tanoshii”

[CONTEXT:]IN[!FILTER]->0UT

where IN(PUT) is rewritten by OUT(PUT),
and the optional CONTEXT specifies relations
that must be present for the rule to match, and
conversely, FILTER specifies relations whose
presence blocks a rule from matching. Consider
the following transfer rule to translate = i gengo
into “language”:

gengo-language-mtr :=

[ IN.RELS < [ PRED"_gengo_n_1_rel",
LBL #hl, ARGO #x1 ] >,
OUT.RELS < [ PRED"_language_n_1_rel",
LBL #hl, ARGO #x1 ] > 1.
This rule rewrites any instance of

gengo.n_1l_rel with language.n_1l_rel.
#h1l and #x1 indicate that the LBL and ARGO
arguments of the MRS produced must be pre-
served. While this may seem like a fairly easy
to understand rule, we must repeat the constraint

on LBL and ARGO every time we write a
rule to translate nouns. In order to avoid such
redundancy in rule writing, LOGON allows the
user to specify rule types that can encapsulate
common patterns in rules. The above rule can be
generalized to cover nouns:

noun_mtr := monotonic_mtr &
[IN.RELS < [ LBL #hl, ARGO #x1 ] >,
OUT.RELS < [ LBL #hl, ARGO #x1 ] > 1].

and our example rule can be rewritten as:

gengo-language-mtr := noun_mtr &
[ IN.RELS < [PRED "_gengo_n_1_rel" ] >,
OUT.RELS <[PRED "_language_n_1_rel"]>].

The LOGON system contains a rich definition of
rule types - many of which were immediately ap-
plicable to Jaen. Jaen inherited from LOGON rule
types for open category lexical items such as com-
mon nouns, adjectives, and intransitive & transi-
tive verbs. In addition, LOGON contains a number
of rule types to specify rules for quantifiers, par-
ticles, and conjunctions, providing much of the
framework needed to develop Jaen.

3.4 Rule Types Unique to Jaen

Here, we briefly describe a few rule types that
were developed to handle linguistic phenomena
unique to Japanese—English translation. In Fig-
ure 2, we see an example of the Japanese ver-
bal noun, fiff 5% kenkyuu “research” being used
as a noun. In Jaen, Japanese verbal nouns are
analyzed as events, and they produce messages
accordingly. When it is being used as a noun,
kenkyuu_s_rel is wrapped with the relation
noun-relation. We handle these constructions
with a special rule that nominalizes the verbal
noun by removing its event and the associated
message and replacing them with and entity when
it appears as a noun:

vn-n_Jjf := monotonic_mtr &
[ CONTEXT.RELS < [ PRED "ja:udef_rel",
ARGO #x0 ] >,
IN [RELS <[PRED "ja:noun-relation",
LBL #h6, ARGO #x0, ARGl #hp],
[PRED "ja:proposition_m_ rel",
LBL #hp, ARGO #ep, MARG #h5 ],
[PRED #pred, LBL #h0, ARGO #ep 1>,
HCONS < geq & [HARG #h5, LARG #h0 ]>1,
[RELS <[PRED #pred, LBL #h6,
ARGO #x0 1>,
HCONS < > ] ].

ouT

In short, this rule type removes the noun-
relation and all semantic relations resulting in the
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verbal noun’s analysis as an event. This change
makes it possible to treat verbal nouns identically
to regular nouns in the rest of our transfer rules,
eliminating the need to create multi-word trans-
fer rules that have to distinguish between nouns
and verbal nouns. This simplifies rule develop-
ment significantly. Thus, a rule to translate fiff 5%
as the noun “research” can now be created using
the standard noun template:
kenkyuu_s-research_n-omtr := noun_mtr &

[IN.RELS <[PRED "_kenkyuu_s_rel"]>,
OUT.RELS<[PRED "_research_n_1 rel"]>].

4 Expansion of the Core Jaen System

In this section, we describe the process in which
the core Jaen system was expanded by target-
ing a Japanese—English corpus, and using open
category transfer rules acquired from a bilingual
dictionary to guide the manual development of a
small number of transfer rules for the highest oc-
curring closed class rules.

4.1 Targeting the ATR BTEC* Corpus

As development and testing data, we are currently
using the ATR Basic Travel Expression Corpus
as made available in the IWSLT 2006 evaluation
campaign (Paul, 2006). As is indicated in its
name, the BTEC* corpus consists of short spo-
ken sentences taken from the travel domain. We
selected it because is it a commonly used devel-
opment set, making our results immediately com-
parable to a number of different systems, and be-
cause our Japanese HPSG parser can successfully
analyze approximately 65% of its sentences, pro-
viding us with a good base for development. The
BTEC* data supplied in the ITWSLT 2006 evalu-
ation campaign consists of almost 40,000 aligned
sentence pairs. Sentences average 10.0 words in
length for Japanese and 9.2 words in length for
English. There are 11,407 unique Japanese tokens
and 7,225 unique English tokens.

4.2 Acquiring Open Category Transfer
Rules from Bilingual Dictionaries

Nygard et al. (2006) demonstrated that it
is possible to learn transfer rules for some
open category lexical items using a bilingual
Norwegian—English dictionary. They succeeded
in acquiring over 6,000 rules for adjectives,

nouns, and various combinations thereof. Their
method entailed looking up the semantic relations
corresponding to words in a translation pair, and
matching the results using simple pattern match-
ing to identify compatible rule types.

Our approach is an effort to generalize this ap-
proach by using rule templates to generate trans-
fer rules from input source and target MRS struc-
tures. Template mappings are used to identify
translation pairs where there is a compatible rule
type that can be used to create a transfer rule. A
template mapping is a tuple consisting of:

e a list of HPSG syntactic categories corre-
sponding to the words in the source trans-
lation

e a list of HPSG syntactic categories for the
target translation words; and

e the name of the rule template that can be
used to construct a transfer rule

Consider the following template mapping:

T ([noun], [adjective, noun], n-adj+n)

This template mapping above identifies a tem-
plate that creates a rule to translate a Japanese
noun into an English adjective-noun sequence.

Transfer rule generation is carried out in the
following manner:

1. Look up each word from source-language
translation in HPSG lexicon

e Retrieve syntactic categories and MRS
relations

e Enumerate every possible combination
for words with multiple entries

e Refactor results into separate lists of
syntactic categories and MRS relations

2. Repeat 1. for all words in target-language
translation

3. Map template mappings onto source and tar-
get syntactic categories

e Translations that match indicate exis-
tence of compatible rule template

4. Create a transfer rule by combining the rule
template and lists of source and target MRS
relations
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Figure 3: The combined Jaen and Moses system

Using this algorithm we can extract rules from
any list of word pairs and have created rules from
the EDR’ Electronic Dictionary, Wikipedia® arti-
cle links, and GIZA++ (Och and Ney, 2003) word
alignments from the IWSLT 2006 training data.
Our primary source of rules, however, is JMDict.
The results of open category transfer rule acquisi-
tion from JMDict are summarized in Table 1.

4.2.1 Enhancing the Bilingual Dictionary

The resource bottleneck is a well know prob-
lem for machine translation systems. As part of
our strategy to overcome it, we are consciously
avoiding the creation of specialty lexicons. In-
stead we are reusing and contributing to an exist-
ing dictionary.

JMDict, is an online multilingual Japanese dic-
tionary with a large user base. Users are free to
edit and contribute to JMDict, assuring that errors
in the lexicon are identified and corrected, and
that it can be easily expanded. In order to increase
the quality and coverage of JMDict and encour-
age other users to submit, we make our changes
to the dictionary available to the community. In
some cases, this means enhancing the descriptive
power of JMDict’s entries.

We have enhanced the JMdict lexicon in two
ways (Bond and Breen, 2007). The first is an ex-
plicit distinction between transfer equivalents and
explanations:

(1) M[TA]...

<gloss g_-type="equ">spot</gloss>

<gloss g_type="exp">counter for
goods or items</gloss>

The second is to explictly separate disjunctive
entries:

Shttp://www2.nict.go.jp/r/r312/EDR/
®http://www.wikipedia.org

(2) Hih[ TAB; TAL]
<gloss>farmland</gloss>
<gloss>rice field or paddy</gloss>
N

<gloss>rice field</gloss>
<gloss>rice paddy</gloss>

These two extensions make it possible to pro-
duce transfer rules only for those entries which
are true translations.

4.3 Handcrafting Closed Category Transfer
Rules

In order to decide which semantic relations to
write transfer rules for by hand, we used the au-
tomatically acquired translation rules in the above
section and attempted to translate sentences from
the BTEC* corpus. Whenever a relation failed to
transfer, the system would be unable to generate
a translation, and an error message was produced.
We counted the relations and identified the most
frequently occurring closed class relations as can-
didates for handcrafting a transfer rule. There are
currently a total of 195 handcrafted rules in our
system. A list of the 10 most common untranslat-
able relations and glosses of the translations we
created are given in Table 2.

In handcrafting transfer rules for our system,
we also encountered several linguistic problems
that needed to be solved in order to achieve high-
quality translation results, the most interesting of
which was pronoun generation in English. Since
our Japanese semantic analyses indicate when ar-
guments of a predicate have been omitted, we
came up with a small set of rules that checks what
restrictions, if any, are placed on the omitted argu-
ments, and we replace them with underspecified
English pronouns, since the nature of the omit-
ted argument is unknown. This leads to over-
generation of pronouns, which can cause a com-
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binatorial explosion in the number of translations
for sentences with multiple ellipsed pronouns. To
avoid this problem, we only allow pronouns to be
inserted for the first two argument slots (roughly
corresponding to “subject” and “object”).

Other advances made include the treatment of
common modal verbs, and natural generation of
determiners for negative clauses. We have spent
approximately three man months on handcrafting
transfer rules.

S Combining RBMT and SMT

Our end goal is to produce a high-quality, robust
machine translation system. To do so, we com-
bine our rule based system with that of an open
source statistical machine translation system as
shown in Figure 3. The output of the two sys-
tems are combined, and a ranking component se-
lects the best possible output. Our current rank-
ing mechanism is a simple cascaded model — we
select the RBMT system’s output whenever pos-
sible, falling back to the SMT system otherwise.

For the fall-back system we use Moses (Koehn
et al., 2007), an open source statistical machine
translation system that is the result of collabora-
tion at the 2006 John Hopkins University Work-
shop on Machine Translation. The main compo-
nent is a beam-search decoder, but it also includes
a suite of scripts that, when used together with
GIZA++ and SRILM (extensible language mod-
eling toolkit, 2002), make it possible to learn fac-
tored phrase-based translation models and carry
out end-to-end translation.

We followed the instructions for creating a ba-
sic phrase-based factorless system on the Moses
homepage’. This gave us a system that is compa-
rable to several of that participants in the IWSLT
2006 evaluation.

6 Evaluation

We tracked our coverage on the training set of the
IWSLT 2006 evaluation campaign using the rules
we acquired and handcrafted as outlined in Sec-
tion 4.3. Evaluation results are summarized in
Table 4. We split all translation pairs into indi-
vidual sentences by tokenizing on sentence end-
ing punctuation such as “.” and “?” yielding a

http://www.statmt.org/wmt07/baseline. html

slightly different number of translation sentences
than reported in IWSLT 2006’ s data.

Currently, we have increased our system’s cov-
erage tenfold from a starting point of 1.3% up
to 13%. In doing so, we are able to translate a
large number of sentences with interesting phe-
nomena. Our system’s bottleneck is semantic
transfer which succeeds over 33% of the time in
comparison to the over 65% success rate of pars-
ing and near 60% of generation.

While our currently level of coverage with Jaen
makes a quantitative comparison with Moses un-
informative, we give a qualitative comparison of
the two systems in Figure 3. This small selection
of sample translations illustrates the strengths and
weaknesses of each of the systems.

As seen in translations 1, 2, and 8, both systems
are capable of exactly reproducing the reference
for some sentences. Our rule-based system does
a better job at preserving structure in translations
4,5, and 7. Sometimes Moses will omit words
entirely; missing the modifier of “hotel” in 4 and
the direct object of “see” in 5. While Jaen does
not produce perfect translations in these transla-
tions, it can be argued that it preserves more of
the meaning content of the source sentence.

On the other hand, Jaen often translates quite
literally, with the odd-sounding “front money
government” being a word-for-word rendering of
the Japanese with some slight ambiguity in trans-
lating the word corresponding to “government.”
Sometimes this literal translation can work out
well, as in translation 3, where the phrase “this
vicinity” is produced in place of the SMT system
and reference’s use of “here”.

Both Jaen and Moses can leave a Japanese
word in the translation in-tact. In translation 6,
an alignment was not produced for I8 stomach
“fukubu”, and it was left untranslated. In transla-
tion 2, there is a transliteration of the word H 7&K
Japan “nihon” that is a result of Japanese proper
nouns storing transliterations of themselves in
their MRS structures. This information is acces-
sible by the English grammar during generation,
and, thus “Nihon” is produced.

We feel that the strengths and weaknesses of
these two translation systems complement each
other; Jaen does a better job at preserving the
structure of sentence, where Moses is more ca-
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pable at picking up idiomatic, non-compositional
translations. Combining their outputs allows us to
select the best output possible.

7 Future Work

In addition to the constant work on improving
the quality of the system by expanding the inven-
tory of rules, and providing feedback to the com-
ponent grammars, we are working learning rules
from examples. The basic idea is to parse both
the source and target and language sentences, then
transfer the source and attempt to align the (possi-
bly partial) translation with the parse of the refer-
ence translation. Aligned MRS structures can be
learned as rules.

A similar approach has been taken by Jelling-
haus (2007). The main differences are that they
only align very similar sentences; always start the
alignment from the root (the handle of the MRS);
and directly align the source and target MRSes.

Another area we are working to improve is
the translation ranking component of our system
combiner. The current method relies on Jaen’s
statistical models to select the best translation,
however, our current models often produce unsat-
isfiable results. We are exploring methods of di-
rectly applying Moses’ statistical models to rank
system output regardless of its origin.

8 Conclusion

We presented a Japanese—English machine
translation system that contains both rule-based
and statistical translation engines. All of the com-
ponents in our system are open source, and ex-
cluding the BTEC* data, the resources used in our
system are also freely available.

The rule-based translation engine of our sys-
tem uses a rich semantic representation as a trans-
fer language, allowing the development of power-
ful transfer rules that produce high-quality trans-
lations. By targeting an appropriate corpus for
development, automatically acquiring rules from
bilingual dictionary, and hand-crafting transfer
rules to handle the most common linguistic phe-
nomenon, we were able to greatly extend the
RBMT engine’s coverage.

The statistical machine translation engine pro-
vides a robust fallback for sentences the rule-

based system cannot cover. A simple rank-
ing mechanism makes it possible to immediately
combine the results of our two translation engine;
a better ranking model could help improve overall
quality even further.

Comparison of the rule-based and statistical en-
gines showed that their strengths and weaknesses
complement each other well. We are optimistic in
the potential our combined system has for gener-
ating robust and high-quality translations.
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Rule type BTEC* vocabulary Total rules Examples

Adj— Verb 98 250 A& —to worry
Verb—Adj 239 268 A V1FD—likely
Adj+Noun— Adj+Noun 478 527 ¥\ A2 —white wine
Intransitive Verb 1,273 2,519 B —to appear
Noun— Adj.+Noun 2,262 2,787 HE % —bad character
Adj, Adverb 2,660 3,023  HW —green
Noun+Noun—Noun 2,945 3,135 T7AT 47 FEfh—novelty
Noun—Noun+Noun 2,100 3,588 Hi—sweet tooth
Noun+Noun— Adj+Noun 3,974 4482 W5 HE ¥)'E —dark matter
Transitive Verb 3,299 5,344 FE.3— to choose
Noun+Noun—Noun+Noun 5,303 7,909 #V) ZJE—puppet show
Noun 14,489 16,242  “F—character

Total 39,120 50,074

Table 1: Results of automatic transfer rule acquisition from JMDict

Frequency Semantic relation Translation

25,927 “.ni_p_rel” {Z — in, to, into

25,056 “cop_id_rel” 72, T9 — tobe

22,976 “_no_p_rel” XDY - XY, X'sY,Yof X

10,375 “_.de_p._rel” C — in, on, at, with
9,696 “rareru_rel” ~bHA1% — passive
9,528 “neg_v_rel” ~72\N — negation
8,848 “_exist_v_rel” #»% — to be, to have
7,627 “_kono_qg.rel” ZD — this
4,173 “tai_rel” ~77\) — to want to
3,588 “_hour_n_rel” f — time, hour

Table 2: Most frequently occuring source language relations and their hand-crafted translations

Jaen

Moses

Reference

O N Bk W~

Are Japanese dogs big?

Where is there a Nihon embassy?
Is there a hotel in this vicinity?
A center hotel.

Did you see criminals?
Abdomens hurt.

Please do an allergy check.

Is it a front money government?

It is a big dog in Japan?

Where is the Japanese Embassy?
Is there a hotel near here?

The hotel.

Did you see the?

23R aches.

I am allergic to check, please.
Do I need to pay in advance?

Are Japanese dogs big?

Where is the Japanese Embassy?

Is there a hotel around here?

The Center Hotel.

Did you see who did it?

I have a stomach ache.

I’d like to have an allergy test, please.
Do I need to pay in advance?

Table 3: Sample translations from Jaen and Moses systems

IWSLT 2006 Training data results

Parsing 28,175 / 42,699 65.98%
Transfer 9,355 / 28,175 33.20%
Generation 5,523 /9,355 59.04%
Overall 5,523 / 42,699 12.93%

Table 4: Coverage for Jaen on the IWSLT 2006 traning data
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Abstract

We present a hybrid MT architecture, combin-
ing state-of-the-art linguistic processing with
advanced stochastic techniques. Grounded in
a theoretical reflection on the division of labor
between rule-based and probabilistic elements
in the MT task, we summarize per-component
approaches to ranking, including empirical re-
sults when evaluated in isolation. Combining
component-internal scores and a number of ad-
ditional sources of (probabilistic) information,
we explore discriminative re-ranking of-best
lists of candidate translations through an eclectic

main scarce for most languages, and word- and
phrase-level alignment continue to be active re-
search topics. Assuming sufficient training mate-
rial, statistical translation quality still leaves much
to be desired; and probabilistiLP experience in
general suggests that one must expect ‘ceiling’ ef-
fects on system evolution. Statisticaf research
has yet to find a satisfactory role for linguistic
analysis; on its own, it does not further our un-
derstanding of language.

combination of knowledge sources, and provide

evaluation results for various configurations. Progress on combining rule-based and data-

driven approaches toT will depend on a sus-
tained stream of state-of-the-artyT-oriented

Machine Translation is back in fashion, with IlngU|s_t|_c§ _research. ) The I\-Iorw-eg-lamo-
GON initiative capitalizes on linguistic pre-

data-driven approaches and specifically Statisti=" -

cal MT (SMT) as the predominant paradigm— cision for high-quality translation and, ac-
both in terms of scientific interest and evalu-co_rd'_ngly’ puts scalable, general-purpose lin-
ation results inMT competitions. But (fully- guistic resources—complemented with advanced

automated) machine translation remains a hard—StOCh""StIC components_—at its core. Despite fre-
if not ultimately impossible—challenge. The quent cycles of overly high hopes and subsequent

task encompasses not only all strata of "nguis_dlsnl_uspnment, MT in our view is the type of
tic description—phonology to discourse—but in %pphc,anon thath may derfnaqd kr|19wledg|e-heavy,
the general case requires potentially unlimited eep’ approaches taLP for its ultimate, long-

knowledge about the actual world and situated®™ Success. Much like Riezler & Maxwell 1il
language use (Kay, 1980, 1997). Although the(2006) and Llitjos & Vogel (2007)—being faith-

majority of commercialMT systems still have Lulbmljnorlty mﬁ_mbers our_'sﬁlves—we gpproacfh a
large sets of hand-crafted rules at their core (of:"Y°" MT architecture with a semantic transfer

ten using techniques first invented in the 1960§Jackbone as our vantage point. Plurality of ap-

and 1970s)MT research in the once mainstreamproaCheS to grammatical degcription, reu_sabi_lity
linguistic tradition has become the privilege of ao_f component p_arts, and the interplay of linguis-
small, faithful minority. tic and stochastic processes are among the strong

Like a growing number of colleagues, we ques-'oo'mS of theLOGON system.
tion the long-term value opurely statistical (or In the following, we provide a brief overview
data-driven) approaches, both practically and scief the LOGON architecture §2) and a bit of theo-
entifically. Large (parallel) training corpora re- retical reflection on the role of probability theory

1 Background—Motivation
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NO — EN set | # | words | coverage| strings
Treebank Treebank
(MRS) ‘ 266

I ] JHg | 2146 | 12.6 64.8
TMRSl JH; | 182 | 117 | 632 | 1146
vy vy

Norwegian | | «~ o oner | — English Table 1: LOGON development and held-out corpora (for

Analysis MRS | o Rank MRS | Generation the Jotunheimersegment). Average string length and end-
(LFG) | <—— | RemanKer | «—— | (HPse) to-end coverage on the two sets are comparable, but the av-
4y 4y erage number of candidate translations is higher on the de-

| Interactive Use | | Batch Processing | velopment data.

Figure 1: Schematic system architecture: the central conshows a schematic view of th@GoON architec-
troller brokers intermediate representations among treeth ) . -
processing components, accumulating candidate trams$ati ture; eren et al. (2004) provide a more detailed
and, ultimately re-ranking the-best list. overview of theLOGON approach.
o . . _ In a nutshell, the role of the rule-based compo-
in finding optimal translations§@). Section$$4  hents inLocoN is to delineate the space of gram-
through§ 6 review component-internal ranking in- matically and semantically coherent translations,
the LOGON pipeline. Finally,§ 7 outlines our ap-  yhile the ranking of competing hypotheses and
proach to end-to-end re-ranking, including empir-,iimately the selection of the best candidate(s) is
ical results for various setups. We conclude withyiewed as a probabilistic task. Parsing, transfer,
_reflectlon_s on accomplishments so far and ongoz g realization each produce, on average, a few
ing work in§ 8. hundred candidate outputs for one input. Hence,

. exhausting the complete fan-out combinatorics
2 LOGON—Hybrid Deep MT g ‘e P . )

can be prohibitively expensive, and typically we

The LOGON consortium—the Norwegian uni- limit the number of hypotheses passed down-
versities of Oslo (coordinator), Bergen, andStream to a relatively smati-best list. For all
Trondheim—has assembled a ‘deept proto-  results reported presently, the fan-out branching
type over the past four years, expending aroundactor was limited to a maximum of five output
fifteen person years on its core translation systemgandidates from parsing and (within each branch)
The LOGON pipeline comprises grammar-basedtransfer; because there is no further downstream
parsing, transfer of underspecified Minimal Re-Processing after generation, we can afford more
cursion SemanticsMRS; Copestake, Flickinger, candidate realizations per inpuis—for a total
Pollard, & Sag, 2005), and full tactical gen- Of up to5 x 5 x 50 = 1250 distinct fan-out out-
eration (aka realization). NorGram, the anal-COMes. However, it is quite common for distinct
ysis grammar, is couched in therG frame- fan-out paths to arrive at equivalent outputs, for
work and has been continuously developed ag¢xample where the same modifier attachment am-
the University of Bergen since 1999. Con- biguity may be present in the source and target
versely, the generation grammara (Flickinger, ~ language.

2000), builds on thedPsG theory of grammar, Both our linguistic resources, search algo-
and has been under developmentcstl Stan- rithms, and statistical models draw from contem-
ford since around 1993. While both analysis andporary, state-of-the art techniques and ongoing re-
generation deploy general-purpose linguistic re-search in larger, nomT communities. In this re-
sources and processing tool®GoN had to de- gard, theLOGON demonstrator provides a novel
velop itsMRstransfer formalism and Norwegian — blending of approaches, where the majority of its
English (NoEn) transfer grammar from scratch.component parts and linguistic resources have in-
The transfer engine—unification-based, resourcedependent value (and often are used in parallel in
sensitive rewriting ofvRs terms—constitutes a other research efforts and applications).

new generic tool (that is already used for other The consortium circumscribed its domain and
language pairs and even nor-tasks), but most ambitions by virtue of a reference corpus of
of the NoEn transfer grammar is specific to thearound 50,000 words of running text, six pub-
LOGON language pair and application. Figure 1lished tourism booklets on back-country activities
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Figure 3: Abstract fan-out tree: each processing compo-

_ 17-0ct-2005 (20:08 h) — 18-jan-2007 (03:07 h) nent operates non-deterministically, and distinct inmats,
Figure 2. Evolution of end-to-end coverage over time: per-j, principle, give rise to equivalent outputs.

centage oflotunheimernputs with at least one translation.

results of parsing and choose the topmost can-

in Norway. In addition to one original transla- didate, call itF;. Then consider all the results

tion, we contracted up to two additional referenceof invoking transfer onF}, and choose the one

translations; about ten per ceqt of the parallel COM o nked highestE,. And finally choose the high-
pus was held out for evaluation. Table 1 sum-

. . t th o q est ranked realization; of £;. We will refer to
marizes core metrics of the training and test secg,;q output as thdirst translation corresponding

tions of t(rj\e\r]]otunheflmerh;](_)otflits, theflargest S€0- {0 the top branch in Figure 3.
ment and the one for which three reference rans- r,, go00ng possibility is to try to find tmaost

Iatlgns are available. For model 'Fralr?mg and eval-Iikely path through the fan-out tree, i.e. try to
uation, about 670 of the Norwegian inputs and a"maximize'

(~6,000) English references were manually tree- '

banked (see below). arg max P(ey| E;) P(E;|F;) P(Fy| f)

Aiming primarily to gauge the utility of its 4.7:k

‘pure’ setup (rather than for a completer solu- The two approaches do not always yield the
tion) at the current stage, the consortium did N0t me result. Take as an example a sentehce
‘diffuse’ its linguistic backbone with additional \ith two different analysesF, and F,, where
robustness measures. Accordingly, the overall €fgya main difference between the two is that a par-
ror rate is the product of per-component ermorsyicjar word is ambiguous between a noun read-
and gradually buiIdi_ng up end-to_-end coverage—ing in 17, and a verb reading iy. If the noun
specifically harmonizing semantics for a wide va-pa5 many alternative realizations in the target lan-
riety of constructions cross-linguistically—was a guage while the verb has few, the most likely path
major part of system development. Figure 2 deyight pe one that chooses the verb, i.e. passes
picts the evolution of end-to-end coverage in thethrougth.

past year and a half. Upon completion of ac- g third possibility for the end-to-end ranking
tive development, system performance on heldsg ¢ try to find themost likely translationi.e.

out data was determined retroactively (for ear-

lier versions). In terms of end-to-end coverage argmax Y " P(ex|E;)P(E;|F;)P(F|f)

at least, it is reassuring to observe that there are ¢ F;, Ej

few differences between system behavior on de-

velopment vs. held-out data: for this domain and' Nis might result in a different top-ranked can-

genre, the finaLOGON demonstrator translates didate than the most likely path in cases where
about'two thirds of its inputs several different paths result in the same output.

Considering PP attachment ambiguities, for ex-
3 Some Theoretical Reflections ample, distinct intermediate semantic representa-
tions (pairs of £;s andF;s) can yield the same
Given our transfer system, where each of the thregarget string.
steps fan out, there are several possibilities for Which concept should we try to model? From
adding a stochastic component. What should ba theoretical point of view, there are good argu-
maximized, and how? ments for choosing what we have called the first
The first possibility is to rank the different com- translation. It makes sense to try to select the
ponents sequentially, one at a time. First rank thenost likely interpretation of what the producer of
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the source sentence has intended independentlyambiguity | # | exact match| five-best

of how it gets translated. If one ipstead selects =1 100 | 16 | 34.4 (17.2) | 56.2 (55.0)
the most I|k_er path, or the most I|_ker trans!a— 925 _ 49 28 | 30.4(21.4) | 62.5 (54.3)
tion, one might select a !ess likely interpretation 10 — 24 43 | 58.1(25.3) | 89.5 (73.9)
of what the speaker had_lntended. _ 9_9 53 | 70.8(35.1) | 96.2 (91.0)
_ Our argume_nt for thélrst translation can be total 140| 53.8 (27.3) | 84.3 (74.3)
illustrated within our earlier example of a word-

level noun vs. verb ambiguity in analysis. The 50—100 | 16 | 43.7 (17.2) | 81.2(55.0)
many different realizations of the noun in the tar- 25 — 49 28 | 50.0(21.4) | 78.6 (54.3)
get language may fall into classes of near syn- 10 —24 43 | 67.4(25.3) | 90.7 (73.9)
onyms, in which case it does not matter for the 2—9 53 | 72.6(35.1) | 100. (91.0)
quality of the result which synonym is chosen. total 140 | 63.2(27.3) | 90.7 (74.3)

Even though each of the individual realizations ) _ . .
Table 2: Evaluation of parse selection with a model trained

has a low probability, it may be a good transla-yith standard feature function templates of the XLE (upper
tion. part, as used imOGON,) and with a discriminant model

Observe here also that an automatic evaIuatioHower part, not yet used). Figures are given for the percent
ge of exact matches and matches among the five top-ranked

measure—measuring the similarities to a set 0gnalyses. Figures in parentheses show a random choice base-
reference translations, like tt®.EU metric (Pa- line. Both models were trained on seven of nine treebanked

pineni, Roukos, Ward, & Zhu, 2002)—uwill favor texts and evaluated on the two remaining texts.
the view ofmost likely translation We conjec-
ture, however, that a human evaluation will Co”e'velopment corpus. Parse selection LIOGON

spond better to the first translation. uses training data from this treebank; all sen-
From a theoretical point of view, it seems MoStances with full parses with low ambiguity (fewer
correct to go for the first translation. But it pre- 154 100 readings) were at least partially disam-
supposes that we choose the correct interpret%‘iguated.
tion of the source sentence, which we cannot . parse selection method employed in the
expect to always do. In cases where we havg,gon demonstrator uses the stochastic disam-
chosen an incorrect analysis, this might be ®higuation scheme and training software devel-
vealed by trying to translate it into the target Ian'oped atPARC (Riezler & Vasserman, 2004). The
guage and c_on5|der the result. If all the candi-, ¢ system provides a set of parameterized fea-
date translations sound bad—or have a very loW,re fynction templates that must be expanded in
probability—in the target language, that can be,ccorgance with the grammar or the training set
evidence for dispreferring this analysis. Hencey pang. Application of these feature functions
information about probabilities from later com- , ihe training data yields feature forests for both
ponents in the pipeline may be relevant, not forye |apeled data (the partially disambiguated parse
overwriting analysis probabilities, but for helping forests) and the unlabeled data (the full parse
in selecting them. forests). These feature forests are the input to the

We will in the following first review howLO-  gatistical estimation algorithm, which generates
GON employs component ranking for choosing 5 property weights file that is used to rank solu-
the first translation, and then consider an end-toi¢-

end re-ranking which attempts to find the most e of the challenges in applying the probabil-
probable translation, by directly estimating thej,, mqdel to a given grammar and training set is
posterior translation probability’(e|f). the choice of appropriate feature functions. We
have pursued two approaches for choosing fea-
ture functions. In the first approach, we started
In a sister project ta OGON, the TREPIL project,  with a significant subset of the predefined feature
a toolkit for building parsebanks affG analy- function templates and expanded each of them
ses is being developed (Rosén, Smedt, & Meurein all possible ways that would result in a non-
2006). This toolkit, called theFG Parsebanker, zero value on at least one parse in the train-

was used to build a treebank for theGoN de-

4 Parse Selection
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{ MRS ranking in isolation, but in lieu of such data,
prpstn-m[MARG recommend.v] we can contrast end-to-end system performance
:;e_z([)LanGeom_jﬁ}’k[eAﬁ?l pron, ARG2 -hike.n] on the JH test set. When passing an unranked,
_around_p[ARG1 _hike_n, ARG2 _source_n] random selection of five transfer outputs down-
gg!&ggfSvgt—eisvuz;;i—”g\%z source.n] stream, the success rate in generation drops to
def q[ARGO _waterway.n] ) ) 82.7 per cent (down from 86.5 per cent in ranked,

} five-best mode). Restricting the comparison to

the 109 items that translate in both configurations,
Figure 4. Variable-free reduction of the MRS for the utter- o r BLEU score over thdfirst translation drops
ance ‘We recommend a hike around the waterway'’s sources
from 37.41 to 30.24.
ing set; this could be done automatically. The

second approach is motivated by the hypothe

sis that discriminants, as used in manual annoReg,jization rankings the term we use for the task
tation (Carter, 1997), represent promising alter-o giscriminating between multiple surface forms
native feature functions to the predefined tem'generated for a given input semantics. By adapt-
plates. Initial tests (see table 2) show that the disrng methods previously used for parse selection,
criminant approach (which is not yet used in the,ye gre able to use treebank data for training a dis-
LOGON system) scores better than the templates iminative log-linear model for the conditional

based approach. probability of a surface realization given an in-
. put MRs. Traditionally, however, the standard ap-

5 Ranking Transfer Outputs proach to tackling this problem of indeterminacy

in generation is to use anrgram language model

While MRs formulae are highly structured graphs, (Langkilde & Knight, 1998: White, 2004: inter

Oepe.n & Lanning (2006) suggest a reduction Intoalios). Candidate strings are then ranked accord-
a variable-free form that resembles elementarxn to their fluency’. indicated by the probabili-
dependency structures. For the ranking of transfey. g Y y P

. . ies assigned by them. As a baseline for our dis-
outputs,MRsSs are broken down into basic depen- .~ = """ . )
. - A riminative model, we trained a tri-gram language
dency triples, whose probabilities are estimate

. model on an unannotated version of the British
by adaptation of standare-gram sequence mod- National Corpus ENC), containing roughly 100
eling techniques. The actual training is done us- P ’ g gnly

) . ) million words. As in the case of th@Rs ranker,
ing the freely availableemu stm toolkit (Clark- we used theMu sLM toolkit for training, result-
son & Rosenfeld, 1997). 9,

o . ing in a Witten-Bell discounted back-off model.
Based on a training set of some 8,500 in- )
. . ) When evaluated in terms of exact match accu-
domain MRSs, viz. the treebanked version of

the English translations of the (fullocon de.  "2cY On the Jid development setthe L ranker

velobment corpus. our taraet lanauade ,Semangchieves53.2%, which is well above the ran-
/€lop . pus, 9 guage - dom choice baseline df8.7%. However there
tic model’ is defined as a smoothed tri-gram L .

. . are many well-known limitations inherent to the
model over the reduction ofiRss into depen-

i ; -gram approach, such as its inability to cap-
dency triples. Figure 4 shows an example struc; = PP y p

; ) . ture long-range dependencies and dependencies
ture, corresponding to a total of ten triples, includ- .
. _ ) . between non-contiguous words. More generally,
ing {.around.p, ARGL, -hiken). The ‘vocabulary the simplen-gram models are purely surface ori-
of the model comprises some 4,400 distinct se-
mantic predicates and role labels, for a total num- g ey measures in all our experiments are calculated us-
ber of around 51,000 distinct triples. Similarly, ing the freely availableisT toolkit (in its version 11b).

2 : L L
~ ; ; Note that, when evaluating realization rankers in isola-
post-transfer EnglisMrss are broken down into tion, we use a different version of the Jidlata set. The

segments of dependency triples and ranked aGzrss in the generation treebank are here always underspeci-
cording to the perplexity scores assigned by thé@ed with respect tO_information structure, such as pa_lsaiviz
semantic model tion and topicalization. This means that the level of indete
: minacy is somewhat higher than what is typically the case
We lack a transfer-level ‘treebank’ to evaluate within theLocon MT setting.

6 Realization Ranking
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model | exact match | five-best| WA that can be brought to bear in choosing the ‘best’
BNC LM 5324 7881 | 0.882 tran(sjlat_lon,hfor examplz a measure of hOV\(/j_mucflw
Log-Linear 72 28 8459 | 0.927 reordering has occurred among corresponding el-
ements in the source and target language, or the

Table 3: Performance of the realization rankeBNC LM degree of harmony between the string lengths of
is then-gram ranker trained on the raw text version of the the source and target

BNC. Log-Linearshows 10-fold cross-validated results for . get. . .

the discriminative model trained on a generation treebank, LOg-linear models provide a very flexible

including the LM scores as a separate feature. framework for discriminative modeling that al-

_ _ lows us to combine disparate and overlapping
ented and thereby fail to capture dependenciegqrces of information in a single model without

that show a structural rather than sequential regur'unning the risk of making unwarranted indepen-

larity. All'in all, there are good reasons to expectyance assumptions. In this section we describe a
to devise better realization rankers by using modsy, | that directly estimates the posterior trans-
els with access tp grammatlcal s_tructure. Vell- ation probability Py (¢| f), for a given source sen-
dal, Oepen, & Flickinger (2004) introduced the (o\ce r and translatiore. Although the re-ranker
notion of ageneration treebankwhich facilities e gescribe here is built on top of a hybrid base-
the training of discriminative log-linear models jine gystem, the overall approach is similar to that

for realization ranking in a similar fashion as for yagcriped by Och & Ney (2002) in the context of
parse disambiguation. For further background ory,,+

log-linear models, seg7.

Our discriminative realization ranker uses alLog-Linear Models A log-linear model is
range of features defined over the derivation treegiven in terms of (a) a set apecified featurethat
of theHPsGlinguistic sign, recording information describe properties of the data, and (b) an associ-
about local sub-tree configurations, vertical dom-ated set ofearned weightshat determine the con-
inance relationsyn-grams of lexical types, and tribution of each feature. One advantage of work-
more (Velldal & Oepen, 2006). When trained anding with a discriminative re-ranking setup is that
tested by ten-fold cross-validation on a generathe model can use global features that the baseline
tion treebank created for the JHlata set, this system would not be able to incorporate. The in-
model achievesr0.28% exact match accuracy, formation that the feature functions record can be
clearly outperforming thei.-gram-basedm by a  arbitrarily complex, and a given feature can even
good margin (again, the random choice baseline igself be a separate statistical model. In the fol-
28.7%). However, by including the scores of the lowing we first give a brief high-level presenta-
LM as an additional feature, we are able to furthetion of conditional log-linear modeling, and then
boost accuracy up tt2.28%. Table 3 summarizes we go on to present the actual feature functions in
the results of the two different types of realiza- our setup.
tion rankers. The evaluation also includes exact Given a set ofn real-valued features, each pair
match accuracy within the five top-ranked candi-of source sentencgand target senteneeare rep-
dates, as well as average sentence-lexatl ac- resented as a feature vecteff, ¢) € R™. A vec-
curacy(WA), which is a string similarity measure tor of weights\ € R™ is then fitted to optimize

based on edit distance. some objective function of the training data. For
_ the experiments reported in this paper the weights
7 End-to-End Re-Ranking are fitted to maximize the conditional (pseud®

. . . likelihood (Johnson, Geman, Canon, Chi, & Rie-
Section §3 already suggests one consideration

) . . Zler, 1999)3. In other words, for each input source
in favor of re-ranking the complete list of can- ' . .

. . . sentence in the training data we seek to maximize
didate translations once fan-out is complete:
component-internal probabilistic models are falli-  3For estimation we use theabm open-source toolkit
ble. Furthermore, besides analysis_’ transfer_, andﬂ&'OUf, 2002), using itéimited-memory variable metrias

. . . . . the optimization method. As is standard practice, the model
realization-internal information, there are addi-

) ) ) is regularized by including a zero-mean Gaussian prior on
tional properties of each hypothesized pgire)  the feature weights to reduce the risk of overfitting.
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the probability of its annotated reference trans-gram language model trained on tecC) of can-
lation relative to the other competing candidatesdidate translations, as an independent indicator
However, for future work we plan to also experi- of output fluency.
ment with optimizing the scores of a given eval- pisTorTION Elementary predicationsggs)
uation metric (e.gBLEU) directly, following the in ourmRsare linked to corresponding surface el-
Minimum Error Rate approach of Och (2003).  ements, i.e. sub-string pointers. Surface links are
The three most fundamental features that ar@reserved in transfer, such that post-generation,
supplied in our log-linear re-ranker correspond tofor eacher—or group ofeps, as transfer need not
the three ranking modules of the baseline systenbe a one-to-one mapping—there is information
as described in Sectiori4, §5, and§6 above. about its original vs. its output sub-string span.
In other words, these features record the scores dfo gauge reordering among constituents, for both
the parse ranker, thers ranker, and the realiza- the generator input and output, eaehis com-
tion ranker, respectively. But our re-ranker alsopared pairwise to othegps in the sameirs, and
includes several other features that are not part aach pair classified with regard to their relative
the baseline model. surface positions. Comparing the input and out-

i put MRS, we consider corresponding pairs B
Other Features Our experiments so far have . the distortion metric for a pair of aligned

taken into account another eight properties of the. o5 easures their class difference, where for ex-
translation process, in some cases observing iy e o change from overlapping to adjacent is

ternal features of individual components, in oth-pen4jized mildly, while inverting a precedence re-
ers aiming to capture global information. The fol- |5ion comes at a higher cost. Finally, the distor-

lowing paragraphs provide an informal Overview s, metric for a pair ofvRrss is the sum of their

of th_ese additional features in our log-linear '€ per£p distortion metrics, normalized by the total
ranking model. - number ofEP pairs.

LEXICAL  PROBABILITIES One additional STRING HARMONY Seeing typological simi-
featurg type in th? Iog-Ilnear.r_n.odeI correspondslarity between Norwegian and English, much like
0 I_eX|caI translation p_robabllltles These are for the distortion metric, we assume that there are
estimated on the basis of a small corpus Ofsystema’tic correspondences at the string level be-

'2\;) gAé%g'ar.]_EPg:.'Sh garalltel ?exg’ tcomplsmg tween the source and its translation. To enable
: pairs ot aligned Sentencesirst, GIzA the re-ranker to take into account length effects,

is used for producing word alignments in bothWe include the ratio of word countss|/|f], as a
directions, i.e. using both languages as source anfgature in the model

target in turn. On the basis of these alignments we .
TRANSFER METRICS Two additional fea-

then estimate a maximum likelihood translation . ) .
L o ) tures capture information about the transfer step:

table, again in both directior's Finally, for each .
the total number of transfer rules that were in-

bi-directional sentence paie, f) and(f, e), the )
. . .voked (as a measure of transfer granularity, e.g.
corresponding feature in the end-to-end ranker is - :
) where idiomatic transfer of a larger cluster of
computed as the length-normalized product of all . :
o e EPs contrasts with stepwise transfer of component
pairwise word-to-word probabilities.

EPs), as well as the ratio &P counts,|E|/|F|.
STRING PROBABILITY Although a part of the ) |EI/|F]

" o . SEMANTIC DISTANCE Generation proceeds
(conditional) realization ranker already, we in-.
. . ) . in two phases: a chart-based bottom-up search
clude the string probability (according to the tri- ) o . :
enumerates candidate realizations, of which a fi-
“0Of these, 9,410 sentences are taken fromubeon  Nal semantic compatiblity test selects the one(s)

development data, while an additional 12,946 sentenceghoseMRS is subsumed by the original generator
are from the English-Norwegian Parallel Corpus (Oksefjell . . .
1999). 9 g pus (Oksef inputMRs (Carroll & Oepen, 2005). Given an im-

5The ML estimation of the lexical probabilities, as well perfectinput (or error in the generation grammar),

as the final word alignments produced from the output ofjt js possible for none of the candidate outputs
Glzat+, are carried out using the training scripts provided

by Phillip Koehn, and as distributed with the phrase-basec}O fulfill the semantlc_compatlbllty test. In this
sMT module Pharaoh (Koehn, 2004). case, the generator will gradually relstRs com-
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parison, going through seven pre-defined levels set| # |chance] first | LL | top |judge
pf semantic mlsmatch,_ which we er_1code as one\]Hol 1391 34.1840.95 44 10 49 89
integer-valued feature in the re-ranking model.

115| 30.84 |35.67/38.92/45.74

46.32

JH¢
Training the Model While batch translating, o . ’ .

; _ Table 4: BLEU scores for various re-ranking configurations,
the_ LOGO'_\I controll.er records al_l candidate tra.ns computed over only those cases actually translatetd®y
lations, intermediate semantic representationssoN (second column). For all configurations, BLEU results
and a large number of processing and resourcen the training corpus are higher by about four points.
consumption properties in a database, which we
call aprofile (in analogy to software engineering; then-best lists obtained f ¢ ‘
Oepen et al., 2005). Given the system configural€”-Pest lists obtained fror x 5 x 50 fan-out.
tion summarized in Sectiorfs2 through§ 6, we In all cases, scoring has been reduced to those
use the JH batch profile to train and optimize a inputs actually translated by th®GON system,

log-linear re-ranker. The experimentation infras-"-€- 64.8% and 63.2% of the development (Jp)
tructure, here, is essentially the same as in ou

§nd held-out (JB) corpora, respectively. As a
discriminative realization ranker—the combina-°2Seline measure, we used random choice of one
tion of the[incr tsdb()] profiler, theTADM maxi-

output in each context (averaged over twenty it-
mum entropy toolkit, and tools for efficient cross-

erations), resulting in (estimabl&).EU scores of

valiation experiments with large data and feature’*18 and30.84, respectively.
sets (Velldal, 2007). As an upper bound on re-ranking efficacy, Ta-

For training purposes, we mechanically ‘an-ple 4 provides two ‘oracle’ scores: the first, la-
notated’ candidate translations by means of théeledtop, is obtained from selecting translations
sentence-leveNEVA string similarity measure, with maximal NEVA scores, i.e. using sentence-
applied to actualOGON outputs compared to JH  |evel NEVA as a proxy for corpus-leva@LEU. The
reference translationsievA is a reformulation of  second, labelegudge reflects the annotations of
BLEU that avoids many of the problems associatech human judge on the JHheld-out data: con-
with applying BLEU at the sentence level, and is sidering all available candidates, a native speaker
computed as the arithmetic mean of the raw  of (American) English and near-native speaker
gram precision scores (Forsbom, 2003). For eachf Norwegian, in each case, picked the transla-
source sentence, we mark the translation(s) witlion judged most appropriate (or, in some cases,
maximumNEVA score (among all candidate out- |east awful). Oracl@LEU scores reach9.89 and
puts for this input) as preferred, thus construct-46.32, for JH; and JH, respectively.
ing an empirical distribution where estimation of _ _
log-linear model parameters amounts to adjust- Finally, the column labelefirst in Table 4 cor-

ing conditional probabilities towards highgeva ~ 'e€Sponds to theirst translation concept intro-
scores. duced in§ 3 above, and theL column to our log-

Seeing that the model includes diverse feglinear r_e—_ranker (maximizing tHeg—IikeIihoodof
ture types—probabilities, perplexity values, the training Qata). Bo'Fh clearly improve over the
un-normalized log-linear scores, and non-random ch0|c9 basellne,. but the re-ranker out-
probabilistic  quantities—feature values arePerforms the first translation approach by a large
normalized into a comparable range, usingmargln—thus returning on the investment of ex-

min-max scaling. The hyper-parameters of thara fan-out and end-to-end re-ranking. prever,
model—the TADM convergence threshold and at BLEU scores 0f44.10 and 38.92, respectively,

variance of the Gaussian prior—were optimized®U! current re-ranking setup aiso leaves ample
by tenfold cross-validation on the training room for further improvements towards the ‘or-

cor acle’ upper bound. We anticipate that fine-tuning
pus. ) . ) "

the log-linear model, inclusion of additional fea-
Empirical Results Table 4 summarizes end- tures, and experimentation with different estima-
to-end system performance, measuredsiieU  tion techniques (see below) will allow us to nar-
scores, for various strategies of selecting amongow this differential further.
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8 Conclusions—Outlook nate candidates is continuous (rather than abso-
lute), and we have started experimentation with
The future of MT has been (mis-)diagnosed asa graded empirical distribution, adapting the ap-
‘just around the corner’ since the beginning of proach of Osborne (2000) to the re-ranking task.
time, and there is no basis to expect a breakFinally, in a parallel refinement cycle, we aim to
through in fully-automatediT in the foreseeable contrast our currentL() re-ranking model with
future. But yet we see progress along the wayMinimum Error Rate MER) training, a method
specifically in the sustained development of largethat aims to estimate model parameters to directly
scale, general-purpose language technology amaptimize BLEU scores (or another quality metric)
its ever tighter integration with refined stochasticas its objective function.
techniques. Trading coverage for increased output quality
Among the main results of the Norwegian may be economic for a range of tasks—say as
LOGON initiative is its proof-of-concept demon- @ complement to other tools in the workbench
strator for quality-oriented, hybritT grounded ©f & professional translator. Our re-ranking ap-
in independently developed computational gram{roach, with access to rich intermediate represen-
mars. The tight coupling of hand-built linguis- tations, probabilities, and confidence measures,
tic resources results in anr pipeline where, to a Provides a fertile environment for experimenta-
very high degree, all candidate translations are (aljon on confidence-centrie/T. Applying thresh-
related to the source utterance in a systematic—olding techniques on the probability distribution
albeit at times unlikely—way and (b) grammat- of the re-ranking model, for example, we plan
ically well-formed. Combining am-best beam t0 experimentally determine how much transla-
search through the space of fan-out combinatoric§on quality can be gained by making the can-
with stochastic rankers at each step, as well agidate selection more restrictive. Alternatively,
with discriminative end-to-end re-ranking yields ©ne can imagine applying yet another model to
a flexible solution, offering a clear precision vs. this task, a classifier deciding on which candidate
efficiency trade-off. For its bounded domain (andtranslations constitute worthy outputs, and which
limited vocabulary of around 5,000 lexemes), theare best suppressed.
LOGON system succeeds in translating about two The availability of off-the-shelSmT tools has
thirds of unseen running text, wheeeeu scores dreatly contributed to re-energized interest and
and project-internal inspection of results suggest ®r0gress inMT in the recent past. We believe
high degree of output quality. This configuration that advances in hybrieiT would equally benefit
could, in principle, be an interesting value propo-from a repository of general-purpose, easy-to-use
sition by itself—as a tool to professional trans-linguistic resources. Except for the proprietary
lators, for example. A more systematic, humanXLE, all LOGON results—treebanks, grammars,
judgment Study of system outputs (for various Seand software—are available for public download.
lection strategies) is currently underway, and WeR oferences

expect results to become available in June this

ear Carroll, J., & Oepen, S. (2005). High-efficiency realizatio
year. ) . _ for a wide-coverage unification grammar. In R. Dale &
In ongoing work, we aim to further improve K. F. Wong (Eds.)Proceedings of the 2nd International

_ ; _ Joint Conference on Natural Language Processiig.
_re ranking pgrformange, TOI‘ examp!e_ by assess 3651, pp. 165—-176). Jeju, Korea: Springer.
ing the relative contribution of individual fea-
tures, fine_tuning parameter estimation, and in.Carte_r, _D. (1997). The TreeBanker. A.t00| for supervised
cludina additional properties. Our current maxi- training of parsed corpora. IRroceedings of the Work-

9 X _p_ P : ] ’ shop on Computational Environments for Grammar De-

mum likelihood training of the log-linear model is  velopment and Linguistic Engineerinlgladrid, Spain.
based On_a binarized emplrlcal dlstrlbu_tlon, WhereCIarkson, P., & Rosenfeld, R. (1997). Statistical language
for each input we consider the candidate trans- modeling using the CMU-Cambridge Toolkit. Fro-
lation(s) with maximumNEVA score(s) as pre-  ceedings of EuroSpeecRhodes, Greece.
ferred, and all others as dl_s—prefe_rred. Obviouslycopestake, A., Flickinger, D., Pollard, C., & Sag, I. A.
however, the degradation in quality among alter- (2005). Minimal Recursion Semantics. An introduction.
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Abstract

This paper presents a method to pre-
dict human assessments of machine
translation (MT) quality based on
the combination of binary classifiers
using a coding matriz. The multi-
class categorization problem is re-
duced to a set of binary problems
that are solved using standard classi-
fication learning algorithms trained
on the results of multiple automatic
evaluation metrics. Experimental
results using a large-scale human-
annotated evaluation corpus show
that the decomposition into binary
classifiers achieves higher classifica-
tion accuracies than the multiclass
categorization problem. In addition,
the proposed method achieves a
higher correlation with human judg-
ments on the sentence-level com-
pared to standard automatic evalu-
ation measures.

1 Introduction

The evaluation of MT quality by humans is
cost- and time-intensive. Various automatic
evaluation measures have been proposed to
make evaluations of MT outputs cheaper
and faster. Recent evaluation campaigns on
newswire! and travel data® investigated how

INIST MT evaluations, http://www.nist.gov/spee
ch/tests/mt

2IWSLT evaluations, http://www.slc.atr.jp/TWSL
T2006

well these evaluation metrics correlate with
human judgments. The results showed that
high correlations to human judges were ob-
tained for some metrics when ranking MT sys-
tem outputs on the document-level. However,
each automatic metric focuses on different as-
pects of the translation output and its corre-
lation towards human judges depends on the
type of human assessment (for example flu-
ency or adequacy). Moreover, none of the au-
tomatic metrics turned out to be satisfactory
in predicting the translation quality of a single
translation.

This paper presents a method to predict
human assessments of machine translation
(MT) quality based on the combination of bi-
nary classifiers. The multiclass categorization
problem is reduced to a set of binary prob-
lems that are solved using standard classifi-
cation learning algorithms. Binary classifiers
are trained on features of multiple automatic
evaluation metrics, such as BLEU and ME-
TEOR. The learned discriminative models are
applied sentence-wise to MT outputs produc-
ing binary indicators of translation quality on
the sentence-level. The multiclass classifica-
tion problem is then solved by combining the
results of the binary classifiers using a coding
matri.

The human and automatic evaluation met-
rics investigated in this paper are described
in Section 2. Section 3 gives a brief overview
on related research on predicting human as-
sessments and outlines the main differences to
the proposed method. Section 4 outlines the
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Table 1: Human Assessment

fluency

adequacy

acceptability

Flawless English
Good English
Non-native English
Disfluent English
Incomprehensible

=N W e O
=N W O

None

ATl Information

Most Information
Much Information
Little Information

Perfect Translation
Good Translation

Fair Translation
Acceptable Translation
Nonsense

— N W s U

proposed method. The framework of reduc-
ing multiclass to binary classification and the
combination of the binary results to solve the
multiclass classification problem are described
in detail. The effectiveness of the proposed
method is evaluated in Section 5 for English
translations of Chinese and Japanese source
sentences in the travel domain.

2 Assessment of Translation
Quality

Various approaches on how to assess the qual-
ity of a translation have been proposed. In
this paper, human assessments of translation
quality with respect to the fluency, the ade-
quacy and the acceptability of the translation
are investigated. Fluency indicates how natu-
ral the evaluation segment sounds to a native
speaker of English. For adequacy, the evalu-
ator was presented with the source language
input as well as a “gold standard” transla-
tion and has to judge how much of the in-
formation from the original translation is ex-
pressed in the translation (White et al., 1994).
Acceptability judges how easy-to-understand
the translation is (Sumita et al., 1999). The
fluency, adequacy and acceptability judgments
consist of one of the grades listed in Table 1.

The high cost of such human evaluation
metrics has triggered a huge interest in the
development of automatic evaluation metrics
for machine translation. Table 2 introduces
some metrics that are widely used in the MT
research community.

3 Prediction of Human
Assessments

Most of the previously proposed approaches
to predict human assessments of translation
quality utilize supervised learning methods
like decision trees (DT), support vector ma-

Table 2: Automatic Evaluation Metrics
BLEU:

the geometric mean of n-gram pre-
cision of the system output with
respect to reference translations.
Scores range between 0 (worst) and
1 (best) (Papineni et al., 2002)

a variant of BLEU using the arith-
metic mean of weighted n-gram pre-
cision values. Scores are positive
with 0 being the worst possible
(Doddington, 2002)

calculates unigram overlaps be-
tween a translation and reference
texts using various levels of matches
(ezact, stem, synonym).  Scores
range between 0 (worst) and 1
(best) (Banerjee and Lavie, 2005)
measures the similarity between
texts by using a unigram-based F-
measure. Scores range between 0
(worst) and 1 (best) (Turian et al.,
2003)

Word Error Rate: the minimal edit
distance between the system output
and the closest reference transla-
tion divided by the number of words
in the reference. Scores are posi-
tive with 0 being the best possible
(Niessen et al., 2000)

Position independent WER: a vari-
ant of WER that disregards word
ordering (Och and Ney, 2001)
Translation Edit Rate: a variant
of WER that allows phrasal shifts
(Snover et al., 2006)

NIST:

METEOR:

GTM:

WER:

PER:

TER:

chines (SVM), or perceptrons to learn discrim-
inative models that are able to come closer to
human quality judgments. Such classifiers can
be trained on a set of features extracted from
human-evaluated MT system outputs.

The work described in (Quirk, 2004) uses
statistical measures to estimate confidence on
the word/phrase level and gathers system-
specific features about the translation process
itself to train binary classifiers. Empirical
thresholds on automatic evaluation scores are
utilized to distinguish between good and bad
translations. He also investigates the feasabil-
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ity of various learning approaches for the mul-
ticlass classification problem for a very small
data set in the domain of technical documen-
tation.

(Akiba et al., 2001) utilized DT classi-
fiers trained on multiple edit-distance features
where combinations of lexical (stem, word,
part-of-speech) and semantic (thesausus-
based semantic class) matches were used to
compare MT system outputs with reference
translations and to approximate human scores
of acceptability directly.

(Kulesza and Shieber, 2004) trained a bi-
nary SVM classifier based on automatic scor-
ing features in order to distinguish between
“human-produced” and “machine-generated”
translations of newswire data instead of pre-
dicting human judgments directly.

The approach proposed in this paper also
utilizes a supervised learning method to pre-
dict human assessments of translation quality,
but differs in the following two aspects:

(1) Reduction of Classification Perplexity:
The decomposition of a multiclass classi-
fication task into a set of binary classi-
fication problems reduces the complexity
of the learning task resulting in higher
classification accuracy.

(2) Feature Set:

Classifiers are trained on the results of
multiple automatic evaluation metrics
(see Table 2) thus taking into account dif-
ferent aspects of translation quality ad-
dressed by each of the metrics. The
method does not depend on a specific MT
system nor on the target language. It can
be applied without modification to any
translation or target language as long as
reference translations are available.

4 Human Assessment Prediction
based on Binary Classifier
Combination

The proposed prediction method is divided
into three phases: (1) a learning phase in
which binary classifiers are trained on the fea-
ture set that is extracted from a database
of human and machine-evaluated MT system

outputs, (2) a decomposition phase in which
the optimal set of binary classifiers that maxi-
mizes the classification accuracy of the recom-
bination step on a development set is selected,
(3) an application phase in which the binary
classifiers are applied to unseen sentences, and
the results of the binary classifiers are com-
bined using the optimized coding matrix to
predict a human score.

4.1 Learning Phase

Discriminative models for the multiclass and
binary classification problem are obtained by
using standard learning algorithms. The pro-
posed method is not limited to a specific clas-
sification learning method. For the exper-
iments described in Section 5, we utilized
a standard implementation of decision trees
(Rulequest, 2004).

The feature set consists of the scores of the
seven automatic evaluation metrics listed in
Table 2.
were applied to the input data sets consist-
ing of English MT outputs whose translation
quality was manually assessed by humans us-
ing the metrics introduced in Section 2. In
addition to the metric scores, metric-internal
features, like ngram-precision scores, length
ratios between references and MT outputs,
etc. were also utilized, resulting in a total
of 54 training features.

All automatic evaluation metrics

4.2 Decomposition Phase

There are many ways in which a multiclass
problem can be decomposed into a number
of binary classification problems. The most
well-known approaches are the one-against-all
and all-pairs. In the one-against-all approach,
a classifier for each of the classes is trained
where all training examples that belong to
that class are used as positive examples and
all others as negative examples. In the all-
pairs approach, classifiers are trained for each
pair of classes whereby all training examples
that do not belong to any of the classes in
question are ignored (Hastie and Tibshirani,
1998).

Such decompositions of the multiclass prob-
lem can be represented by a coding matriz M
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where each class ¢ of the multiclass problem is
associate with a row of binary classifiers b. If
k is the number of classes and [ is the number
of binary classification problems, the coding
matrix is defined as:
M = ( mi )i:l,.‘.,k;jzl,...,l
m;j € {*1, 0, —l—l},

where k is the number of classes and [ is the
number of binary classification problems. If
the training examples that belong to class ¢
are considered as positive examples for a bi-
nary classifier b, then m.,=-+1. Similarily, if
mep=-1 the training examples of class ¢ are
used as negative examples for the training of
b. m.,=0 indicates that the respective train-
ing examples are not used for the training of
classifier b (Dietterich and Bakiri, 1995; All-
wein et al., 2000). Examples of coding ma-
trices for one-against-all and all-pairs (k=3,
[=3) are given in Table 3.

Table 3: Coding Matrix Examples

one-against-all

l 1010623102061316306121

c1 +1 -1 -1
co -1 +1 -1
c3 -1 -1 +1
all-pairs
[ [ ciecs [ ciecs [ caecs |
C1 +1 +1 0
Ca -1 0 +1
c3 0 -1 -1

For the experiments described in Section 5,
we utilized both one-against-all and all-pairs
binary classifiers. In addition, boundary clas-
sifiers were trained on the whole training set.
In this case, all training examples annotated
with a class better than the class in question
were used as positive examples and all other
training examples as negative examples. Ta-
ble 4 lists the 17 binary classification problems
that were utilized to decompose the human
assessment problems introduced in Section 2.

In order to identify the optimal coding ma-
trix for the respective tasks, the binary classi-
fiers were first ordered according to their clas-
sification accuracy on the development set. In
the second step, the multiclass performance

Table 4: Decomposition of Human Assess-
ment of Translaton Quality

[ type | binary classifier |
one-against-all | 5,4, 3,2, 1
all-pairs 54,53,52, 51,
43,42, 4.1,
3.2, 3.1,
21
boundary 54321, 54321

was evaluated iteratively, where the worst
performing binary classifier was omitted from
the coding matrix after each iteration. Fi-
nally, the coding matrix achieving the best
classification accuracy for the multiclass task
was used for the evaluation of the test set.
The optimized coding matrix reflects the stan-
dard bias-variance trade-off balancing the dis-
criminative power and the reliability of the
binary classifier combination.

4.3 Application Phase

Given an input example, all binary classifiers
are applied once for each column of the cod-
ing matrix resulting in a vector v of [ binary
classification results. The multiclass label is
predicted as the label ¢ for which the respec-
tive row r of M is “closest”.

In (Allwein et al., 2000), the distance be-
tween r and v, is calculated by (a) a general-
ized Hamming distance that counts the num-
ber of positions for which the corresponding
vectors are different and (b) a loss-based de-
coding that takes into account the magnitude
of the binary classifier scores. For the experi-
ments described in Section 5, we adopted the
Hamming-distance approach.

An example for the distance calculation is
given in Table 5. Lets assume that the ap-
plication of the three binary classifiers listed
in Table 3 results in the classification vector
v = (+1, +1, —1) for a given input. Using
the one-against-all coding matrix, the mini-
mal distance for v is 1 for both matrix rows,
c1 and co. In case of a draw, the priority order
of binary classifiers obtained on the develop-
ment set is used to identify the more reliable
row. For the all-pairs coding matrix, class c;
would be selected due to its lesser distance.
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Table 5: Coding Matrix Application
v = (41, +1, -1)

[ multiclass | distance [ selection |

[ type

C1
one-against-all Ca
C3
C1
all-pairs Co
C3

C1 Or C2

C1

DO W | W

5 Evaluation

The evaluation of the proposed method was
carried out using the Basic Travel Expression
Corpus (BTEC). This contains tourism-related
sentences similar to those usually found in
phrase books for tourists going abroad (Kikui
et al.,, 2003). In total, 3,524 Japanese in-
put sentences were translated by MT systems
of various types® producing 82,406 English
translations. 54,576 translations were anno-
tated with human scores for acceptability and
36,302 translations were annotated with hu-
man scores for adequacy/fluency. The dis-
tribution of the human scores for the given
translations is summarized in Figure 1. In
case multiple human judgments were assigned
to a single translation output, the median of
the respective human scores was used in our
experiments.

O fluency

O adequacy

® acceptability

Figure 1: Human Score Distribution

The annotated corpus was split into three
data sets: (1) the training set consisting of
25,988 translations for adequacy/fluency and
49,516 MT outputs for acceptability, (2) the

3Most of the translations were generated by sta-
tistical MT engines, but 5 example-based and 5 rule-
based MT systems were also utilized. These engines
were state-of-the-art MT engines. Some participated
in the IWSLT evaluation campaign series and some
were in-house MT engines.
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Figure 2: Coding Matrix Optimization

development set consisted of 2,024 sentences
(4 MT outputs for each of 506 input sen-
tences) for all three metrics, and (3) the test
set taken from the IWSLT evaluation cam-
paign (CSTARO03 data set, 506 input sen-
tences). For fluency and adequacy, 7,590 test
sentences with 15 MT outputs for each were
available. For acceptability, 3,036 sentences
with 6 MT outputs for each were used for eval-
uation.

5.1 Coding Matrix Optimization

Figure 2 summarizes the iterative evaluation
of the binary classification combination us-
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ing the development set as described in Sec-
tion 4.2. Starting with the complete coding
matrix (ALL), the worst performing binary
classification is omitted in the next iteration.
The dashed square indicates the subset of bi-
nary classifiers selected for the coding matrix
utilized for the test set evaluation.

5.2 Classification Accuracy

The baseline of the multiclass classification
task was defined as the class most frequently
occuring in the training data set. Table 6
summarizes the baseline performance for all
three subjective evaluation metrics.

Table 6: Baseline Accuracy

acceptability
43.0%

adequacy
30.8%

fluency
32.5%

The classification accuracies of the multi-
class task, i.e. the multiclass classifier learned
directly from the training set, and the binary
classifier performance is summarized in Fig-
ure 3. The results show that the learning ap-
proach outperforms the baseline of the mul-
ticlass classification task for all three metrics
gaining 16.7% for fluency, 26.8% for adequacy
and 18.1% for acceptability.

Moreover, the performance of the binary
classifiers varies widely, depending on the
classification task as well as the evaluation
metric. Accuracies of 80%-90% were achieved
for the all-against-one classifiers, 75%-81% for
the boundary classifiers, and 55%-91% for the
all-pairs classifiers.

The proposed method combines the binary
classifiers according to the optimized coding-
matrix. The results are shown in Figure 4.
The classification accuracy of the proposed
method is 55.2% for fluency, 62.6% for ade-
quacy and 62.3% for acceptability. Thus, the
proposed method outperforms the baseline as
well as the multiclass classification task for
all subjective evaluation metrics achieving a
gain of 22.7% /6.0% in fluency, 31.5% /6.6%
in adequacy and 19.3% / 1.2% in acceptability
compared to the baseline / multiclass perfor-
mance, respectively.

L
=
B
=

Figure 3: Classifier Accuracy

49.2/56.0 / 61.1 55.2/62.6 / 62.3

Figure 4: Classifier Combination Accuracy

5.3 Correlation to Human
Assessments

In order to investigate the correlation of the
proposed metrics towards human judgments
on the sentence-level, we calculated the Spear-
man rank correlation coefficient for the ob-
tained results. In addition, we used the mul-
ticlass classifier and the automatic evaluation
metrics listed in Table 2 to rank the test sen-
tences and calculate its Spearman rank corre-
lation towards human assessments. The cor-
relation coefficients are summarized in Fig-
ure 5.

The results show that the proposed method
outperforms all other metrics achieving cor-
relation coefficients of 0.632/0.759 /0.769
for fluency/ adequacy / acceptability, respec-
tively.  Concerning the automatic evalua-
tion metrics, METEOR achieved the high-
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Figure 5: Correlation with Human Assess-
ments

est correlation towards human assessment on
sentence-level for all three subjective evalua-
tion metrics. The correlation of the remaining
automatic metrics is considerably lower and
depends largely on the type of human assess-
ment.

5.4 Upper Bound

In order to get an idea about the potential of
the proposed method, we simluated the up-
per bound of the method by randomly ad-
justing the prediction result of each binary
classifier to achieve a certain classification ac-
curacy and applied the coding matrix ap-
proach to the set of binary classifiers hav-
ing the same classification accuracy. Figure 6
shows the upper boundary of the proposed
method for classification accuracies between
60% and 100% whereby the respective opti-

mized coding matrix of the experiments de-
scribed in Section 5.2 were used for fluency,
adequacy and acceptability, respectively. The
all_binary result shows the performance when
the baseline coding matrix using all 17 binary
classifiers is applied.

The results show that for each metrics the
multiclass classification task performance is
almost linearly related to the performance of
the binary classifiers and that improving the
accuracy of the binary classifiers will result in
a better overall performance.

Two potential improvements of the pro-
posed method, that we would like to inves-
tigate in the near future, are (1) additional
features that help to classify the given task
more acurately, and (2) the automatic learn-
ing of the optimal combination of binary clas-
sifiers with respect to the overall system per-
formance.

6 Conclusion

In this paper, we proposed a robust and reli-
able method to learn discriminative models
based on the results of multiple automatic
evaluation metrics to predict translation qual-
ity at the sentence level. The prediction is
carried out by reducing the multiclass classifi-
cation problem to a set of binary classification
tasks and combining the respective results us-
ing a coding matrix in order to predict the
multiclass label for a given input sentence.
The effectiveness of the proposed method
was verified using three types of human as-
sessment of translation quality commonly
used within the MT research community.
The experiments showed that the proposed
method outperforms a baseline method that
selects the most frequent class contained
in the training set and a standard mul-
ticlass classification model (decision tree)
that learns its discriminative model directly
from the training corpus. The proposed
method achieved a gain of 22.7%/6.0%
in fluency, 31.5%/6.6% in adequacy and
19.3% /1.2% in acceptability compared to
the baseline / multiclass performance, respec-
tively. Moreover, the proposed metric
achieved high correlation to human judgments
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Figure 6: Upper Boundary of Reducing Multiclass to Binary Classifier

at the sentence-level outperforming not only
the multiclass approach, but also all of the
automatic scoring metrics utilized.

Future extensions of the proposed method
will investigate the use of additional features,
such as the confidence estimation features
proposed in (Blatz et al., 2003) or the re-
cently proposed source language features for
MT evaluation in (Liu and Gildea, 2007). We
would expect this to improve the performance
of the binary classifiers and boost the overall
performance further.
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for more graceful degradation through a form of
Abstract structural generalization.

In this work | look at two different para- 2 Overview

digms of Example-Based Machine Trans- _
lation (EBMT). | combine the strengths of ~ The EBMT system at CMU, Panlite (Brown,

these two systems and build a new EBMT ~ 1996), is shallow in the sense that it only indexes
engine that combines sub-phrasal match- exical tokens. It performs well primarily because
ing with structural templates. This synthe- it iS capable of indexing very large corpora and
sis results in higher translation quality and ~ efficiently extracting exact lexical translations.
more graceful degradation, yielding 1.5%  When an example covering the full input sentence

to 7.5% relative improvement in BLEU is not present in the corpus, Panlite attempts to
scores. match any sub-part of the sentence. This is done by

matching all possible token sequences without any

respect for phrasal boundaries. The retrieved ex-
1 Introduction amples are placed in a lattice that is subsequently

decoded by a language modeler. This particular

Example-Based Machine Translation (EBMTEBMT system is actually very similar to PSMT as

introduced the notion of phrasal translation the h it consists of a phrase extraction phase followed b
subsequently been championed by Phrasal Statigtilanguage modeler that performs phrase selection
cal Machine Translation (PSMT). Exact phrasand reordering. The main differences lie in the de-
translations are usually highly accurate and retatails of the calculations and the fact that Panlite
the nuances of the text. However, unless one fdees not attempt to retain a true probabilistic
cuses exclusively on a (very) small domain, it isnodel.
unreasonable to assume that a corpus will provide Not all EBMT implementations take this ap-
exact phrasal translations of everything one wanggoach. In particular, Gaijin (Veale and Way,
to translate. Thus, methods of backing off and syn997) retrieves examples from a corpus based on
thetically generating translations based on “simtheir structural similarity. The marker hypothesis
lar” examples are increasingly important. In thistipulates that a closed set of words in every lan-
work | introduce a new EBMT Engine named Cuguage can be used to identify the syntactic struc-
nei (Construction of Uknown Examples by n- ture of a sentence. These markers are typically
duction) that combines two different paradigms ofonjunctions, prepositions, determiners, and quan-
EBMT: sub-phrasal matching and structural temtifiers. Gaijin employs the marker hypothesis to
plates. The goal of this work is to provide highlysegment sentences into constituent phrases as
accurate translation when possible, but also alloghown in Figure 1. Each constituent phrase is
headed by a marker that represents the type of that
constituent. The particular sequence of constituent

* Named after Cuneiform, the oldest writing systerhe phrases describes the structure of the sentence.
translated.
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Prep Det Prep

Figure 1. Sentence Segmented by Marker Hypoth¥eal¢ and Way, 1997)

This structure, rather than a language model, diexamples corresponding to any sub-section of the
tates phrasal selection and reordering. An examplgut sentence. Cunei passes the resulting ldtiice
from the corpus that has the same sequence of ctimee same language modeler used by Panlite for de-
stituent phrases becomes the master template éading.
translation. When this template has lexical mis- Using part-of-speech tags to form structural
matches with the sentence to be translated, “grafemplates is similar to the Transfer (Xfer) apptoac
ing” is used to replace an entire phrasal constituedescribed in (Carbonell et al., 2002) and (Probst e
with another (more similar) phrasal constituenal., 2003). The structural templates in Cunei e,
found in the corpus. Likewise, if particular wordssome respects, more limited as they do not incor-
within a phrasal constituent do not match the inpuporate morphological features. However, the role
“keyhole surgery” is performed to substitute indiof the structural templates in Cunei is differest a
vidual lexical items. For either type of substituti they are merely a backoff mechanism to be used
to be performed, the structure (part-of-speech taghen an exact lexical match is not present, and
or head-of-phrase marker) must be equivalent. thus, generality is desired. In addition, the struc
Both of these EBMT systems build a finaltural templates in Cunei are entirely data-driven.
translation by synthetically combining togetheinstead of using a lexicon that specifies words
smaller units of translation. In the case of Panlit available for substitution, Cunei fills the struetu
the units are any sequence of lexical tokens, ateimplate using phrases present in the lattice that
they are combined together using a language mduave the same part-of-speech sequence. The scores
eler. On the other hand, the units in the Gaijisr syassociated with each phrase in the lattice arentake
tem are constituents identified by the markeinto account when constructing a new example
hypothesis, and they are combined together byffmm the structural template.
single structural template from the corpus that Cunei was developed and evaluated translating
matches the entire sentence. text from Arabic to English. | expected the differ-
Cunei attempts to bring together the strengtrence in word order between these two languages to
of Panlite and Gaijin. This new system maintaingork well with structural templates. However, the
the indexing scheme and sub-phrasal matchisystem is language-neutral and could easily be ap-
found in Panlite and adds to this a “light” versiormplied to any language pair for which part-of-speech
of the structural matching found in the Gaijin systaggers and parallel text are available.
tem. Instead of using constituent phrases idedtifie
by the marker hypothesis as the structure of eaBh Building Cunei
sentence (Figure 1), Cunei uses only the sequence
of part-of-speech tags as shown in Figure 2. Gaij'gl P :
was built for a relatively small corpus and as such reprocessng
it was necessary to use a more general structurar structural matching, it was important to proc-
The sequence of part-of-speech tags is very spess the English and Arabic in the same format as
cific, but by leveraging a large corpus | expect tthe Penn Treebank because this was expected by
find many structural examples. This system wilthe part-of-speech taggers | used. A handful of
not, however, require one template to translate tihegular expressions were applied to re-format the
entire sentence, but rather, like Panlite, willdfintext and perform some simple cleanup. Next, |

Det Adj N Verb Det  Adj N P

P N
N e T e e R A

Figure 2. A “Lite” Structure: Sentence with Part-§feech Tags
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used MXPOST (Ratnaparkhi, 1996) to apply parteoked up in the other index.

of-speech tags to the English text and ASVMTools For lookups in the index, the Burrows-Wheeler
(Diab et al, 2004) to perform segmentation antfansform does not result in any increase in compu-
part-of-speech tagging on the Arabic text. It isation. However, if one desires to reconstruct the
worthwhile to point out that because of the twadext from the index, then looking up each type re-
different part-of-speech taggers, the naming coiires an additional binary search. For this reason
ventions for the tags were not always the sam€unei stores the index as a Burrows-Wheeler
This does not make a difference to Cunei as themansformed suffix array on disk, but also allows
are no a priori rules that assume a noun should fer run-time reconstruction of the original suffix
place a noun. Rather, substitutions are determinaday. To reconstruct the original suffix array is
at run-time based on the corpus and the alignmerdry fast (linear transformation) but does require

links. more memory. This is only performed when the
_ task at hand requires reconstructing large amounts
3.2 Indexing of the text and continuously looking up each type

As mentioned previously, Cunei employs the sanf&€ates a performance bottleneck. For trans_la'ﬁon,
indexing approach used in Panlite, as this scaliSsusually necessary to reconstruct the suffixyarra
well with large amounts of data. The techniqué‘?r the target side of the index, but not the seurc
used in Panlite is to build a suffix array with theide of the index. _ -
Burrows-Wheeler transform (Brown, 2004). Suffix Another optimization made in Cunei is to repre-
arrays are an increasingly popular way to indeX€Nnt the index as a memory-mapped bit array. The
large amounts of data and have been used as wif|array is dynamically adjusted to use the mini-
by PSMT in (Zhang and Vogel, 2005) and (Callimum number of bytes that are capable of repre-
son-Burch, 2005). The Burrows-Wheeler transfor@énting the total number of types and tokens
brings the added benefit of considerably shrinkingresent in the corpus. This allows for a much
the size of the index. Smaller data structure than just representing every
In contrast to Panlite, Cunei needs to index tH€ing with an integer, and (in theory) has no upper
structure of the sentence as well as the lexical t8ound. Furthermore, the memory-mapped nature
kens. This was accomplished by using two index&¥ the file makes the load time significantly faste
running in parallel as shown in Figure 3. Althoughn this work | indexed 100,000 sentence pairs
this is not the most elegant approach, it is celai Which only took a few minutes and consumed
the most practical approach. The two indexes allog/-5MB in all (including lexical and structural
for fast lookups of structural or lexical tokensieT types and tokens for source and target).
downside is that the index is not optimized to Ioolé
up combinations of structural and lexical tokens:
To find the structural matches corresponding to Bhe second major component of the system is
lexical match (or vice-versa), the sentence numbalignment. GIZA++ (Och and Ney, 2003) was used
and position within that sentence are identified arto generate a word alignment over the entire cor-

3 Alignment

Sentence 101

£ el 8 40 e el 1

Sentence 101

Figure 3. Indexing Structural and Lexical Tokens
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pus. However, GIZA++ does not provide phrasarhis is the same basic approach used in Panlite and
alignments which are necessary for translatioRSMT systems with online alignment such as those
Thus, | investigated other alignment approacheakescribed in (Zhang and Vogel, 2005) and (Calli-
and implemented a technigue very similar to PES#on-Burch, 2005).
(Vogel, 2005). The final alignment probability is Where Cunei differs from other systems is that
calculated by taking the log-linear combination oéfter all lexical look ups have been performed, Cu-
the conditional probability of the entire source-se nei looks for structural matches. Recall that the
tence given the target sentence, the conditionaleprocessing routine has already tagged the
probability of the entire target sentence given thgource text with part-of-speech tags. Cunei queries
source sentence, and the length ratio between tihe structural source index for all part-of-speech
selected source and target phrases. The conditioratjuences that match a section of the input text's
sentence probabilities are calculated by multiplystructure. A structural example is skipped if it is
ing all the conditional word probabilities that egr less than three tokens long or the maximum num-
with the phrasal alignment. A word alignmenber of lexical examples has already been found for
agrees with the phrasal alignment when it links twthat section. In either of these cases, thereasore
words that are both outside the phrasal alignmettt believe that structural matches will not be use-
or two words that are inside the phrasal alignmentiul. Similar to the lexical translations, once aa e
ample is found, it needs to be aligned to the targe
3.4 Building Transations text. In this case the alignment extracts the targe
Lexical translations are built by retrieving exampart-of-speech sequence rather than the lexical to-
ples from the corpus and finding the aligned targkgns. The retrieved part-of-speech sequence is
text. Given a source text to translate, first CunéiSed to predict the structure of the lexical target
looks in the source index for lexical examples of NiS target part-of-speech sequence is converted to
each sub-part of the source text. To ensure bd@xical example(s) through substitution. By follow-
speed and accuracy, a desired maximum numberigg the alignment links, lexical translations prese
instances of each distinct source phrase (typical} the lattice are substituted into the structtea-
500-1000) is specified in a configuration file. IfPlate to form a new lexical translation. All ele-
more than the desired number of examples af@ents in the lattice are searched to build lexical
found, then the results are sub-sampled to only réanslations such that they maintain the same -struc
turn the maximum. Each example is phrase alignéd'e® and alignment links as found in the structural
and the corresponding target text for each examgt§@mple. An example of this is demonstrated in
is placed in a lattice. When more than one exampdgure 4. While single word substitutions are the
produces the same target text, the results dr@St common, this process also looks for entire

merged together and their scores are combindlrases that form an appropriate substitution. Fur-
thermore, structural matches are analyzed from

I D O O
A A A A
fly

thdydAt || Dd || AISHAfyyn || Alambyrkyyn AlEErAq

journalists

american reporters in iraqi kurdistan

american journalists in iraqi kurdistan

Figure 4. Example Constructed from Structural Textgolhnd Translation Lattice
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shortest to longest so that longer matches can madkistribution of the structural examples and the-lex
use of translations created by shorter structurehl examples is not the same, making the two rela-
matches. tive frequencies hard to combine. Lastly, not fad t

A minor exception to the process occurs whensructural examples are relevant to a particular in
structural example contains one or more lexicgut. Some structural examples can only occur with
matches. To check for this situation, when a struspecific lexical elements or under specific condi-
tural example is found, the lexical tokens of th&ons. Sometimes structural examples are found
structural example must be compared to the inpthtat cannot produce a lexical translation because
text. When some of the lexical source tokens atke lattice lacks the necessary lexical items that
the same, all target positions that align to adaixi match its structure and alignment constraints. Cal-
source token are marked. These specially markedlating relative frequency based on all the re-
target positions cannot be replaced by other elgieved structural examples results in very low
ments in the lattice. Rather, the lexical target tescores for each example, and it did not seem rea-
kens for these positions are retrieved from theonable as many of these examples cannot occur
corpus and used in the translation. This allows fdor the given input.
structural examples where one or more source and To account for these differences, the relative
target words are lexicalized even though the inddsequencies for lexical and structural examples are
does not directly support searching for this posstalculated by only totaling over examples that pro-

bility. duced a lexical translation. If the alignment pssxce
_ _ fails or if a structural example cannot find any ap
3.5 Scoring Transdations propriate lexical entries to create a lexical ttans

Once all of the translations have been retrievéPh, then it is not included in the total cour. |
from the corpus or synthetically created fronad_dltlon, a (_:onfldence score is ap_plled to gllsnran_
structural examples, it is necessary to score thel@tion candidates. If the translation candidate is
The language modeler will make the final decisiofetrieved from the corpus, then its confidence is
as to which translations to use, but the languadeQ- If the translation candidate is formed by a
modeler must be provided with a score reflectivatructural example, then its confidence scoreas th
of how likely each translation is to be representg€ometric mean of the scores of each lexical trans-
tive of the source span it covers. In Cunei, eadfition that was used (through substitution) to rea
example that is placed in the lattice keeps trdck B¢ translation. This confidence score is an ap-
three sub-scores: alignment probability, relativBroximate measure of how closely a structural ex-
frequency, and context matches (the number 8fMPle matches the original source text. The
other examples in the lattice from the same sefonfidence score is applied as a weight to each
tence}. When two translations are merged becau§gore when two translations are merged. Thus, an
they share the same target translation, their su®ample with a low confidence score will not af-
scores are added together. A final score is préfct the overall scores as much as an example with
duced by a log-linear combination of the three sugt high confidence score. In practice this meants tha
scores which are averaged over all found transli-@ sStructural example predicts one target and a
tions. The weights of the log-linear combinatiof€Xical example predicts a different target, the-le
are defined in a configuration file and are tune@@l €xample’s target will have a higher score.
using held-out data.

The synthetic lexical examples built by combin4 ~ Results

ing long structural examples and_ shorter I.eXica(l:unei was trained on approximately 100,000 sen-
examples pose a problem for scoring. As this SPfEnce pairs (4.87 million words) of Arabic-English

cific lexical translation never occurs in the capu X hi I abl bi
it is difficult to determine its relative frequeneya newswire text. This represents all available Arabic
English newswire text from the Linguistic Data

critical component of the scoring. Furthermore, th&onsortium with sentences containing fewer than

50 words. While more parallel Arabic-English data
% Fully implemented in the system, but due to aifigmt is available, most of it is out of domain and ie th

slowdown in speed and very minor improvement ingtation  form of United Nations proceedings. The training
quality, the context score was disabled for thalfiesults.

167



MTG3 (Tune) News A News B Editoria Soeech Rull MTO4
Lexica and Reorder 0.444 0.483 0.455 0.321 0.339 0.397
Srudural and Rearder | 0.452 1.65% 0.490 1.52% 0.475 4.38% 0.329 2.58% 0.364 71.52M2 (3.75%
Lexical no Reorder 0.419 -5.80% 0.461 -4.4506 0.434 -4.64% 0.320 -0[31% 0.330% 0.385 -3.01%6
Srucura noReorder | 0.446 0.4494 0.490 1.51% 0.470 3.18% 0.333 3.83% 0.363 7.03u B.579

Figure 5. Table of Evaluation Results

data has good lexical coverage and at the samiata in this fashion allowed multiple evaluations
time is not prohibitively large for the structuralon different types of data while maintaining
matching. enough sentences to have meaningful results. In
Parameters for Cunei and the language modekddition, a final score for all of MT04 is provided
were tuned using part of the 2003 NIST MT The results are shown in Figure 5 and Figure 6.
Evaluation data set (MT03). However, due to timé& is clear that the structural matching improves
restraints, parameters for Cunei (as opposed to tinenslation quality as BLEU scores improved under
language modeler) were not separately tuned fall testing conditions. While the relative improve-
the system with structural matching enablednent is smallest for “News A”, this is still a re-
Rather, | used the same parameters that were turspectable gain in performance considering the high
on the system with structural matching disabledbaseline. “News B”, “Editorial”’, and “Speech”,
Thus, these results do not reflect the full pontiwhich all have lower baselines, show stronger
of the system with structural matching enabled. gains from the structural matching. This correlates
Evaluation was performed by comparing Cuneiell to the initial hypothesis that structural nfatc
with structural matching disabled to Cunei withing will make the system more robust and allow it
structural matching enabled. This experiment was degrade more gracefully.
run twice: first with language model reordering As expected, when language model reordering
enabled, and second with it disabled (monotonis disabled, the performance of the system with
decoding) All systems were evaluated on the 2004nly lexical matching drops. This is not true foet
NIST MT Evaluation data set (MT04), which pro-system with structural matching enabled—
vides five reference translations. MT04 containsignifying that the structural matching is captgrin
editorial, speech, and news genres, but nearly haibst (if not all) of the reordering.
of it is news. | split MTO4 by genre but also di- Figure 7 and Figure 8 illustrate visually the dif-
vided the news genre into two parts—one frorferences in the types of translations found between
Xinhua News Agency and the other from Agencthe lexical only system and the structural system.
France Press. Document boundaries were pre-
served in all the splits and the chunks rangeza si
from 278 sentences to 387 sentences. Splitting the

0.5
0.48
0.46
0.4411
0.421] O Lexical and Reorder

0.4 B Structural and Reorder
B I exical no Reorder

0.38]
0.36]
0.34]
0.321]

Structural no Reorder

2
o)

™MI03 News A News B Editorial Speech MI104

Figure 6. Chart of Evaluation Results
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loans
loan

debts

enough supports growth economic chinese loans enough supports growth economic chinese
sufficient support development the economic the chinese loan sufficient support development the economic the chinese

sufficient guaranties  supported the growth iktisadi china debts sufficient guaranties  supported the growth iktisadi china

the loans supporting growth rate iktissadi of chinese the loans supporting growth rate iktissadi of chinese

of loans supported by  of growth of economic of china of loans supported by of growth of economic of china

chinese economic chinese economic
the chinese economic the chinese economic
economic growth economic growth
the economic growth the economic growth

economic progress
economic progress

economic development
economic development

economic growth for
economic growth for
chinese economic growth
chinese economic development
chinese economic progress
support economic growth

support iktisadi growth

support iktissadi growth

Figure 7. Translation Lattice with Structural Matwp Figure 8. Translation Lattice without Structural tetsing

tered” the lattice resulted in lower scores. It Wdou
5 Remaining Issuesand Future Work be worthwhile to investigate how to select more
o _appropriate translation units, but in the meantime
The problem of combining scores from two d'f‘appears to do more good than harm to allow all
ferent probability distributions is fundamentalIypossime phrases.
har_d and the solutior! is not readily apparent. Ap- Perhaps the most apparent “problem” with
plying confidence weights seemed reasonable, igkming lexical translations from structural exam-
| imagine much better solutions exist. Even if thges js speed. Enabling structural matching signifi
confidence weights were retained, it would bgantly slows down the system. It is for this reason
worthwhile to investigate applying them in a nongyat | did not tune all the parameters of the struc
linear fashiqn. Time limitations prevented experita] engine. The problem is that there are usually
mentation with other methods. lot of structural examples found in the corpus, and
Figure 7 and Figure 8 illustrate another probnere are also a multitude of lexical translations
lem: phrases inserted into the lattice do not adwayhat can be substituted into each structural exam-
have optimal boundaries. The last three wordg§e. The issue with speed is not due to poorly-writ
“Alnmw  AIAqtSAdy AISyny” form one noun ten code, but to the thousands of combinations that
phrase that franslates as “chinese economiged to be analyzed for a match per example. The
growth”. The lexical system only provides “eco{gnger the example is, the more prone it is to this
nomic growth” and “chinese economic”. The strucproblem. | have partially alleviated this problegn b
tural matching does create “chinese economigning and chunking the input into smaller units.
growth”, but it also has partial translations oHowever, this merely makes the computation trac-
“economic growth”, “chinese economic”, andiaple, and not fast. More aggressive pruning and/or

“support economic growth”. The problem is thaheavy caching techniques truly should be investi-
these partial translations sometimes mappropyateéated_

guide the language modeler. Both the lexical and

structural systems are affected by this issueti®ut g  conclusion

problem occurs with greater frequency when struc-

tural matches are enabled. This problem brings U conclusion, this research describes a systetn tha
the question of what makes a suitable translati@ynthesizes two different approaches to EBMT.
unit. | did experiment with restrictions similar toWhereas the origins of this system lie with EBMT,
those in the Gaijin system by limiting which partthe end result is hard to classify as an EBMT sys-
of-speech tags a phrase is allowed to begin and eledh. Cunei has borrowed heavily from ideas and
with. However, all of these experiments that “filtechniques present in EBMT, PSMT, and Xfer.
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What is clear from this work, however, is that éony.VeaIe and Andy Way. 1997. Gaijin: A Template-
data-driven approach that combines exact lexical Driven Bootstrapping Approach to Example-Based
matching with structural templates improves trans- Machine Translation. IiProceedings of NeMNLP97,

lation quality. Nevy Method§ in Natural Language Processing,
Sofia, Bulgaria.
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Abstract

In this paper we describe a word re-
ordering strategy for statistical machine
translation that reorders the source side
based on Part of Speech (POS) infor-
mation. Reordering rules are learned
from the word aligned corpus. Reorder-
ing is integrated into the decoding pro-
cess by constructing a lattice, which
contains all word reorderings accord-
ing to the reordering rules. Probabil-
ities are assigned to the different re-
orderings. On this lattice monotone de-
coding is performed. This reordering
strategy is compared with our previous
reordering strategy, which looks at all
permutations within a sliding window.
We extend reordering rules by adding
context information. Phrase translation
pairs are learned from the original cor-
pus and from a reordered source corpus
to better capture the reordered word se-
quences at decoding time. Results are
presented for English — Spanish and
German « English translations, using
the European Parliament Plenary Ses-
sions corpus.

1 Introduction

Statistical machine translation (SMT) is currently
the most promising approach to large vocabulary
text translation. In the spirit of the Candide sys-
tem developed in the early 90s at IBM (Brown et

Stephan Vogel
InterACT
Language Technologies Institute
Carnegie Mellon University
5000 Forbes Av.
Pittsburgh, PA 15213
vogel+@cs.cmu.edu

al., 1993), a number of statistical machine trans-
lation systems have been presented in the last few
years (Wang and Waibel, 98), (Och and Ney.,
2000), (Yamada and Knight, 2000), (Vogel et al.,
2003). These systems share the basic underly-
ing principles of applying a translation model to
capture the lexical and word reordering relation-
ships between two languages, complemented by
a target language model to drive the search pro-
cess through translation model hypotheses. The
reordering of words in machine translation still
remains one of the hardest problems. Here we
will describe our approach using syntax-based re-
ordering rules to create a lattice structure for test
sentences that encodes all word reorderings con-
sistent with the reordering rules learned from a
word aligned training corpus.

2 Modeling Word Reordering

Different languages differ in their syntactic struc-
ture. These differences in word order can be local
or global. Local reorderings are for example the
swapping of adjective and noun in language pairs
like Spanish and English:

Example: ADJ NN — NN ADJ

An important agreement
Un acuerto importante

Word order changes which span across the en-
tire sentence pose a much tougher problem. For
example, in the translation from German to En-
glish especially verbs participate in long range re-
orderings.

Example: auxiliary verb and infinite verb
Ich werde morgen nachmittag ... ankommen
I will arrive tomorrow afternoon ...
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The ..’ indicates that other information (eg.
’mit dem Zug’ — ’by train’) could be embedded,
pushing the auxiliary verb and the infinite verb
even apart.

Another example of long-distance reordering is
the detached verb prefix in German.

Example: detached verb prefix
Ich komme morgen nachmittag ... an.
I will arrive tommorow afternoon ...

The verb prefix ’an’ is detached from the main
verb ’komme’ and moved to the end of the sen-
tence. It is difficult to generate ’arrive’ from
’komme’ in a phrase-based system. Even more
difficult is the translation from English into Ger-
man, where arrive needs to generate both "arrive’
and ’an’ at different positions in the target sen-
tence.

To generate the correct word sequence the
translation system needs to have strong, restrict-
ing evidence of how to rearrange the words, this
is the approach taken in grammar-based systems,
or it has to have weak evidence in the form of
probabilities, and then test all (or at least a large
number) of reorderings, as is the strategy in typi-
cal phrase-based statistical translation systems.

The well-known IBM and HMM word align-
ment models (Brown et al., 1993) and (Vogel et
al., 1996) contain as one component a so-called
distortion model to capture the different word or-
ders in different languages. These distortion mod-
els can be formulated in terms of absolute posi-
tions, as in the IBM2 model, or in terms of rel-
ative positions, as in the HMM and IBM4 align-
ment models. These distortion models are rather
weak. They essentially boil down to saying that
long distance reorderings are less likely then short
distance reorderings.

It is important to notice that these distortion
models do not pose any restrictions as to which
reorderings are possible. At decoding time all
permutations need to be considered, which is im-
possible for any but very short sentences. A re-
striction to word reordering was introduced in
(Wu, 95). The ITG (inverse transduction gram-
mar) constraint allows only reorderings, which
can be generated by swapping subtrees in a bi-
nary branching tree. Still, for longer sentences
the number of possible reorderings is too large to
be enumerated; severe pruning is necessary.

To make the distortion models more infor-
mative the aligned positions can be condi-
tioned on the length of the sentences, on the
words (lexicalized distortion models), or on word
classes (parts-of-speech) or automatically gener-
ated word classes, using clustering techniques
(Al-Onaizan and Papineno, 2006).

State-of-the-art SMT systems use phrases. One
advantage is that phrases can capture some of the
local reordering patterns. However, this is rather
limited as the average length of matching phrases
is typically less then two words. To capture longer
ranging word reorderings these phrases need to
be reordered, which brings us back to the central
questions:

e How to model word reordering?

e How to estimate the parameters of the
model?

e How to apply the model at translation (de-
coding) time?

These questions will —at least to some extent—
be dealt with in subsequent sections.

2.1 Related Work

Different approaches have been developed to deal
with the word order problem. First approaches
worked by constraining reorderings at decod-
ing time (Berger et al.,, 1996). In (Wu, 1996)
the alignment model already introduces restric-
tions in word order, which leads also to restric-
tions at decoding time. A comparison of these
two approaches can be found in (Zens and Ney,
2003). They have in common that they do not
use any syntactic or lexical information, therefore
they rely on a strong language model or on long
phrases to get the right word order. Other ap-
proaches were introduced that use more linguistic
knowledge, for example the use of bitext gram-
mars that allow parsing the source and target lan-
guage (Wu, 1997). In (Shen et al., 2004) and (Och
et al., 2004) syntactic information was used to re-
rank the output of a translation system with the
idea of accounting for different reordering at this
stage. In (Tillmann and Zhang, 2005) and (Koehn
et al., 2005) a lexicalised block-oriented reorder-
ing model is proposed that decides for a given
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phrase whether the next phrase should be oriented
to its left or right.

The most recent and very promising ap-
proaches that have been demonstrated, reorder the
source sentences based on rules learned from an
aligned training corpus with a POS-tagged source
side (Chen et al., 2006), (Popovic and Ney, 2006)
and (Crego and Marino, 2006). These rules are
then used to reorder the word sequence in the
most likely way.

3 Syntactic Reordering Rules

In our approach we follow the idea proposed in
(Crego and Marino, 2006) of using a parallel
training corpus with a tagged source side to ex-
tract rules which allow a reordering before the
translation task. By doing it this way we are
able to keep the translation process in the de-
coder monotone and make it significantly faster
compared to allowing reorderings in the decoder.
To avoid making any hard decisions in reorder-
ing the source side we use a lattice structure as
input (Crego and Marino, 2006), (Zhang et al.,
2007) for our decoder. Lattices are created for
the source sentences and contain all the possible
reorderings and of course also the original word
sequence. As a new feature we use the context
in which a reordering pattern is seen in the train-
ing data. Context refers to the words or tags to
the left or to the right of the sequence for which
a reordering has been observed. By doing this we
hope to differentiate between reorderings that are
dependent on their context.

3.1 Learning Reordering Rules

The rules that are later applied to the source sen-
tences are learned via an aligned corpus for which
the POS information of the source sentences is
available. Given a sentence pair with source
words f; and target words e!, and the alignment
a{ a reordering rule is extracted whenever the
alignment contains a crossing, i.e. whenever there
is 2 and j with4 < j and a; > a;. Within one sen-
tence pair we always extract the longest reorder-
ing sequences only. A rule, which is observed
as part of a longer reordering, is only stored if it
also occurs as the longest reordering sequence in
some other sentence pair. The motivation for this
is that only those reorderings get learned, which

really exist for themselves. This restriction allows
us to extract longer reordering patterns and still
keeping the number of reordering patterns man-
ageable. This will also restrict the application of
rules in wrong place in the later reordering ap-
proach.

In a second step of learning, relative frequen-
cies are computed for every rule that has been
observed more than a given number of times in
the training corpus (we observed good results
with more than 5 times). Because the number
of rules is very high, a Suffix-Array (Zhang and
Vogel, 2006) is used for faster computation of
the occurrence-counts for the observed sequences
that triggered a reordering.

By the above described mechanisms, we are
able to extract rules using as a trigger for the re-
ordering of the words the following types.

e Tag sequence
e Word sequence

e Context of one or two tags before and / or
after the Tag sequence

e One or two words before and / or after the
Tag sequence

Table 1 shows examples for rules consisting of
the plain tag sequence and rules that use an ad-
ditional (left) context separated by the ’::>. The
final reordering rule consists of the source side
sequence of POS tags or words that trigger a re-
ordering, the permutation of this sequence (given
as the numbers indicating the reordering) and the
relative frequency of this reordering given the
source sequence in the training corpus.

source sequence ‘ rule ‘ freq. ‘
PDAT NN VVINF 312 | 0.60
VAFIN :: PDAT NN VVINF | 312 | 0.63
KOUI :: PDAT NN VVINF 322 | 0.88
moechte :: PDAT NN VVINF | 312 | 0.92

Table 1: Example rules for German to English
translation with no context, with one tag of con-
text to the left and one word of context to the left

All four rules in Table 1 reorder the same se-
quence (moving the infinite Verb to the front),
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with different relative frequencies assigned to
them. The first entry uses no context information,
while the other 3 lines show the rules with con-
text information — in this case a left context only.
For this POS pattern the strongest evidence for a
reordering comes from the tag sequence with one
source word in front of the reordering.

3.2 Applying Reordering Rules

We begin with a lattice that contains only the
monotone path of the sentence that has to be
translated. First, the POS tagging is done. Then,
for every sequence of POS up to a maximum
length (20 in our experiments) it is tested if it oc-
curs as the left-hand side of any reordering rule. If
a match is found, then for each right-hand side a
new path is added to the lattice with the words
now in the reordered sequence. Similarly, for
POS sequences plus left/right context, which can
be POS tags or words, if a match is found then
a new path is added to the lattice. This also cov-
ers the reordered part only and ignores the context
positions.

To guide the decoder through the lattice by
favoring often seen reorderings the relative fre-
quency of every reordering rule is applied to the
first edge after a node where the path splits up. In
this case it is important to know how the scores
are applied to the edges. Since we used different
type of rules the relative frequencies do not sum
up to 1 over all rules, but only over the rules of
one type.

Another problem is introduced by the fact that the
reorderings are of different lengths, and only re-
orderings over the same length are comparable in
their scores.

So we decided to score at the outgoing edges of
a node, first scoring the longer reorderings and
then using the remaining probability mass for the
shorter reorderings. That means for one type of
rule the score of a reordering in the lattice is
its relative frequency seen in the training corpus
weighted with the remaining probability mass of
the monotone subpath where it takes place. In de-
tail, for reordering subpath p via the m’th of n
applied rules from node [ to node r for this sub-
path, the scores are modified and the sum over all
scores of edges going out of a node sums up to 1.
In the following P(p,,) denotes the relative fre-

quency for the reordering p,y,.
Score(phT) = ProbabilityMass"" - P(p,)

where ProbabilityMass" is the probability
mass that is remaining for the monotone subse-
quence from node [ to node r. The effective score
for the monotone path then computes

Score(monotonet™) =

n

ProbabilityMass"" — Z Score(pt")
i=1
so that the ProbabilityMass left on the subpath
from [ to r — 1 is the Score(monotone®™). Fig-
ure 1 shows a small example lattice with only one
applied rule, and Figure 2 a lattice with more ap-
plied rules.

The next step is to combine the scores of rules
with different types of context. Those rules all
have different relative frequencies, that are not
comparable. A high relative frequency however
means that this kind of reordering was seen very
often during training. So we decided to com-
pute the scores for the rules of different context
by their own, only using rules of the same con-
text. Then we applied to a reordering that was
seen by more than one ruletype, that score which
was the maximum for that rule. This ensures, that
those reorderings that are triggered because they
occur in a special context are favored. The mono-
tone path however, gets the minimum of all scores
computed for the monotone path over the differ-
ent context rules.

4 Experiments

To study the effect of the POS-based distor-
tion model we did a number of experiments
on German-to-English, English-to-German, and
English-to-Spanish translation tasks. We used the
European Parliament Speeches Corpus as used
in the TC-Star' project and the SMT-Workshop
evaluations. Some details of the corpus are given
in Table 2.

Here train-xx is the complete training corpus,
dev-xx denotes the development test set used for
the MER-training (Och, 2003), and eval-xx is the
unseen test set used for evaluation. In the case of

"http://www.tc-star.org
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Slovak 0.9 Republic 1

a Republic 0.1 H Slovak 1 °

Figure 2: a larger lattice example

Sentences \ Words \ Voc/O0V

train-en 1.2M 35M 97K
train-de 1.2M 33M 298K
dev-en 2K 58K 6103 /62
dev-de 2K 54K | 8762 /306
eval-en 2K 58K | 6246/250
eval-de 2K 55K | 9008 /551
train-en 1.2M 33M 94K
train-es 1.2M 34M 135K
dev-en 1.2K 30K 4084 /79
eval-en 1.1K 30K | 4100/ 105

Table 2: Corpus statistics EPPS training and test
corpora.

German < English translation the evaluation is
based on 1 reference, for English — Spanish on 2
references.

For the alignment and the phrase extraction we
used the Pharaoh training package (Koehn et al.,
2005). To tag the corpora we used the follow-
ing taggers: for English the Brill tagger (Brill,
1995) with a tag set size of 36 and for German the
Stuttgart tree-tagger with a tag set size of 57 tags
(Schmid, 1994). From the training corpora and
the POS tagged source side we extracted the re-
ordering rules according to the method described
in Section 3.1. For the experiments reported in
this paper we only learned rules up to a length of
15, since longer rules do not occur often enough
in the training corpus. Table 3 displays the counts

of rules that consist only of the tag sequence and
those that use additional context with the tag to
the left and the tag to the right learned from the
training data as well as the number of rule usage
on the test sentences.

4.1 Threshold and Context

In the first series of experiments we wanted to
study two questions: how does the threshold value
for the relative frequencies of the rules affect the
translation quality, and is using context for the
reordering patterns helpful. For the influence of
the context we used only those rules that used
the tags to the left and to the right of a reordered
tag sequence. We chose that kind of context for
this task because although it would probably per-
form worse than no context, it would indicate,
which threshold is best for both types of con-
text, those only before the reordering sequence
and those after the sequence. Higher threshold,
i.e. fewer rules should eventually hurt the per-
formance. On the other side, allowing unreliable
reordering rules to be used could also lead to a
degradation. The results for those experiments
can be seen in Table 4 and in Table 5.

The systems named POS no Context are those
that only use the tag sequence for triggering re-
orderings, while those named POS + Context use
only rules with left and right tags as context. The
value behind the system name indicates the rela-
tive frequency threshold for the rules. All BLEU
scores are for case sensitive evaluation. As a base-
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System #en —es #en — de #de — en

Context | Threshold Rules Rule Rules Rule Rules Rule
Learned | Matches || Learned | Matches || Learned | Matches

no 0.05 21388 12715 7929 60692 13396 72728
0.1 6848 7740 4061 27809 8528 32233

0.2 2321 4247 1291 8192 3738 14615

0.3 1136 3369 469 3879 1601 7076

yes 0.01 72772 21119 32380 89225 38858 88549
0.05 46014 6888 22836 36765 28485 37608

0.1 25962 4924 15941 19319 21469 17148

0.2 15304 3461 8462 8574 14466 9534

Table 3: Number of reordering rules learned from the training corpus and number of rule matches on
the test sentences with respect to the relative frequency threshold, without and with using the context

POS tags

’ System ‘ en — es ‘

| Baseline(RO3) | 4998 |
POS no Context 0.05 50.36
POS no Context 0.1 51.09
POS no Context 0.2 50.66
POS no Context 0.3 50.59
POS + Context 0.01 50.92
POS + Context 0.05 50.90
POS + Context 0.1 50.84
POS + Context 0.2 50.74
unseen Baseline(RO3) | 48.51
unseen no Context 49.57
unseen with Context 49.49

Table 4: Case sensitive BLEU scores on English
to Spanish development and test sets for the dif-
ferent applied threshold values

line we used our decoder with internal reordering
(Vogel, 2003). The internal reordering was deac-
tivated for every other system. So the scores re-
ported for the reordering using the POS informa-
tion does not use any additional internal reorder-
ing.

Although the first series of experiments was
conducted on the developement set, it is possible
to draw some conclusions from the observed re-
sults. Somewhat surprising is the fact that the sys-
tem that used only the rules with context for the
English to Spanish task was nearly as good as the
system that did not use any context. The results

] System \ en— de \ de — en ‘

| Baseline(RO3) | 1892 | 2564 |
POS no Context 0.05 19.48 26.69
POS no Context 0.1 19.55 26.46
POS no Context 0.2 19.30 26.01
POS no Context 0.3 19.22 25.73
POS + Context 0.01 19.34 25.85
POS + Context 0.05 19.34 25.86
POS + Context 0.1 19.44 25.79
unseen Baseline(RO3) | 17.69 23.70
unseen no Context 17.78 24.79
unseen with Context 17.79 23.87

Table 5: Case sensitive BLEU scores on English
and German development sets for the different ap-
plied threshold values

get even more surprising, if you review the num-
ber of rules that were used to generate the lattices
(Table:3). With a threshold value of 0.05 the num-
ber of rules with context that were applied, were
even lower than the number of rules for the best
setting without context while achieving nearly the
same BLEU score. This means that the rules with
context are able to cover as many reorderings as
the rules without context although they are more
specific. From this it can be seen that the reorder-
ings in the translation from English to Spanish of-
ten occur in the same context.

In the English and German translations how-
ever, the situation is quite different. Here the
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score with the rules that make use of context in-
formation is below the scores without context in-
formation by ~ 0.2 BLEU points. This is what
we expected, since the German language allows
a lot of reorderings of the same word sequence,
because this type of context of reorderings in the
German language varies a lot and it is hard to ex-
tract specific rules without omitting others. How-
ever the number of rules for the best settings with
and without context shows that the system with-
out context applied 50% more rules to the devset,
which also shows the more general form of the
rules without context.

Nevertheless there are some reorderings in the
German language that suggest that some rules re-
quire context information. For example in sen-
tences with auxiliary verbs, it is possible to learn
a rule that moves the verb to the auxiliary verb
which stays in place (e.g. ” Er hat ...gesagt.”).
Without context it is not possible to cover those
dependencies without a huge increase of wrong
reorderings or the score for such a reordering is
much to low to get ever applied.

Using the best system tunded on the develope-
ment data for the unseen data provided a nice im-
provement over the baseline system and even the
system that used the context of the left and right
tags performed in all three tests on the unseen data
better than the internal reordering. This along
with the results we observed indicate that while
some reordering are better covered when context
information is used, there are some reordering for
which no context is useful.

In order to utilize this, we built reordering
lattices that contained reorderings triggered by
all extracted rules, not only just one type (Table 6
and Table 7). One problem which arose was that
the rules that only used the source word sequence
and no POS information hurt performance. This
is obvious, since these rules only get learned if
the word sequence appears often enough in the
training corpus. The problem is that this however
also leads to good phrases for these sequences.
By having high probability reorderings for
those sequences, those phrases that provide the
good translation are not useful anymore and the
performance is hurt.

Overall the results show that the approach of

System ‘ en — es
unseen Baseline(RO3) 48.51
unseen no Context 49.52
unseen with Context 49.49
unseen combination 49.58
unseen combination-Lex | 49.83

Table 6: Case sensitive BLEU scores on English
to Spanish translation with with combination of
all rule types and all rules except those that use
only source words as trigger

System \ en— de | de — en
unseen Baseline(RO3) 17.69 23.70
unseen no Context 17.78 24.79
unseen with Context 17.79 23.87
unseen combination 18.27 24.85
unseen combination-Lex | 18.21 24.88

Table 7: Case sensitive BLEU scores on English
and German translation with combination of all
rule types and all rules except those that use only
source words as trigger

using syntactic reordering outperforms the inter-
nal reordering. In all tested language pairs we
saw an improvement: in the German do English
and the English to Spanish task the improvement
was more than 1.0 BLEU. Also the combination
of rules with different context types can lead to
better performance. The improvement achieved
over a single type of rule depends on the language
pair, but for the translation task from English to
Spanish we saw an improvement of more than
0.3 BLEU and for English to German it was more
than 0.4 BLEU. In the German to English task the
Improvement was only 0.1 BLEU.

4.2 Reordering the Training Corpus

The next series of experiments we tried examined
the influence of reordering in the training corpus
(Popovic and Ney, 2006). One main reason why
this should lead to further improvement lies in
the the observation we made above, that often
seen rules may contradict phrases. This effect
can be seen most significantly when looking
at the performance with and without rules that
are only based on the exact word sequence on
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Corpus ‘ en — de | de — en

Combination 19.61 26.88
Reordered (Giza) 19.44 26.76
Reordered (Lattice) 20.00 27.06
unseen Baseline(RO3) 17.69 23.70
unseen combination 18.27 24.85
unseen reordered corpus 18.42 25.06

Table 8: Case sensitive BLEU scores using
phrases from reordered training corpus

the source side. (Popovic and Ney, 2006) also
reported improvements when reordering the
training corpus. We conducted experiments on
the English to German and German to English
translation task and tried two different ways of
reordering the training corpus.

The first way was to extract phrases from a cor-
pus that had been reordered based on the existing
alignment information. That is to say, the source
sentence was reordered to make the alignment be-
tween source and target sentence monotone.

The second approach we tested was using the
learned reordering rules to create a reordering lat-
tice for every source sentence. Then we used the
word sequence on the best path, i.e. the path with
the highest score, as new source sentence. The
scores we used for the edges were the same as de-
scribed above. After reordering the source corpus
we used this to extract a new phrase table. The
results of the tests can be seen in Table 8.

As it can be seen in Table 8, the phrases ex-
tracted from the reordered training corpus us-
ing the alignment information directly performed
worse than those phrases that were obtained from
the corpus that was reordered using the reordering
lattices.

On the unseen test data, we see an improvement
of 0.15 in BLEU score compared to the previ-
ously best configuration for English to German
and an improvement of 0.2 for German to En-
glish. So we were able to reproduce the effect
reported by (Popovic and Ney, 2006), that a re-
ordered training Corpus leads to a further im-
provement of the translation quality. As a result
you can say that using the same reordering strat-
egy for the training data as for the test data is

preferable over just reordering the training cor-
pus based on the word alignment generated by the
word alignment models.

5 Future work

In the future we will try to minimize the rules that
are applied to a test set for further reduction of
the runtime. We believe the way to achieve this is
by a better estimation of the scores for the mono-
tone path and by alternative scoring methods so
that effective pruning can be done. Also the ef-
fect of smoothing the relative frequencies should
be revisited for the reordering rules.

One question that has not been answered yet,
is whether additional decoder-internal reordering
is still helpful. Some experiments have indicated
this, and the effect seems to depend on the lan-
guage pair. Another field we are working on is the
integration of long range reordering rules (e.g. of
the form: AUX * VB - 0 2 1, which would allow
in German to English translations to move a verb
next to the corresponding auxiliary verb). This
can be done via the above stated rules, or as a
combination with chunk reordering (Zhang et al.,
2007). In the experiments described in the paper
we relied on existing POS taggers. An alterna-
tive would be to use automatic clustering to ob-
tain word classes. This would especially be useful
when dealing with languages for which no good
POS taggers are available. First experiments on
applying word clustering for that task seem to be
promising.

6 Conclusions

We presented a reordering model based on rules
learned from a tagged aligned corpus. The results
we obtain show that this approach outperforms
our previous word reordering strategy, which used
only distance information. We presented results
on English to Spanish translation, which showed
improvements of up to 1.3 BLEU points on un-
seen test data. For German to English and En-
glish to German the improvements where 0.6 and
1.1 BLEU point respectively on unseen data.
Furthermore we investigated the effect of ex-
tracting the phrase table from an reordered train-
ing corpus. By doing so we were able to obtain
an additional improvement on the tested language
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pair German to English and English to German.
So overall the improvement of the German to En-
glish translation added up to 0.8 BLEU points
over the baseline result and the total improvement
from English to German was 1.3 BLEU points.

It is important to note that there was no further
internal reordering applied when translating the
lattices - so this can possibly lead to a further
performance boost. The translation time we
observed was in all settings ~ 2 times faster than
the approach of reordering only in the decoder.
This is due to the monotone decoding over the
lattice. Some sample translations of the baseline
system with internal reordering, the system
with POS-reordering without context and the
combination of POS-reordering with and without
context can be seen in Table 9.

7 Acknowledgements

This work was partly funded by the National Sci-
ence Foundation under the project STR-DUST
(Grant 11S-0325905) and by DARPA under the
GALE project.

References

Yaser Al-Onaizan and Kishore Papineno. 2006. Dis-
tortion models for statistical machine translation. In
Proceedings of the 21st International Conference
on Computational Linguistics and the 4th annual
meeting of the ACL, pages 529-536, Sydney, Aus-
tralia.

A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra.
1996. A maximum entropy approach to natural
language processing. Computational Linguistics,
22(1):39.

Eric Brill. 1995. Transformation-Based Error-Driven
Learning and Natural Language Processing: A Case
Study in Part-of-Speech Tagging. Computational
Linguistics, 21(4):543-565.

Peter F. Brown, Stephen A. Della Pietra, Vincent
J. Della Pietra, and Robert L. Mercer. 1993.
The Mathematics of Statistical Machine Transla-
tion: Parameter Estimation. Computational Lin-
guistics, 19(2):263.

B. Chen, M. Cettolo, and M. Federico. 2006. Re-
ordering rules for phrase-based statistical machine
translation. In Int. Workshop on Spoken Language
Translation Evaluation Campaign on Spoken Lan-
guage Translation, pages 1-15.

Josep M. Crego and Jose B. Marino. 2006. Reorder-
ing Experiments for N-Gram-based SMT. In Spo-
ken Language Technology Workshop, pages 242—
245, Palm Beach, Aruba.

P. Koehn, A. Axelrod, A. B. Mayne, C. Callison-
Burch, M. Osborne, and D. Talbot. 2005. Ed-
inburgh system description for the 2005 ITWSLT
speech translation evaluation. In Proceedings of
the International Workshop on Spoken Language
Translation (IWSLT), Pittsburgh, PA.

Franz Josef Och and Hermann Ney. 2000. Improved
Statistical Alignment Models. In ACL 2000, pages
440-447.

F. J. Och, D. Gildea, S. Khudanpur, A. Sarkar, K. Ya-
mada, A. Fraser, S. Kumar, L. Shen, D. Smith,
K. Eng, V. Jain, Z. Jin, and D. Radev. 2004.
A smorgasbord of features for statistical machine
translation. Proc. 2004 HLT-NAACL, page 161.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proc. of the As-
sociation for Computational Linguistics, Sapporo,
Japan, July 6-7.

M. Popovic and H. Ney. 2006. POS-based word
reorderings for statistical machine translation. In
Proc. of the 5th Int. Conf. on Language Resources
and Evaluation (LREC), page 1278, Genoa, Italy.

H. Schmid. 1994. Probabilistic Part-of-Speech Tag-
ging Using Decision Trees. In International Con-
ference on New Methods in Language Processing,
Manchester, UK.

L. Shen, A. Sarkar, and F. J. Och. 2004. Discrimi-
native reranking for machine translation. In HLT-
NAACL 2004: Main Proc., page 177.

C. Tillmann and T. Zhang. 2005. A localized pre-
diction model for statistical machine translation. In
Proceedings of the 43rd Annual Meeting of the As-
soc. for Computational Linguistics (ACL), pages
557-564, Ann Arbor, MI.

Stephan Vogel, Hermann Ney, and Christoph Till-
mann. 1996. HMM-Based Word Alignment in
Statistical Translation. In COLING 16, pages 836—
841.

Stephan Vogel, Ying Zhang, Fei Huang, Alicia Trib-
ble, Ashish Venogupal, Bing Zhao, and Alex
Waibel. 2003. The CMU statistical translation sys-
tem. In Proceedings of MT Summit IX, New Or-
leans, LA, September.

Stephan Vogel. 2003. SMT decoder dissected: Word
reordering. In Proceedings of the Int. Conf. on Nat-
ural Language Processing and Knowledge Engi-
neering (NLP-KE), pages 561-566, Beijing, China,
October.

179



System Translation

English Source | ...- which we chose to set up -to continue to play a full role in this area .

Baseline ..., die wir haben eingerichtet, um weiterhin eine vollwertige Rolle spielen in
diesem Bereich.

POS ..., die wir haben eingerichtet, um weiterhin eine umfassende Rolle in diesem
Bereich spielen.

Combination ..., die wir festgelegt haben, weiterhin eine umfassende Rolle in diesem Bere-
ich spielen .

German Source | ... geschah, bevor das Umweltbewusstsein ausreichend geschaerft war und ehe
man wusste , welche Auswirkungen das haben wuerde.

Baseline ... happened before the increased environmental awareness sufficient was and
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Combination ... happened before the environmental awareness was sufficient and before we

knew what impact this would have .
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Abstract

This paper focuses on the infer-
ence of structural transfer rules for
shallow-transfer machine translation
(MT). Transfer rules are generated
from alignment templates, like those
used in statistical MT, that have
been extracted from parallel cor-
pora and extended with a set of re-
strictions that control their applica-
The experiments conducted
using the open-source MT platform
Apertium show that there is a clear
improvement in translation quality
as compared to word-for-word trans-
lation (when no transfer rules are
used), and that the resulting transla-
tion quality is very close to the one
obtained using hand-coded transfer
rules. The method we present is
entirely unsupervised and benefits
from information in the rest of mod-
ules of the MT system in which the
inferred rules are applied.

tion.

1 Introduction

The increasing availability of machine-
readable parallel corpora has given rise to the
development of corpus-based machine transla-
tion (MT) approaches such as statistical MT
(SMT) or example-based MT (EBMT). How-
ever, corpus-based approaches usually require
a very large parallel corpus (with tens of mil-
lions of words) that is not always available.

On the other hand, rule-based MT (RBMT)
attains high performance but at the expense
of the large effort needed to build the neces-
sary linguistic resources (Arnold, 2003) such
as structural transfer rules.

In this paper we focus on the automatic in-
ference of structural transfer rules from paral-
lel corpora, which are small compared to the
size of corpora commonly used to build SMT
or (some) EBMT systems. The approach we
present is tested on the shallow transfer MT
platform Apertium for which structural trans-
fer rules are generated.

Overview. Inrule-based MT, transfer rules
are needed to perform syntactic and lexical
changes. The approach we present in this pa-
per to infer shallow-transfer MT rules is based
on the alignment templates approach (Och
and Ney, 2004) already used in SMT (see sec-
tion 3). An alignment template (AT) can
be defined as a generalization performed over
aligned phrase! pairs (or translation units) by
using word classes.

The method we present is entirely unsuper-
vised and needs, in addition to the linguistic
data used by the MT system in which the in-
ferred rules are used, only a (comparatively)
small parallel corpus and a file defining a re-
duced set of lexical categories usually involved
in lexical changes.

Sanchez-Martinez and Ney (2006) use ATs
to infer shallow-transfer rules to be used in

For the purpose of this paper, with phrase we

mean any sequence of consecutive words, not neces-
sarily whole syntactic constituents.
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MT. The work reported in this paper can be
seen as a reformulation and improvement of
that work. Sanchez-Martinez and Ney (2006)
use ad-hoc linguistic information, in addition
to that already present in the rest of mod-
ules of the MT system, to define the priorities
used to establish agreement restrictions. This
additional linguistic information is not neces-
sary here, as restrictions may be easily derived
from the bilingual dictionary using a general
approach.

Transfer rules are generated for use with
the open-source shallow-transfer MT platform
Apertium; however, the approach we present
is suitable for any other shallow-transfer-
based MT system. The generated transfer
rules (see section 2.1) are coded in a well-
defined XML format, and can be edited by
human experts or even co-exist with hand-
crafted ones.

The method we present? has been tested
with an Apertium-based MT system for the
Spanish—Catalan language pair; the experi-
mental results show that the use of AT-based
shallow-transfer rules drastically improves the
translation quality as compared to word-for-
word translation, i.e. when no transfer rules
are used, and is comparable to the quality
achieved when using handcrafted rules.

Background. There have been other at-
tempts to learn automatically or semi-
automatically the structural transformations
needed to produce correct translations into
the target language (TL). Those approaches
can be classified according to the translation
framework to which the learned rules are ap-
plied. On the one hand, some approaches
learn transfer rules to be used in rule-based
MT (Probst et al., 2002; Lavie et al., 2004).
Probst et al. (2002) and Lavie et al. (2004)
infer transfer rules for MT involving “minor”
languages (e.g. Quechua) with very limited
resources. To this end, a small parallel cor-
pus (of a few thousand sentences) is built with
the help of a small set of bilingual speakers of

2The method is implemented inside package
apertium-transfer-tools and, released under the
GNU GPL license, is freely available at http://sf.
net/projects/apertium.

the two languages. The parallel corpus is ob-
tained by translating a controlled corpus from
a “major” language (English or Spanish) to
a “minor” language by means of an elicita-
tion tool. This tool is also used to graphi-
cally annotate the word alignments between
the two sentences. Finally, hierarchical syn-
tactic rules, that can be seen as constituting
a context-free transfer grammar, are inferred
from the aligned parallel corpus.

On the other hand, in the EBMT frame-
work, some researchers deal with the prob-
lem of inferring the kinds of translation rules
called translation templates (Kaji et al., 1992;
Brown, 1999; Cicekli and Guvenir, 2001). A
translation template can be defined as a bilin-
gual pair of sentences in which correspond-
ing units (words or phrases) are coupled and
replaced by variables. Liu and Zong (2004)
provide an interesting review of the different
research works dealing with translation tem-
plates. Brown (1999) uses a parallel corpus
and some linguistic knowledge in the form
of equivalence classes (both syntactic and se-
mantic) to perform a generalization over the
bilingual examples collected. The method
works by replacing each word by its corre-
sponding equivalence class and then using a
set of grammar rules to replace patterns of
words and tokens by more general tokens. Ci-
cekli and Guvenir (2001) formulate the acqui-
sition of translation templates as a machine
learning problem, in which the translation
templates are learned from the differences and
similarities observed in a set of different trans-
lation examples, using no morphological infor-
mation at all. Kajiet al. (1992) use a bilingual
dictionary and a syntactic parser to deter-
mine the correspondences between translation
units while learning the translation templates.
In any case, the translation templates used
in EBMT differ from the approach presented
in this paper, firstly because our approach
is largely based on part-of-speech and inflec-
tion information, and the inferred transla-
tion rules are flatter, less structured and non-
hierarchical (because of this, they are suitable
for shallow-transfer MT); and secondly, be-
cause the way in which the transformations to
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SL text

morphological part-of-speech
analyzer tagger
structural lexical
transfer transfer
post- morphological
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TL text

Figure 1: Main modules of the Apertium shallow-
transfer MT platform (see section 2). The structural
transfer module is the one that applies the inferred
transfer rules.

apply are chosen (see section 5) differs from
those used in the EBMT framework.

The rest of the paper is organized as fol-
lows: the next section overviews the open-
source shallow-transfer MT platform Aper-
tium used to test our approach; section 3
overviews the alignment templates (ATs) ap-
proach; section 4 explains how to extend the
ATs in order to use them to generate (sec-
tion 5) shallow-transfer rules to be used in
MT. Section 6 describes the experiments con-
ducted and the results achieved. Finally, in
section 7 we draw some conclusions and out-
line future work.

2 Overview of Apertium

Apertium?® (Armentano-Oller et al., 2006) is
an open-source platform for developing MT
systems, initially intended for related lan-
guage pairs. The Apertium MT engine follows
a shallow transfer approach and may be seen
as an assembly line consisting of the following
main modules (see figure 1):

A morphological analyzer which tok-
enizes the source-language (SL) text in
surface forms and delivers, for each sur-
face form, one or more lexical forms con-
sisting of lemma, lexical category and
morphological inflection information.

A part-of-speech tagger which chooses,
using a first-order hidden Markov model
3The MT platform, documentation, and linguistic

data for different language pairs can be freely down-
loaded from http://apertium.sf.net.

(HMM) (Cutting et al., 1992), one of
the lexical forms corresponding to an am-
biguous surface form.

A lexical transfer module which reads
each SL lexical form and delivers the cor-
responding TL lexical form by looking it
up in a bilingual dictionary.

A structural shallow transfer module
(parallel to the lexical transfer) which
uses a finite-state chunker to detect pat-
terns of lexical forms which need to be
processed for word reorderings, agree-
ment, etc., and then performs these op-
erations. Note that this is the module
that applies the transfer rules generated
by the method presented here.

A morphological generator which deliv-
ers a TL surface form for each TL lexical
form, by suitably inflecting it.

A post-generator which performs or-

thographic operations such as con-
tractions (e.g. Spanish de+el=del)
and apostrophations (e.g. Catalan

el+institut=1"institut).

Modules use text to communicate, which
makes it easy to diagnose or modify the be-
havior of the system.

2.1 Linguistic data and compilers

The Apertium MT engine is completely in-
dependent from the linguistic data used for
translating between a particular pair of lan-
guages.

Linguistic data is coded using XML-based
formats;* this allows for interoperability, and
for easy data transformation and mainte-
In particular, files coding linguistic
data can be automatically generated by third-
party tools, as is the case of the method we
present.

Apertium provides compilers to convert the
linguistic data into the corresponding efficient

nance.

“The XML (http://www.w3.org/XML/) formats for

each type of linguistic data are defined through
conveniently-designed XML document-type defini-
tions (DTDs) which may be found inside the apertium
package.
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(binary) form used by each module of the en-
gine. Two main compilers are used: one for
the four lexical processing modules (morpho-
logical analyzer, lexical transfer, morpholog-
ical generator, and post-generator) and an-
other one for the structural transfer; both
generate finite-state processors which make
Apertium capable of translating tens of thou-
sands of words per second in a current desktop
computer.

3 The alignment templates
approach

Alignment templates (ATs) (Och and Ney,
2004), initially used in SMT, perform a gen-
eralization over bilingual phrase pairs using
word classes instead of words. An AT z =
(Sm, Tn, A) consists of a sequence S, of m
SL word classes, a sequence T;, of n TL word
classes, and a set of pairs A = {(i,j) : i €
[1,n] A j € [1,m]} with the alignment infor-
mation between TL and SL word classes.

Learning a set of ATs from a parallel corpus
consists of:

1. the computation of the word alignments,

2. the extraction of bilingual phrase pairs,
and

3. the substitution of each word by its cor-
responding word class.

Word alignments. A variety of methods,
statistical (Och and Ney, 2003) or heuris-
tic (Caseli et al., 2005), may be used to
compute word alignments from a (sentence
aligned) parallel corpus. For our experiments
(section 6) we have used the open-source
GIZA++ toolkit® in the following way. First,
standard GIZA++ training runs to estimate
translation models to translate from language
L1 to language Lo, and vice versa. Then, from
the training corpus, Viterbi alignments® A;
and Ay are obtained (one for each translation

Shttp://wuw.fjoch.com/GIZA++.html

5The Viterbi alignment between source and target
sentences is defined as the alignment whose probability
is maximal under the translation models previously
estimated.

metfs = = [= = [= i
been= |= = (= = L
not [ ] L] [ ] [ ] L]
has|= |= = H ul =
request (=
personal |®

@
PSS 660
& L
"R &

Figure 2: Example of bilingual phrases extracted (see
section 3) for a given word-aligned Spanish—English
sentence pair in which the alignment information is
represented as a binary matrix. Each square corre-
sponds to a bilingual phrase.

direction) and symmetrized via the following
method (Och and Ney, 2003, p. 33):7

first the intersection A = A; N A of both
alignments is computed, then

the alignment A is iteratively extended
with alignments (i, j) € Ay or (i,75) € As
if neither SL. word ws; nor TL word wr;
has an alignment in A, or the following
two conditions hold:

1. One of the following (neighboring)
alignments (i 1,7), (i+1,7), (4,
1), (4,7 + 1) is already in A.

2. The new alignment AU {(4,7)} does
not contain any alignment with both
horizontal ((i 1,j), (i +1,7)) and
vertical ((¢,5 1), (4,7 + 1)) neigh-
bors.

Bilingual phrase pairs. The extraction of
bilingual phrases (Och et al., 1999) is per-
formed by considering all possible pairs within
a certain length and ensuring that (see fig-

ure 2):
1. all words are consecutive, and

2. words within the bilingual phrase are not
aligned with words from outside.

"For easier understanding, think about the align-
ment information as a binary matrix (see figure 2).
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The set of bilingual phrases that are ex-
tracted from the word-aligned sentence pair
(ws1,...,wsy), (wry,...,wpy) can be for-
mally expressed as follows:

Bp(w317wT17 ) {(ng—'—mv ’ZH"’Z) :

Vi'j)eA:j<j <j+me
i <4 <i+n}

Generalization. The generalization is sim-
ply done by replacing each word by its corre-
sponding word class. The use of word classes
instead of the words themselves allows the
description of word reorderings, preposition
changes and other divergences between SL
and TL.

4 Alignment templates for
shallow-transfer machine
translation

Shallow-transfer MT is an special case of the
(indirect) rule-based transfer MT framework.
Shallow transfer rules simply detect patterns
of lexical forms and apply lexical and syntac-
tic changes to them. Therefore, a simple in-
termediate representation (IR) consisting of
lexical forms is used by the translation engine.

In order for the shallow-transfer MT system
to benefit from the AT approach the parallel
corpora must be in the same IR used by the
translation engine. To that end, the morpho-
logical analyzers and part-of-speech taggers of
the MT system in which the transfer rules will
be applied are used to analyze the parallel
corpus before computing the word alignments
(see section 3).

4.1 Word-class definition

The transformations to apply are mainly
based on the part-of-speech of SL and TL
words; therefore, part-of-speech information
(including all inflection information such as
gender, number or verb tense) is used to de-
fine the word class each word belongs to.
Using part-of-speech information to define
the set of word classes allows the method
to learn syntactic rules such as reordering
and agreement rules, and verb tense changes,

(noun.loc) = = M
a-pr)= M =
(verb.inf)ll = =
anar -(vaux.pres.3rd. pl)- " .
Q @00&
N 00
&’Q =
&
R = {w; =verb.*, w3 =noun.*}

Figure 3: Example of Spanish—Catalan bilingual
phrases (top), alignment template (bottom) obtained
when each word is replaced by its corresponding word
class, and TL restrictions (see section 4.2) for the
Spanish-to-Catalan translation. Words in bold face
correspond to lexicalized categories (see section 4.1).
Word classes in the horizontal axis correspond to the
SL (Spanish) and in the vertical axis to the TL (Cata-
lan). Alignment information is represented as a binary
matrix.

among others. However, in order to learn lex-
ical changes, such as preposition changes or
auxiliary verb usage, additional linguistic in-
formation, provided by an expert, is needed.

Lexicalized categories. A set of (lexical-
ized) categories usually involved in lexical
changes such as prepositions and auxiliary
verbs may be provided.® For those words
whose part-of-speech is in that set of lexi-
calized categories (from now on, lezicalized
words) the lemma is also used when defining
the word class they belong to. In this way,
lexicalized words are placed in single-word
classes. For example, if prepositions are con-
sidered lexicalized categories, words to and
for would be in different word classes, even if
they have the same part-of-speech and inflec-
tion information, while words book and house
would be in the same word class (noun, singu-
lar). Figure 3 shows an example of Spanish—

8Lexicalized categories are specified through a sim-
ple XML file.

185



Catalan bilingual phrase and the generaliza-
tion performed when each word is replaced by
its corresponding word class; words in bold
face correspond to lexicalized categories. The
AT shown in figure 3 generalizes, on the one
hand, the use of the auxiliary Catalan verb
anar to express the past (preterite) tense and,
on the other hand, the preposition change
when it refers to a place name, such as the
name of a city or a country.

4.2 Extending the definition of
alignment template

In section 3 an alignment template (AT) was
defined as a tuple z = (S, Ty, A) in which
only the alignment between SL and TL word
classes was considered. Here we extend the
definition of AT to z = (Sy, T, 4, R), where
a set of restrictions, R, over the TL inflec-
tion information of non-lexicalized categories

is added.

TL Restrictions. When translating (see
next section), that is, when applying ATs, TL
inflection information of non-lexicalized words
is taken from the corresponding TL word class
in the AT being applied, not from the bilin-
gual dictionary; because of this, restrictions
are needed in order to prevent an AT to be ap-
plied in certain conditions that would produce
an incorrect translation. For example, an AT
that changes the gender of a noun from mas-
culine to feminine (or vice versa) would pro-
duce an incorrect TL word if such a change is
not allowed for that noun. Restrictions refer
to TL inflection information; therefore, they
are obtained for a given translation direction
and they change when translating the other
way round.

TL restrictions are obtained from the bilin-
gual dictionary. In Apertium bilingual dic-
tionaries, changes in inflection information
are explicitly coded. The following two ex-
amples show, on the one hand, a Spanish—
Catalan bilingual entry and, on the other
hand, the restriction over the TL inflection
information for the Spanish-to-Catalan trans-
lation derived for that bilingual entry:°

9Lemmas between <1> and </1> XML tags corre-

(adimsg)= = W
(noun.m.sg)s | =
el -(artmsg)f = =

R

R = {wy =noun.m.*, wg =adj.*}

Figure 4: Spanish—Catalan alignment template (AT)
and TL restrictions over the inflection information for
the Spanish-to-Catalan translation (see section 4.2).

Bilingual entry without any inflection in-
formation change

<e><p>

<1>castigo<s n="noun"/></1>
<r>castig<s n="noun"/></r>
</p></e>

Restriction: w=noun. *

Bilingual entry in which the gender
changes from feminine (Spanish) to mas-
culine (Catalan)

<e><p>
<1>calle<s n="noun"/>
<s n="f"/></1>
<r>carrer<s n="noun"/>
<s n="m"/></r>
</p></e>

Restriction: w=—noun.m.*

As can be seen, restrictions provide the part-
of-speech and inflection information that the
lexical form should have at translation time
after looking it up in the bilingual dictionary;
the star at the end of each restriction means
that the rest of inflection information is not
restricted. The second bilingual entry would
be responsible of the restrictions attached to
wy in the AT shown in figure 4. That AT gen-
eralizes the rule to apply in order to propagate
the gender from the noun to the article and
the adjective, and can only be applied if the
noun (wg) is masculine in the TL (see next
section to know how ATSs are applied).

spond to Spanish words; analogously, lemmas between

<r> and </r> tags correspond to Catalan words. In-
flection information is coded through the <s> (symbol)
XML tag, the first one being the part-of-speech.
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5 Generation of Apertium
structural transfer rules

This section describes the generation of Aper-
tium structural transfer rules; note, however,
that the generation of transfer rules for other
shallow-transfer MT systems would also be
feasible by following the approach presented
here.

Apertium structural transfer uses finite-
state pattern matching to detect, in the usual
left-to-right, longest-match way, fixed-length
patterns of lexical forms to process and per-
forms the corresponding transformations. A
(generic) shallow-transfer rule consists of a
sequence of lexical forms to detect and the
transformations to apply to them.

Filtering of the alignment templates.
To decide which ATs to take into account
for the generation of rules the method is pro-
vided with a frequency count threshold. ATs
whose frequency count is below this threshold
are discarded. In the experiments we have
tested two different ways of interpreting the
frequency count:

to use directly the frequency count ¢, and

to use a modified frequency count ¢ =
c(141og(l)), where [ stands for the length
of the SL part of the AT.

The second approach aims at solving the
problem caused by the fact that longer AT's
have lower frequency counts but may be more
accurate as they take more context into ac-
count.!?

Moreover, ATs satisfying one of the follow-
ing conditions are also discarded:

the bilingual phrase the AT comes from
cannot be reproduced by the MT sys-
tem in which the transfer rules will be
used. This happens when the transla-
tion equivalent (in the bilingual dictio-
nary) differs from that in the bilingual
phrase extracted from the corpus.

10A similar approach was used by Mikheev (1996)

in his work on learning part-of-speech guessing rules
to prioritize longer suffixes over shorter ones.

SL and TL non-lexicalized words are not
aligned.

Rules generation. In our approach, a rule
consists of a set U of ATs with the same se-
quence of SL word classes, but different se-
quences of TL word classes, different align-
ment information or different set of TL re-
strictions. Formally this may be expressed as
follows:

U={(SmTn,A,R) € Z: Sy, =5Y},

where Z refers to the whole set of extracted
ATs and SY to the sequence of SL word
classes all ATs z € U have in common.

For each set U an Apertium shallow-
transfer rule matching the sequence of SL
word classes SU is generated; that rule con-
sists of code applying (see below) always the
most frequent AT z = (Sp,, Th, A, R) € U that
satisfies the TL restrictions R. A “default”
AT, which translates word for word, is always
added with the lowest frequency count. This
AT has no TL restrictions and is the one ap-
plied when none of the rest can be applied
because their TL restrictions are not met.

Code generated for each alignment tem-
plate. Code is generated by following the
order specified by the TL part T}, of the AT.
The generated code for each unit in 7}, de-
pends on the type of its word class:

if the word class corresponds to a non-
lexicalized word, code is generated to
get the translation of the lemma of
the aligned SL (non-lexicalized) word by
looking it up in the bilingual dictionary,
and to attach to the translated lemma
the part-of-speech and inflection informa-
tion provided by the TL word class;

if the word class corresponds to a lexical-
ized word, it is introduced as is; remem-
ber that word classes belonging to lexical-
ized words store complete lexical forms
consisting of lemma, part-of-speech and
inflection information.

Note that the information about SL lexical-
ized words is not taken into account when
generating the code for a given AT.
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Lang. ‘ # sent. ‘ # words

es 100834 | 1952317
ca 100834 | 2032925

Table 1: Number of sentences and words in the
Spanish—Catalan parallel corpus used for training.

Example of AT application. The follow-
ing example illustrates how the AT shown
in figure 3 would be applied to trans-
late from Spanish to Catalan the input
text wvivieron en Francia.'' This text seg-
ment, after morphological analysis and part-
of-speech tagging, is transformed by the
MT engine into the intermediate represen-
tation wvivir-(verb.pret.3rd.pl) en-(pr)
Francia-(noun.loc), which becomes the in-
put to the structural transfer module.

The AT is applied in the order specified
in its TL part. For the word classes cor-
responding to non-lexicalized words, the
aligned SL words are translated into TL
(Catalan) by looking them up in the bilingual
dictionary:
Francia is translated as Franca. Then, the
inflection information provided by the TL
part of the AT (see figure 3) is attached
to each translated lemma. Finally, word
classes corresponding to lexicalized words
are just copied to the output as they appear
in the TL part of the AT. For the running

vivir is translated as viure and

example the structural transfer output
would  be: anar-(vaux.pres.3rd.pl)
viure—(verb.inf) a-(pr)
Franca-(noun.loc), which the genera-

tion module would transform into the

Catalan phrase van viure a Franga.

6 Experiments

Task. We have tested our approach on both
translation directions of the Spanish—Catalan
(es-ca) language pair.'? Table 1 shows the
number of sentences and words in the train-
ing parallel corpus; this corpus comes from El

HTranslated into English as They lived in France.

12 A1l linguistic data used can be freely downloaded
from http://sourceforge.net/projects/apertium,
package apertium-es-ca-1.0.2.

Trans. dir. | Eval. corpus ‘ # words

es-ca post-edit 10066
parallel 13147
ca-es post-edit 10024
parallel 13686

Table 2: Number of words of the two different cor-
pora (see section 6) used for evaluation for each trans-
lation direction.

Periédico de Catalunya,'® a daily newspaper
published both in Catalan and Spanish.

The definition of word classes is performed
by considering a small set with around 8 lex-
icalized categories (see section 4.1) for each
language. The most common lexicalized cat-
egories are: prepositions, pronouns, deter-
miners, subordinate conjunctions, relatives,
modal verbs and auxiliary verbs. Remember
from section 4.1 that only categories usually
involved in lexical changes are lexicalized.

Evaluation. The performance of the pre-
sented approach is compared to that of the
same MT system when no transfer rules are
used at all (word-for-word MT), and that of
using hand-coded transfer rules. To that end
we calculate the word error rate (WER) com-
puted as the word-level edit distance (Lev-
enshtein, 1965) between the translation per-
formed by the MT system for a given setup
and a reference translation divided by the
number of words in the evaluated translation.
Table 2 shows the number of words of the
different corpora used form evaluation. Note
that two different evaluation corpora have
been used, one (post-edit) in which the ref-
erence translation is a post-edited (corrected)
version of the MT performed when using
hand-coded transfer rules, and another (par-
allel) in which the text to translate and the
reference translation come from a parallel cor-
pus analogous to the one used for training.

Results. Table 3 shows the results achieved
for each translation direction and evaluation
corpus. The error rates reported are: (a) the
results of a word-for-word translation (when
no structural transformations are applied),

Bhttp://www.elperiodico.com
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Trans. dir. | Eval. corpus | No rules ‘ AT count ‘ AT log ‘ Hand ‘

es-ca post-edit 12.6 % 8.6 % 85 % | 6.7%
parallel 26.6 % 204 % | 204 % | 20.8%
ca-es post-edit 11.6 % 8.1 % 81% | 6.5%
parallel 19.3 % 15.0 % | 149 % | 145 %

Table 3: Word error rate (WER) for each translation direction and evaluation corpus. The error rates reported
are (from left to right): the result when no transfer rules are used, the best result achieved when the count is
used directly when discarding infrequent ATs (AT count), the best result achieved when a modified frequency
count is used when discarding infrequent ATs (AT log, see section 5), and the results achieved when hand-coded

transfer rules are used.

(b) the results when the frequency count is
directly used to discard infrequent ATs, (c)
the results when a modified frequency count
(see section 5) is used to discard infrequent
ATs, and (d) the results achieved when us-
ing hand-coded transfer rules; in all cases the
same linguistic data (morphological and bilin-
gual dictionaries) were used.

As can be seen, when evaluating via a post-
edited translation, handcrafted rules perform
better than our method; however, they give
comparable results when using a evaluation
corpus similar to the one used for training.
This result suggests, on the one hand, that
our training method produces text of the same
style of that used for training and, on the
other hand, that even though they “learn” the
style of the training corpus, the translation
quality for other texts is quite good. Note
that the post-edited translation used as refer-
ence is a corrected version of a MT performed
with the same handcrafted rules; therefore,
this evaluation is slightly biased towards the
system using handcrafted rules.

Finally, note that both criteria used to dis-
card infrequent ATs (see section 5) give com-
parable results for both translation directions.
This may be explained by the fact that, on the
one hand, rules that do not apply any AT (be-
cause of TL restrictions not being met) per-
form a word-for-word translation, and on the
other hand, rules with longer ATs have more
restrictions to check and, therefore, they are
more likely to eventually perform a word-for-
word translation.

7 Discussion

In this paper the generation of shallow-
transfer rules from statistically-inferred align-
ment templates (ATs) has been tested. To
this end, little linguistic information, in addi-
tion to the linguistic data used by the MT en-
gine, has been used in order to learn, not only
syntactic changes, but also lexical changes to
apply when translating SL into TL. This lin-
guistic information consists of a small set of
lexical categories involved in lexical changes
(prepositions, pronouns, etc.) and can be eas-
ily provided.

The method presented has been tested us-
ing an existing open-source shallow-transfer
MT system. The performance of the system
when using the automatically generated rules
has been compared to that of a word-for-word
translation (when no structural transforma-
tions are applied) and that obtained using
hand-coded transfer rules. In all cases, there
is a significant improvement in the translation
quality as compared to word-for-word trans-
lation. Furthermore, the translation qual-
ity is very close to that achieved when using
hand-coded transfer rules, being comparable
in some cases.

Finally, we plan to improve the generated
rules so that they apply shorter ATs in-
side the same rule when none of the longer
ATs can be applied because of TL restric-
tions not being met. This gradual “back-
off” code in rules would avoid falling back
straight into word-for-word translation as it
is done now. We also plan to test the pre-
sented method with other Apertium-based
linguistic packages. Preliminary results on
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the Spanish—Portuguese language pair show
results in agreement to those provided in this
paper when evaluating through a parallel cor-
pus.
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Abstract

In Statistical Machine Translation
(SMT), one of the main problems
they are confronted with is the
problem stemming from the differ-
ent word order that different lan-
guages imply. Most works address-
ing this issue centre their effort in
pairs of languages involving Ara-
bic, Japanese or Chinese because of
their utmost different origin with re-
spect to western languages.
ever, Basque is also a language with
an extremely different word order
with respect to most other Euro-
pean languages, linguists being un-
able to determine its origins with
certainty.  Hence, SMT systems
which do not tackle the reordering
problem in any way are mostly un-
able to yield satisfactory results. In
this work, a novel source sentence
reordering technique is presented,
based on monotonized alignments
and n-best lists, endorsed by very
promissing results obtained from a
Basque-Spanish translation task.

How-

1 Introduction

SMT systems have proved in the last years
to be an important alternative to rule-based
machine translation systems, being even able
of outperforming commercial machine trans-
lation systems in the tasks they have been

trained on. Moreover, the development effort
behind a rule-based machine translation sys-
tem and an SMT system is dramatically dif-
ferent, the latter being able to adapt to new
language pairs with little or no human effort,
whenever suitable corpora are available.

The grounds of modern SMT were estab-
lished in (Brown et al., 1993), where the
problem of machine translation was defined
as following: given a sentence s from a cer-
tain source language, an adequate sentence t
that maximises the posterior probability is to
be found. Such a statement can be specified
with the following formula:

t = argmax Pr(t|s)
t

Applying the Bayes theorem on this defini-
tion, one can easily reach the next formula

: Pr(s)
and, since we are maximising over ¢, the de-
nominator can be neglected, arriving to

t = argmax Pr(t) - Pr(s|t)
t

where Pr(t|s) has been decomposed into two
different probabilities: the statistical language
model of the target language Pr(t) and the
(inverse) translation model Pr(s|t).
Although it might seem odd to model the
probability of the source sentence given the
target sentence, this decomposition has a
very intuitive interpretation: the translation
model Pr(s|t) will capture the word relations
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between both input and output language,
whereas the language model Pr(t) will ensure
that the output sentence is a well-formed sen-
tence belonging to the target language.

In the last years, SMT systems have evolved
to become the present state of the art, two
of the most representative techniques being
the phrase based models (Koehn et al., 2003;
Och and Ney, 2004) and the Weighted Fi-
nite State Transducers for Machine Transla-
tion (Casacuberta and Vidal, 2004; Kumar
and Byrne, 2003). Both of these frameworks
typically rely on word-aligned corpora, which
often lead them to incur in word ordering re-
lated errors. Although there have been dif-
ferent efforts aiming towards enabling them
to deal with non-monotonicity, the algorithms
developed often only account for very lim-
ited reorderings, being unable to tackle with
the more complex reorderings that e.g. some
Asian languages introduce with respect to eu-
ropean languages. Because of this, not only
will monotone systems present incorrectly or-
dered translations, but, in addition, the pa-
rameters of such models will be incorrectly
estimated, whenever a certain input phrase is
erroneously assumed to be the translation of
a certain output phrase in training time.

Although no efficient solution has still been
found, this problem is well known already
since the origin of what is known as statisti-
cal machine translation: (Berger et al., 1996)
already introduced in their alignment mod-
els what they called distortion models, in an
effort towards including in their SMT sys-
tem a solution for the reordering problem.
However, these distortion models are usually
implemented within the decoding algorithms
and imply serious computational problems,
leading ultimately to restrictions being ap-
plied to the set of possible permutations of
the output sentence. Hence, the search per-
formed turns sub-optimal, and an important
loss in the representational power of the dis-
tortion models takes place.

On the other hand, dealing with arbitrary
word reordering and choosing the one which
best scores given a translation model has been
shown not to be a viable solution, since when

allowing all possible word permutations the
search is NP-hard (Knight, 1999).

In the present work we develop a new ap-
proach to the problem, based on the work
of Zens, Matusov and Kanthak (Zens et al.,
2004; Matusov et al., 2005; Kanthak et al.,
2005), who introduced the idea of monotoniz-
ing a corpus. A very preliminary result of
our work was published in a Spanish work-
shop (Sanchis and Casacuberta, 2006). The
key idea behind this concept is to use the
IBM alignment models to efficiently reorder
the input sentence s and produce a new bilin-
gual, monotone pair, composed by the re-
ordered input sentence s’ and the output sen-
tence t. Hence, once this new bilingual pair
has been produced, the translation model to
be applied will not have to tackle with the
problems derived from different word reorder-
ings, since this problem will not be present
any more. Still, there is one more problem to
be solved: in search time, only the input sen-
tence is available, and hence the pair cannot
be monotonized. To solve this, a very simple
reordering model will be introduced, together
with a reordered language model and n-best
hypothesis generation. In this work, a phrase
based model is trained using these monotone
pairs.

In the following section, a brief overview of
the latest efforts made towards solving the re-
ordering problem will be pointed. In section
3, the approach presented in this work will be
described, and in section 4 the experiments
performed with this system will be shown. Fi-
nally, in section 5 the conclusions from this
work will be elucidated, as well as the work
that is still to be done.

2 Brief overview of existing
approaches

Three main possibilities exist when trying to
solve the reordering problem: input sentence
reordering, output sentence reordering, or re-
ordering both. The latter is, to the best of
our knowledge, as yet unexplored.

Vilar et al. (1996), tried to partially solve
the problem by monotonizing the most prob-
able non-monotone alignment patterns and
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adding a mark in order to be able to remem-
ber the original word order. This being done,
a new output language has been defined and
a new language and translation model can be
trained, making the translation process now
monotone.

More recently, Kumar and Byrne (2005)
learned weighted finite state transducers ac-
counting for local reorderings of two or three
positions. These models were applied to
phrase reordering, but the training of the
models did not yield statistically significant
results with respect to the introduction of the
models with fixed probabilities.

When dealing with input sentence reorder-
ing (Zens et al., 2004; Matusov et al., 2005;
Kanthak et al., 2005), the main idea is to re-
order the input sentence in such a way that
the translation model will not need to account
for possible word reorderings. To achieve this,
alignment models are used, in order to estab-
lish which word order should be the appropri-
ate for the translation to be monotone, and
then the input sentence is reordered in such a
manner that the alignment is monotone.

However, this approach has an obvious
problem, since the output sentence is not
available in search time and the sentence pair
cannot be made monotone.

The naive solution, test on all possi-
ble permutations of the input sentence, has
already been discussed earlier, being NP-
hard (Knight, 1999), as J! possible permu-
tations can be obtained from a sentence of
length J. Hence, the search space must be
restricted, and such restrictions are bound to
yield sub-optimal results. In their work, Kan-
thak et al. present four types of constraints:
IBM, inverse IBM, local and ITG constraints.

Although the restrictions presented in their
work (IBM, inverse IBM, local and ITG con-
straints) did yield interesting results, the
search space still remained huge, and the com-
putational price paid for a relatively small
benefit was far too high.

o Let:
— s a source sentence, and s; its j-th word
— t a target sentence, and ¢; its i-th word

e Let C' be a cost matrix
¢;j = cost(align(s;,t;))

e Let {s"} = {all possible permutations of s}.
1. compute alignment Ap(j) = argmin c;;
i

s'={s"IVj: Ap(j) < Ap(j + 1)}
recompute (reorder) C, obtaining C’.

Ll

set A (i) = argmin c’;;.
j

5. Optional: Compute minimum-cost
monotonic path through cost matrix C”.

Figure 1: Algorithm for obtaining a mono-
tonic alignment by reordering the source sen-
tence.

3 The reordering model and
N-Best reorderings

An important motivation behind the ap-
proach in this work is that the reordering con-
straints presented by Kanthak et al. (Kan-
thak et al., 2005) do not take into account
extremely significant information that can be
extracted from monotonized corpora: while
reordering the input sentence in such a fash-
ion that the alignment turns monotone, we
are performing the reordering step needed fur-
ther on when this action is needed to be taken
on the input test set. Hence, what we would
ideally want to do is learn a model using this
information that will be capable of reordering
a given, unseen, input sentence in the same
way that the monotonization procedure would
have done, in the hope that the benefits intro-
duced will be greater than the error that an
additional model will add into the translation
procedure.

Once the alignments made monotonic ac-
cording to the algorithm shown in Fig-
ure 1 (Kanthak et al., 2005), a new source
”language” has been established, meaning
that a reordered language model can be
trained with the reordered input sentences s’.
Such a language will have the words of the
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1l0ean arratsaldean irten behar dugu
| . 1 1 . 1 1
nos hemos de ir el dia diez por la tarde .
10ean arratsaldean irten behar dugu
dla diez por Ia tarde ir de nos hemos

Figure 2: Alignment produced by GIZA (top)
and alignment after the monotonization pro-
cedure (bottom). This is an example ex-
tracted from the Spanish—Basque corpus (i.e.
Spanish is the source language). Although
these sentences mean “We have to go day 10
in the evening.”, the reordered spanish sen-
tence would mean something like “Day ten in
the evening go to we have.”.

original source language, but the distinctive
ordering of the target language. An example
of this procedure is shown in Figure 2. Hence,
a reordering model can be learnt from the
monotonized corpus, which will most likely
not depend on the output sentence, when-
ever the word-by-word translation is accurate
enough.

Hence, the reordering problem can be de-
fined as:

Pr(s|s")

where Pr(s") is the reordered language model,
and Pr(s|s") is the reordering model. Being
this problem very similar to the translation
problem but with a very constrained transla-
tion table, it seems only natural to use the
same methods developed to solve the transla-
tion problem to face the reordering problem.
Hence, in this paper we will be using an ex-
ponential model as reordering model, defined
as:

s’ = argmax Pr(s") -
s’V‘

Pr(s|s’) ~ exp(— Zd

where d; is the distance between the last re-
ordered word position and the current candi-
date position.

Spanish Basque

op | Sentences 38940

g Different pairs 20318

'% Words 368314 290868

& | Vocabulary 722 884
Average length 9.5 7.5
Sentences 1000

*g Test independent 434

& | Words 9507 7453
Average length 9.5 7.5

Table 1: Characteristics of the Tourist corpus.

However, and in order to reduce the error
that will introduce a reordering model into the
system, we found to be very useful to com-
pute an n-best list of reordering hypothesis
and translate them all, selecting then as fi-
nal output sentence the one which obtains the
highest probability according to the models
Pr(t)-Pr(s"|t). Ultimately, what we are actu-
ally doing with this procedure is to constrain
the search space of permutations of the source
sentence as well, but taking into account the
information that monotonized alignments en-
tail. In addition, this technique implies a
much stronger restriction of the search space
than previous approaches, reducing signifi-
cantly the computational effort needed.

4 Translation experiments

4.1 Corpus characteristics

Our system has been tested on a Basque-
Spanish translation task, a tough machine
translation problem in which reordering plays
a crucial role.

The corpus chosen for this experiment
is the Tourist corpus (Pérez et al., 2005),
which is an adaptation of a set of Spanish-
German grammars generating bilingual sen-
tence pairs (Vidal, 1997) in such languages.
Hence, the corpus is semi-synthetic. In this
task, the sentences describe typical human
dialogues in the reception desk of a hotel,
being mainly extracted from tourist guides.
However, because of its design, there is some
asymmetry between both languages, and a
concept being expressed in several manners
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in the source language will always be trans-
lated in the same manner in the target lan-
guage. Because of this, the target language is
meant to be simpler than the source language.
Since the input language during the design of
the corpus was Spanish, the vocabulary size
of Basque should be smaller. In spite of this
fact, the vocabulary size of Basque is bigger
than that of Spanish, and this is due to the
agglutinative nature of the Basque language.
The corpus has been divided into two sepa-
rate subsets, a bigger one for training and a
smaller one for test. The characteristics of
this corpus can be seen in Table 1.

4.2 System evaluation

The SMT system developed has been auto-
matically evaluated by measuring the follow-
ing rates:

WER (Word Error Rate): The WER cri-
terion computes the minimum number
of editions (substitutions, insertions and
deletions) needed to convert the trans-
lated sentence into the sentence consid-
ered ground truth. This measure is be-
cause of its nature a pessimistic one,
when applied to Machine Translation.

PER (position-independent WER): This cri-
terion is similar to WER, but word order
is ignored, accounting for the fact that an
acceptable (and even grammatically cor-
rect) translation may be produced that
differs only in word order.

BLEU (Bilingual Evaluation — Understudy)
score: This score measures the precision
of unigrams, bigrams, trigrams,
4-grams with respect to a set of reference
translations, with a penalty for too short
sentences (Papineni et al., 2001). BLEU
is not an error rate, i.e. the higher the

BLEU score, the better.

and

4.3 Experimental setup and
translation results

We used the reordering technique described
above to obtain an n-best reordering hypoth-
esis list and translate them, keeping the best
scoring one.

bleu score

Basque Spanish translation

81 2
1 20
80 1 + DU +
reordered bleu -+ ] 19 %
79 | reordered wer —x-- g
baseline bleu -~ ] 5
baseline wer - 18 =
? 1 17
77 Lo — — 16
0 5 10 15 20

size of n-best list

Figure 3: FEvolution of translation quality
when increasing n for Basque to Spanish.

Baseline | Reordered, n =5
WER 20.7% 16.2%
BLEU | 77.9% 79.8%
PER 12.6% 11.0%

Table 2: Results for Basque to Spanish trans-
lation.

First, the bilingual pairs were aligned us-
ing IBM model 4 by means of the GIZA++
toolkit (Och and Ney, 2000). After this,
the alignments were made monotone in the
way described in Figure 1 and a new align-
ment was recalculated, determining the new
monotone alignment between the reordered
source sentence and the target, and a re-
ordered source sentence language model was
built. In addition, a phrase based model in-
volving reordered source sentences and tar-
get sentences was learned by using the Thot
toolkit (Ortiz et al., 2005).

For the next step, the reordering model,
we used the reordering model built in the
toolkit Pharaoh. This was done by including
in the translation table only the words con-
tained in the vocabulary of the desired source
language, and allowing the toolkit to reorder
the words by taking into account the lan-
guage model and the phrase-reordering model
it implements, which is an exponential model.
Since in this case, the phrases are just words,
what results is an effective implementation of

195



Spanish Basque translation

88 \ 20
87 | P { 19
86 1 18
1 17
L85 reordered bleu -+ 16 g
(@] - -
o ¥ reordered wer ---x---- <
284 baseline bleu - 15
] “ baseline wer ——— 1 14 =
S 83 *.
82 1 13
1 12
81 P N e 4 11
80 - : : — 10
0 5 10 15 20

size of n-best list

Figure 4: Evolution of translation quality
when increasing n for Spanish to Basque.

Baseline | Reordered, n =5
WER 19.5% 10.9%
BLEU | 81.0% 87.1%
PER 6.2% 4.9%

Table 3: Results for Spanish to Basque trans-
lation.

an exponential word-reordering model, just as
we wanted.

Once the n best reordering hypothesis had
been calculated, we translated them all by us-
ing Pharaoh once again, and kept the best
scoring translation, being the score deter-
mined as the product of the (inverse) transla-
tion model and the language model.

As a baseline, we took the results of trans-
lating the same test set, but without the re-
ordering pipeline, i.e. just using GIZA++
for aligning, Thot for phrase extraction and
Pharaoh for translating. The results of this
setup can be seen in Table 3 and Table 2, with
n-best list size set to 5. At this point, it must
be noted that Pharaoh by itself also performs
some reordering of the output sentence, but
only on a per-phrase basis.

These results show that the reordering
pipeline established does have significant ben-
efits on the overall quality of the translation,
almost achieving a relative improvement of
50% in WER. Furthermode, it is interesting to
point out that even in the case of the PER cri-

terion the results obtained are better. At first
sight, this might seem odd, since the PER cri-
terion does not take into account word order
errors within a sentence, which is the main
problem reordering techniques try to solve.
However, this improvement is explained be-
cause reordering the source sentence allows for
better phrases to be extracted.

It is also interesting to point out that
the translation quality when translating from
Spanish to Basque is much higher than in the
opposite sense. This is due to the corpus char-
acteristics described in the previous section:
Spanish being the input language of the cor-
pus, it is only natural that the translation
quality will worsen when reversing the meant
translation direction. In addition, it can also
be observed that the reordering pipeline has
less beneficial effects when translating from
Basque to Spanish.

Lastly, in Figure 4 and Figure 3, the re-
sult of increasing the size of the m-best re-
ordering hypothesis list can be seen. In the
case of Spanish-Basque translation, it can
be seen how the translation quality still in-
creases until size 20, where as in the case
of Basque-Spanish the translation quality al-
ready reaches its maximum with the first 5
best hypothesis. However, it can also be
seen that just using the best reordering hy-
pothesis already yields better results than
without introducing the reordering pipeline.
Hence, these figures also show that the
phrase extraction process obtains better qual-
ity phrases when the monotonization proce-
dure has been implemented before the extrac-
tion takes place.

5 Conclusions and Future Work

A reordering technique has been imple-
mented, taking profit of the information that
monotonized corpora provide. By doing so,
better quality phrases can be extracted and
the overall performance of the system im-
proves significantly in the case of a pair of lan-
guages with heavy reordering complications.

This technique has been applied to trans-
late a semi-synthetic corpus which deals with
the task of Spanish-Basque translation, and
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the results obtained prove to be statistically
significant and show to be very promising,
specially taking into account that Basque is
an extremely complex language that poses
many problems for state of the art systems.

Moreover, the technique we propose in
this paper is learnt automatically, without
any need of linguistic annotation or manu-
ally specified syntactic reordering rules, which
means that out technique can be applied to
any language pair without need for any addi-
tional development effort.

Both reordered corpora and reordering
techniques seem to have a very important po-
tential for the case of very different language
pairs, which are the most difficult translation
tasks.

As future work, we are planning on obtain-
ing results with other non-synthetic, richer
and more complex corpora, as may be other
Spanish-Basque corpora or corpora involving
language pairs such as Arabic, Chinese or
Japanese. In addition, we are planning on
developping more specific reordering models,
which will be more suitable for this task than
the exponential model described here, as well
as searching and developing integrated ap-
proaches trying to solve the reordering prob-
lem.
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Abstract

METIS-II, the MT system presented in
this paper, does not view translation as a
transfer process between a source lan-
guage (SL) and a target one (TL), but
rather as a matching procedure of patterns
within a language pair. More specifically,
translation is considered to be an assign-
ment problem, i.e. a problem of discover-
ing each time the best matching patterns
between SL and TL, which the system is
called to solve by employing pattern-
matching techniques.

Most importantly, however, METIS-II is
innovative because it does not need bilin-
gual corpora for the translation process,
but exclusively relies on monolingual
corpora of the target language.

1 Introduction

The system presented here further elaborates on
the original METIS approach (Dologlou et al.,
2003) which did not view translation as a transfer
process between a source language and a target
one, but rather as a matching procedure of patterns
within a language pair (Markantonatou et al.,
2006). With this approach, only basic NLP re-
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sources (such as taggers, lemmatisers, chunkers
and simple bilingual lexica) are needed, while new
languages, especially low density ones, can be eas-
ily included in the system. Furthermore, bilingual
corpora are no longer essential; monolingual cor-
pora of the target language suffice for the transla-
tion process.

METIS-1I extends the original idea by handling
patterns (translation units) at sub-sentential level,
thus facilitating the elicitation of linguistic infor-
mation from the TL corpus such as syntactic and/or
semantic preferences of words as well as word or-
der.

Four language pairs have been developed as
yet, namely Dutch, German, Greek and Spanish
into English, all with satisfactory results in terms
of BLEU (Papineni et al. 2002) and NIST (2002)
evaluations (Tambouratzis et al., (2006) and
METIS Il — Deliverable 5.2 (2007)); however, the
METIS-1I system reported here concerns only the
Greek into English language pair.

METIS-II system comprises roughly four (4)
modules/phases, namely Pre-processing (transfor-
mation of the input into patterns), Core Engine
(pattern matching), Token Generation (creation of
word forms) and Synthesising (composition of the
final translation).

The structure of the paper is as follows: in Sec-
tion 2 the main system features are presented. Sec-
tions 3, 4, 5 and 6 describe the respective system
modules. Section 7 reports on system testing and
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evaluation results; section 8 provides a brief de-
scription of the translation process, while the last
section summarises the plans for the future devel-
opment and optimisation of the system.

2 System Features

METIS-II is regarded to be of hybrid nature, since
it joins pattern-matching techniques with statistical
information, while employing algorithms for han-
dling combinatorial optimisation problems (such as
the assignment problem). In addition, a very lim-
ited number of linguistic rules is employed, thus
avoiding the explosion of rules in rule-based
grammars (Gaizauskas, 1995).

Moreover, within this system, what is crucial is
the notion of patterns, that is, phrasal models (to-
kens, chunks, clauses, sentences), which form the
basis for measuring the similarity between SL and
TL. Patterns are generated by the tools used for
both languages and differ from the patterns em-
ployed in the corpus-based MT paradigm mostly in
the sense that they are viewed as models of TL
strings, which receive their final form after corpus
consultation.

Therefore, METIS Il is different both at imple-
mentation level, given that it employs a variety of
algorithms, and conceptually, since translation is
viewed as a matching process of patterns between
SL and TL, aiming each time at detecting the best
match.

Nowadays investigation of hybrid systems
combines easy-to-obtain resources from all MT
paradigms and shows a very promising path in re-
search (Thurmair, 2005).

3 Pre-Processing

For the translation process both the SL input and
the TL corpus are transformed to sets of patterns,
which are generated with standard NLP tech-
niques.

3.1 TL pattern generation

The TL pattern generation involves the off-line
pre-processing of the British National Corpus
(BNC'), which has been selected as TL corpus.
BNC pre-processing comprises the following
steps:

! www.hatcorp.ox.ac.uk/

. Lemmatisation with a reversible lemmatiser
(Carl et al., 2005)

. Segmentation of text into finite clauses with
a purpose-built tool

o Syntactic annotation at chunk level with
ShaRPa 2.0 chunker (Vandeghinste, 2005)

. Corpus indexation to allow for an efficient
and fast search for a best match: in particu-
lar, clauses are indexed according to their fi-
nite verb, while chunks are classified
according to their labels.

3.2 SL pattern generation

The SL pattern generation involves the annotation
of the SL input by a tokeniser, lemmatiser, tagger
(Labropoulou et al., 1996) and a chunker (Boutsis
et al., 2000), resulting in a sequence of labelled
patterns? and their contained tokens. In addition,
the respective heads are identified.

This sequence is then enhanced by the Lexicon
look-up, which provides all the possible translation
equivalents together with PoS information, resem-
bling thus a TL sequence.

It should be noted that the METIS-II system re-
ceives as input a sequence of sentences, but it han-
dles each contained clause separately, synthesising
in the end the translations of the various segments.

4  Core Engine

The core engine of METIS-II system is fed with a
sequence of TL-like patterns (created as described
in Section 3.2), which is handled by the pattern-
matching algorithm in order to produce the final
translation.

A characteristic feature of the pattern-matching
algorithm, which mimics and exploits the recursive
nature of language, is that it proceeds in stages:
moving from wider patterns to narrower ones, it
manages to discover the longest similar pattern in
terms of overall structure and lexical head affilia-
tions and then identify and correct any residual
mismatches. Similarity is calculated on the basis of
a series of weights, which mainly reflect gram-
matical information.

More specifically, the system searches the TL
corpus for candidate patterns of clauses, which are
similar to the given TL-like clause pattern in terms

2 The pattern labels denote the categorical status of patterns.
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of the main verb and the number of contained
chunk patterns (Step 1).

In accordance to the above, the first comparison
is performed at clause level, where similarity is
calculated on the basis of the main verb, the chunk
labels and the head lemmas, resulting in the estab-
lishment of chunk order within the TL-like clause
(Step 2).

The subsequent comparison is narrower and
confined within the boundaries of the chunk pat-
terns. The pattern-matching algorithm calculates
the similarity of contained tokens, fixing thus the
correct order of tokens within each chunk (Step 3).

At the end of the comparison process a TL cor-
pus clause is selected as the basis of translation,
while chunk and token order has been established.
Nevertheless, the final translation is derived from
the specific corpus clause, only after the contained
chunks have been processed, with the purpose of
eliminating any mismatches. This processing en-
tails either modification or substitution of given
chunks, in order to include them in the final trans-
lation (Step 4).

The output of the pattern-matching algorithm is
a sequence of translated lemmas and their respec-
tive tags, which is subsequently fed into the token
generation module.

5 Token Generation

The token generation module receives as input a
sequence of translated lemmas and their respective
tags and is responsible for the production of word
forms (tokens) out of lemmas and the handling of
agreement phenomena, for instance subject-verb
agreement, on the basis of morphological informa-
tion.

For the generation task, METIS-II utilises re-
sources produced and used in the reversible lem-
matiser/token-generator for English (Carl et al.,
2005).

The morphological features identified and used,
which are essential for the specific TL, namely
English, are tense, person, number, case and de-
grees of comparison (comparative and superlative
degree). These features are integrated within the
inflection rules employed for token generation.

Furthermore, morphological information is ex-
ploited for handling the syntactic phenomenon of
subject-verb agreement, especially in cases of an
empty subject. Given that Greek is a pro-drop lan-

guage, subjectless clauses often occur. The genera-
tion module is based on the morphological features
of the main verb of a given clause, in order to de-
rive a suitable subject pronoun on every occasion.

6 Synthesising

As mentioned above, METIS-II receives as input a
text, i.e. a sequence of sentences. Sentences consist
of clauses, and very often a clause may be discon-
tinued through the embedding of another clause.
The METIS-II core engine creates separate transla-
tion processes for each clause, namely each clause
process is a separate thread, running in parallel
with the others. When a clause thread has finished
translating, it reports back to the core engine.

When all SL clause processes have reported
back, the corresponding target sentence is formed.
Clauses are placed in the target sentence in the
same order as they are found in the source sen-
tence. However, in cases of discontinuous embed-
ding, the translation output consists of clauses
placed next to each other.

When the synthesising phase is concluded for a
given sentence, then this sentence is added to the
final text, following source text sentence order.

The entire translation process, from the input of
the TL-like pattern to the core engine up to the
synthesising phase, is presented in Figure 1.

7 System Testing and Evaluation

In the present section the results obtained for the
Greek > English language pair are summarised.
The experiment involved testing METIS-I1 in com-
parison to SYSTRAN, a commercial, widely-used
MT system, which is mainly rule-based.

7.1 Experimental set-up

The corpus tested was extracted from real texts,
mainly from newspapers, and consisted of fifty
(50) sentences. The test sentences had an average
length of 8,2 words, were of relative complexity,
containing one to two clauses each and covered
various syntactic phenomena such as word-order
variation, NP structure, negation, modification etc.

There was no limitation defined regarding the
possible translations of each source token, while
the reference translations used for the evaluation
have been restricted to three (3) and were produced
by humans.
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With respect to the evaluation of both MT sys-
tems, METIS-II and SYSTRAN, established met-
rics in the MT field were employed, namely BLEU
(Papineni et al. 2002) and NIST (2002), which rely
on calculating matching n-grams over words, as
well as the Translation Error Rate (TER), which
measures the amount of editing that a human
would have to perform to change a system output,
so that it exactly matches a reference translation
(Snover et al., 2006: 1).

7.2 Experimental results

The experimental results obtained are summarised
in Tables 1-3, where the mean of the 50 sentence
scores obtained for each system are indicated, to-
gether with the median, the standard deviation, as
well as the maximum and minimum scores.

As can be seen from Table 1, where the evalua-
tion results based on the BLEU metric are pre-
sented, both systems exhibit the same maximum
and minimum accuracy; however, METIS-II has a
significantly higher mean accuracy. More specifi-
cally, METIS-II achieves perfect scores for 16% of
the test sentences, while the respective SYSTRAN
percentage is 4%.

Nevertheless, SYSTRAN gets slightly better
scores at the middle score range, which explains
why this system has a higher median accuracy.
Moreover, SYSTRAN seems to be more stable,
given that its scores are characterised by a lower
standard deviation.

With respect to the NIST metric, the picture
seems more straightforward. METIS-II consis-
tently generates more accurate translations, while
SYSTRAN continues behaving in a more stable
manner, since its standard deviation is lower.

The opposite conclusions are obtained, as re-
gards the TER metric, according to which the low-
est scores are equated to a smaller number of edits.
Therefore, apart from its high maximum accuracy,
SYSTRAN consistently exhibits a better mean and
median accuracy, while once more is proved to be
a more stable system than METIS-II, since its
scores are characterised again by a lower standard
deviation. It should be noted, though, that METIS-
Il achieved a perfect translation for 9 out of the 50
sentences, while SYSTRAN translated perfectly
only 3.

In order to investigate whether the differences
in the accuracy populations (where each sentence
corresponds to one element of the population) of

the two systems, METIS-II and SYSTRAN, are
significant, a set of t-tests were performed on the
metric (BLEU, NIST, TER) results per system.
More specifically, 3 paired t-tests were performed,
in order to determine whether the means of the
translation scores for the two systems differed sig-
nificantly.

The output of the t-tests indicated that the dif-
ferences in the mean accuracy of the two systems
were not statistically significant for any of the
three metrics at a confidence level of 95%.

METIS-I1 | SYSTRAN
Mean accuracy 0,3841 0,3214
Median accuracy | 0,3537 0,3715
Standard Deviation | 0,3718 0,2960
Maximum accuracy | 1,0000 1,0000
Minimum accuracy | 0,0000 0,0000

Table 1. Comparative analysis of the sentence results
for METIS-11 and SYSTRAN using the BLEU metric

METIS-I1 | SYSTRAN
Mean accuracy 6,8088 6,3128
Median accuracy | 7,4175 6,6791
Standard Deviation | 2,5878 2,2869
Maximum accuracy | 10,9051 10,8134
Minimum accuracy | 1,2651 0,4828

Table 2. Comparative analysis of the sentence results
for METIS-11 and SYSTRAN using the NIST metric

METIS-Il | SYSTRAN
Mean accuracy 33,7873 33,3587
Median accuracy | 34,7700 29,2855
Standard Deviation | 23,9438 21,1764
Maximum accuracy | 90,9090 105,8820
Minimum accuracy | 0,0000 0,0000

Table 3. Comparative analysis of the sentence results
for METIS-I1 and SYSTRAN using the TER metric

8 Web Application

METIS-II has been implemented as a web applica-
tion, providing a common interface (Figure 2) for
all four language pairs. The whole process is pretty
simple, with the end user selecting the preferred
source language and entering a sentence for trans-
lation. When the “Translate” button is pressed, the
corresponding web service is initiated and the
given sentence is handled by the various system
modules.
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When the translation process is terminated, the
result appears on the web page, while the interme-
diate system outputs are available to the end user
in .html form (Figure 3).

9 Future plans

In METIS-II we have succeeded in restricting the
use of structure-modifying rules by using adjust-
able weights in various phases of the translation
process. The employment of adjustable weights
makes it possible for the system to move within,
i.e. to choose from, a range of potential decisions,
thus leading to a different translation output.

Apart from delimiting the use of rules, weights
also render METIS-II user-customisable, as the
system can be tuned to the end user needs via ap-
propriate weight selection. In this way, the system
adapts to a specific operational environment and
the output gradually improves, leaving intact the
processes of the core engine.

At this point of development, however, all the
aforementioned weights have been initialised
manually, based on intuitive knowledge. What is,
thus, essential is an automated process for defining
and calculating the optimal weight values. To
achieve that, exploration of appropriate machine
learning methods has been planned.
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Source Clause: pp( np_nm(the greece)) vg(dismiss|fail|reject) ppof(pp( np_ac(any|anyone]each|every face|figure|form)) pp(

np_ge(xenophobia)))
Final Clause: Greece rejects every form of xenophobia

Source Chunk: pp([-{-}] np_nm(the{at} [greece{np0}]))
Corpus Chunk:  pp([-{-}] np_1([piatakov{NP0}]))

Final Chunk: pp([-{-}] np_21([greece{np0}]))
Score=82.85715% -{-} the{at} greece{np0}
-{-} -{-} 100.0% thef{at} 0.0% greece{np0} 0.0%
piatakov{NPO} -{-}0.0% thef{at} 0.0% greece{np0} 80.0%
PAD null 20.0% null 20.0% null 20.0%

e Processing Corpus chunk: pp([-{-}] np_1([Piatakov]))
o Replacing [piatakov{NP0}] with token:greece{np0}
o NOT Adding the{at}

Source Chunk: vg([reject{vv}])
Corpus Chunk: vg([reject{VVD}])
Final Chunk:  vg([reject{vv}])

Score=100.0% reject{vv}
reject{VVD} reject{vv} 100.0%
o Keeping chunk :vg([reject{vwv}])

Source ppof(pp([-{-}] np_ac(any{dt0}]anyone{pn}|each{pn}|every{at} [face{nn}|figure{nn}|form{nn}])) pp([-{-}]
Chunk: np_ge([xenophobia{nn}])))
gﬁ;‘;‘l‘f ppof(pp([as{PRP}] np_2(afATO} [form{NN1}1)) pp([of{PRF}] np_2([dazzIe{NN1}])))

Final Chunk: ppof(pp([-{-}] np_2(every{at} [form{nn}])) pp([of{PRF}] np_2([xenophobia{nn}])))

Score=70.0% -{-}  any{dtO}]anyone{pn}]|each{pn}|every{at} face{nn}|figure{nn}|form{nn} -{-}
-{-} any{dtO}!anyone{pn}!each{pn}levery{at}  face{nn}!figure{nn}!form{nn} -{-}

as{PRPY 70.0% 0.0% 0.0% 70.0%
-{- face{nn}!figure{nn}!form{nn -{-
a{ATO} 0.{0%%) every{at} 70.0% i gO.OEA] } oo 0_{0%/0
form{NN1} 0—{(—)%%) any{dtO}!anyone{%n%!‘;;ach{pn}!every{at} form{nn} 100.0% O—{(—)%/O
of{PRF} -{-} any{dtO}!anyone{pn}leach{pn}levery{at}  face{nn}!figure{nn}!form{nn} -{-}
70.0% 0.0% 0.0% 70.0%
dazzle{NN1} -{-} any{dtO}!lanyone{pn}leach{pn}levery{at}  face{nn}!figure{nn}!form{nn} -{-}
0.0% 0.0% 40.0% 0.0%

o Replacing [as{PRP}] with token:-{-}

o Replacing [a{ATO}] with token:every{at}

o Replacing [form{NN1}] with token:form{nn}

» Replacing [of{PRF}] with token:of{PRF}

» Replacing [dazzle{NN1}] with token:xenophobia{nn}

Figure 3: Step 4 output

xenophobia{nn}

xenophobia{nn}
0.0%

xenophobia{nn}
0.0%

xenophobia{nn}
40.0%

xenophobia{nn}
0.0%

xenophobia{nn}
40.0%
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Abstract

This paper concerns the use of spoken
language translation as well as other
technologies to support communication
between clinicians and patients where the
latter have limited proficiency in the
majority language. The paper explores
some theoretical and methodological
issues, in particular the question of
whether it is the patient or clinician who
should be seen as the primary user of such

software, and whether for certain
scenarios more simple technology is
preferable, especially given the huge

overheads involved in developing SLT
systems for under-resourced languages. A
range of solutions are discussed.

1 Introduction

As its title suggests, this paper seeks to explore
issues around the problem of using language
technologies to support patients and healthcare
providers where there is a significant language
barrier. For convenience, in the title and elsewhere
we use the phrase “patients with limited English
proficiency (LEP)”, though it should be understood
of course that much of the discussion would apply
equally to other countries where the host or
majority language is another language.

This paper is essentially theoretical and
methodological, and although it does incorporate
reflections on some recently completed pieces of
research, it should be understood chiefly as a
statement of the author’s views, and if it is in some
respects confrontational or controversial, then this
is in a sense deliberate.

In any western country there are recent or long-
term immigrants, refugees, and asylum seekers and
other people whose command of English, while
often adequate for day-to-day activities such as
shopping and other domestic chores, is not
sufficient for more formal situations such as
interactions with health services, especially visits
to their doctor. There is no shortage of literature
reporting disparities in healthcare provision in
these communities and communication difficulties
are identified as a major factor (e.g. Jones & Gill
1998, Fassil 2000, Jacobs et al. 2001, Bischoff et
al. 2003, Flores et al. 2005, Westberg & Sorensen
2005), and an equally rich literature, which we will
not review here, discusses traditional ways of
addressing this problem, through use of
interpreters and other services. Our interest is in
the extent that language technology, including but
not limited to machine translation (MT), may be
able to provide some support as a contribution to a
solution to this problem (Somers & Lovel 2003).

Two aspects of this issue need to be underlined
immediately. First, it should be realised that this is
a problem not just for the LEP patients, but for the
healthcare providers with whom they need to
interact: it is a matter not only of making oneself
understood, but of understanding too. This seems
to be an obvious point, but is often overlooked, for
example in papers with titles referring to “prob-
lems of refugees” and so on, when more properly
the focus should be on “problems of communi-
cation”. By the same token, note the use of the
term ‘“healthcare providers”: this is not just a
problem for doctors, but for a wide range of
professionals with whom patients must interact on
the pathway to healthcare.

This brings us to the second point: while it is
natural to focus on the doctor—patient consultation
as the central element of the “pathway to health-
care”, in fact, this is only one of many diverse
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interactions that a patient has with a variety of
healthcare providers, including receptionists at
clinics and hospitals, paramedics, nurses,
therapists, pharmacists as well, of course, as the
“doctor” who may be a GP, a consultant, a special-
ist, and so on. Each of these interactions involves a
range of communicative activities requiring
different language skills and implying different
language technologies, often but not inevitably
involving translation in some form.

In this paper we will first explore this issue of
different users and different scenarios, always
focusing on how particular aspects of this impact
on the choice and design of language technology.

We will then look in particular at the doctor—
patient interview and compare the relatively
sophisticated approach of using Spoken Language
Translation (SLT) as compared to use of much
simpler technology, as tested in some recent
research by the present author.

2 Different users, different scenarios

As stated above, although it is natural to think of
“going to the doctor” as involving chiefly an
interview with a GP, and while everything in
medical practice arguably derives from this
consultation, the pathway to healthcare in normal
circumstances involves several other processes, all
of which involve language-based encounters that
present a barrier to LEP patients. Let us consider
the range of processes, interlocutors, and possible
technologies that might be suitable, reiterating
some points made previously by this author
(Somers 2006).

2.1 The pathway to healthcare

The pathway might begin with a person suspecting
that there may be something wrong with them.
Many people nowadays would in this situation first
try to find out something about their condition on
their own, typically on the Word-Wide Web. If you
need this information in your own language, and
you have limited literacy skills, as is the case with
many asylum seekers and refugees, technologies
implied are multilingual information extraction,
MT perhaps coupled with text simplification, with
synthesized speech output. For specific conditions
which may be treated at specialist clinics (our own
experience is based on Somalis with respiratory
difficulties) it may be possible to identify a series

of frequently asked questions and set up a pre-
consultation computer-mediated help-desk and
interview (cf. Osman et al. 1994).

Having decided that a visit to the doctor is
indicated, the next step is to make an appointment.
Appointment scheduling is the classical application
of SLT, as seen in most of the early work in the
field, and is a typical case of a task-oriented
cooperative dialogue. Note that the dialogue
partner — the receptionist in the clinic — does not
necessarily have any medical expertise, nor
possibly the high level of education and openness
to new technology that is often assumed in the
literature on SLT.

If this is the patient’s first encounter with this
particular healthcare institution, they may wish to
get their “history”, a task nowadays often done
separately from the main doctor—patient
consultation, to save the doctor’s time. This might
be a suitable application for computer-based
interviewing (cf. Bachman 2003).

The next step might be the doctor—patient
consultation itself, which has been the focus of
much attention (e.g. papers at the recent Workshop
on Medical Speech Translation at HLT/NAACL in
New York in 2006). While some developers (e.g.
Bouillon et al. 2005) originally assumed that the
patient’s role in this can be reduced to simple
responses involving yes/no responses, gestures and
perhaps a limited vocabulary of simple answers,
current clinical theory in contrast focuses on
patient-centred medicine (cf. Stewart et al. 2003),
an approach now adopted by Bouillon et al. (2007).
The session will see the doctor eliciting
information in order to make a diagnosis as
foreseen, but also explaining the condition and the
treatment, exploring the patient’s feelings about
the situation, and inviting the patient to ask
questions. So the dialogue is very much a two-way
interaction. Of course this presents massive
difficulties for SLT system design.

After the initial consultation, the next step may
involve a trip to the pharmacist to get some drugs
or equipment. Apart from the human interaction,
the drugs (or whatever) will include written
instructions and information: frequency and
amount of use, contraindications, warnings and so
on. This is an obvious application for controlled
language MT: drug dose instructions are of the
same order of complexity as weather bulletins,
though there remains the practical problem of
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transferring the text from the packet to the
translation system. For non-literate patients,
“talking pill boxes” are already available
(marketed by MedivoxRx, see Orlovsky 2005), so
it would be nice if they could “talk” in a variety of
languages.

Another outcome might involve another
practitioner — a nurse or a therapist — and a series
of meetings where the condition may be treated or
managed. Apart from more scheduling, this will
almost certainly involve explanations and
demonstrations by the practitioner, and typically
also elicitation of further information from the
patient. Hospital treatment would involve
interaction with a wide range of staff, again not all
medical experts.

All this introduces the question of who is the
principle user of a communication device, which
will have a bearing on many design issues. In
contrast for example with several medical SLT
designs, where it is assumed that the doctor is the
one who controls the dialogue and accordingly
controls the SLT system interface (Narayanan et al.
2004:101, Bouillon et al. 2005, Ettelaie et al.
2005:89), we might propose that it is the patient
who is going to be the regular user, and who
should therefore “own” the device.

At the very least, it should be recognised that a
communication device (whether SLT or some
other technology, see below) will typically have
two users at any time, who may have very different
skills and expectations, and these need to be taken
into consideration in the design. Indeed, just like
the healthcare providers, as already mentioned, not
all patients are alike, and they may represent a
wide range of levels of language ability (both
native and target), literacy, computer literacy, and
a variety of expectations and experiences regarding
healthcare itself. It is therefore obvious that
interfaces to any communication systems should be
flexible, and possibly different depending on the
profile of the user.

Realisitically, we are not going to address all
these problems, but let us consider some of the
basic technology issues that the different usage
scenarios introduce.

2.2 Language technology implications

Our discussion so far has mentioned or implied a
number of basic technologies including SLT, text
MT, multilingual information extraction, text

simplification, and computer-based interviewing,
automatic speech recognition (ASR) and speech
synthesis. Let us focus on applications involving
translation.

One obvious problem for these technologies is
that often the language we are interested is one of
the so-called “under-resourced” languages: this
severely limits what can be done, and precludes for
example using off-the-shelf components, since
they simply do not exist. The effort required to
develop SLT for an under-resourced language
should not be underestimated (cf. Black et al.
2002, Schultz et al. 2004, Zhou et al. 2004,
Narayanan et al. 2004, 2006, Kathol et al. 2005,
Besacier et al. 2006, Schultz & Black 2006). We
have explored the possibility of “faking” speech
synthesis as an interim solution to this (Evans et al.
2002, Somers et al. 2006) with a fairly promising
evaluation based on the doctor—patient dialogue
scenario using a German synthesizer to produce
fake Somali output. Currently we are attempting
the more audacious task of “fake” speech
recognition by tricking an English ASR system
into recognizing a limited vocabulary of Urdu
words, with astonishingly good results when the
system has to choose from a set of possible
responses (Rizvi, in prep.).

Even with languages that are better resourced,
developing applications suitable for this scenario
can be challenging. For example, Wang (2007)
reports a Chinese-English SLT system built by
pipelining commercially available Chinese ASR,
Chinese-English MT and English speech
synthesis, tested once again in the healthcare
scenario. Replicating the evaluation methodology
of Somers & Sugita (2003) in which subjects are
asked to identify the intended meaning of a
translated answer to a specific question, he found
that Chinese ASR is the weakest link in the chain
with around 70% correct interpretation of
ASR+MT, dropping to 62% when output is
synthesized. MT on its own was 97%
understandable. This differs from the finding
reported in Somers & Sugita (2003), where
Japanese ASR was quite reliable, and MT was the
weak link. Chinese ASR is evidently considerably
more difficult.

Taking ASR out of the equation still requires
text to be input. Exploring the scenario of LEP
patients wishing to read prescription labels,
Ghobadi (2007) first experimented with a handheld
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Figure 1. Images of typical prescription labels and results of scanning with a handheld scanner.

scanner. If one considers that a typical prescription
label is printed with a low-quality printer onto a
label that is then often wrapped round a container,
it is no surprise that scan results leave a lot of work
still to be done (cf. Figure 1).

If instructions cannot be scanned in, we must
devise some other text input method suitable for a
user who does not know English, may not be
familiar with the Roman script, and may be
illiterate, even in their own language. The obvious
solution is to have the labels translated at source,
i.e. by the pharmacist, though this involves huge
problems related to the pharmacist’s legal
obligation to verify the instructions on the label,
which obviously they cannot do if they are written
in a foreign language. Despite some political
opposition, LEP is recognized in the US as a
potential source of discrimination, and a 1998
Office of Civil Rights memorandum (OCR 1998)
puts in place requirements for translations to be
made available as part of healthcare provision.
There is some evidence of use of MT (e.g. Sharif et
al. 2006, Barclay 2007) where available, which of
course always needs to be checked for translation
accuracy, but this is not a viable solution for many
of the languages needed. And even where the
foreign language in question (Spanish) is well
resourced, there is a reluctance to do so (Barclay
2007).

3 Spoken Language Translation vs. low-
level technology

The problem of LEP patients has had some
attention from the Language Technology

community: so far, the focus has been on medical
SLT systems, as mentioned above. We have
elsewhere (Somers 2006) made some critical
remarks about the direction some of this research
has taken, and these are worth briefly repeating
here in connection with our proposal that SLT —
especially as currently implemented — is not
always the most appropriate technology for all
LEP patients’ (and their clinicians’) needs.

We have already mentioned the fact that current
SLT systems inevitably see the doctor as being in
control of the system and hence of the dialogue
itself. Several assumptions underlying this set-up
are false: the doctor’s familiarity with computers in
general and the SLT device in particular is
assumed to be superior to the patient’s (e.g.
Narayanan et al. 2004:101, Precoda et al. 2004:9,
Bouillon et al. 2007:42), but this may not be true,
especially if the patient becomes a regular user. In
our own research, admittedly with a much simpler
device (Johnson 2007, Somers & Lovel 2007,
Somers et al. in prep.), we found many patients
more than willing to share or even take over
control of the device, as shown in Figure 2a, in
contrast to the scenario presented in the on-line
video demo of an SLT system (Figure 2b), where
the doctor (the one in the white coat) has total
control to the extent that the patient is not even
allowed to see the screen.

Sharing the device will also facilitate its use in
promoting communication via a combination of
technologies. Text and (where literacy is a
problem) pictures can support the spoken
(translated) word and even to a certain extent
supplant speech: certain parts of doctor—patient
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(a) Clinician and patient sharing the laptop
device (from Somers & Lovel 2007)

dialogues (and indeed other exchanges on the
pathway to healthcare) follow a fairly predictable
pattern that can be exploited by using
predetermined questions and (sets of) possible
answers which, as we have discovered (Johnson
2007, Somers & Lovel 2007, Somers et al. in
prep.) can lead to very high satisfaction rates, even
though some drawbacks are recognized

In our research, in which as a test case we
focused on Somalis with  asthma-related
conditions, we developed software on an ordinary
laptop using a mousepad, and on a touch-screen
tablet using a stylus, which permitted clinicians to
choose freely from a range of 69 questions grouped
under various topics. The questions were presented
in both English and Somali, with pre-recorded
(human) speech for both the questions and the
possible answers on a screen as illustrated in
Figure 3. The patient could review all the possible
answers by clicking on the symbols before
indicating to the clinician the desired answer.

We tested the software in simulated
consultations with six GPs and asthma nurses and
26 Somali patients. All 26 simulations were
completed adequately: none were abandoned due
to difficulties using the system, with
communication, or due to frustration on the part of
Somalis or clinicians. In 20 of the 26 simulations,
all questions were answered by the patients. Post-
session  feedback  questionnaires  indicated
extremely high satisfaction ratings by both
clinicians and patients with almost every aspect of
the system (see Table 1): the only serious
drawback noted was the rather obvious problem

I

demo movie
http://sail.usc.edu/transonics/demo/
transedit021r.mov, accessed 14 May 2007)
Figure 2. Contrasting perspectives in use of computer-based communication device by clinician and patient

Snapshot from Transonics’
(source:

_(b)ﬁ

that the system did not allow the users to go off-
script, as reflected in low clinician satisfaction
scores for eliciting the patient’s worries (42%) and
building a relationship (69%), both key
contributors to the overall goal of achieving a
clinical outcome (65%).

Of course the system described does not
involve MT in any sense. The reason for
mentioning it here is to make the point that for
some aspects of doctor—patient communication,
where the content of the dialogue is sufficiently
predictable, it might be safer to use a simpler
technology such as that described here. We will
surely need SLT for some communication tasks,
but it makes sense, especially when the effort

Q1 © O | swom

haddii aad tidhi haa, noocee ayaad ku haysan jirtay?

Tt ler [ T

riyo lo ido fardo
goat cow sheep horse

geel
camel

midnaba
none of these

Figure 3. Screen showing possible answers to the
question “What kind of animal did you own in

Somalia?”’. The question itself, and each of the
possible answers is associated with a digitised
recording in Somali.
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VS S other %
Size of symbols (P) 25 1 0 100
Size of symbols (C) N=9 5 4 0 100
Size of text (P) 23 1 2 92
Size of text (C) N=9 4 5 0 100
Range of questions (P) 25 1 0 100
Range of questions (C) N=9 1 7 1 89
Range of responses (P) 21 3 2 92
Range of responses (C) N=9 3 5 1 89
Using laptop (P) N=14 3 3 8* 43
Using tablet (P) N=12 7 4 1 91
Using mousepad (P) N=14 3 3 8* 43
Using stylus (P) N=12 9 3 0 100
Navigation (P) 11 9 6% 77
Navigation (C) 14 12 0 100
P’s ability to use device (P) 8 12 6* 77
P’s ability to use device (C) 12 9 5% 81
C’s ability to use device (P) 26 0 0 100
C’s ability to use device (C) 9 15 0 100
P understand C’s questions 23 3 0 100
C understand P’s responses 10 13 3 88
P answer C’s questions 22 4 0 100
C elicit information 12 11 3 88
Make self understood (P) 22 4 0 100
Make self understood (C) 8 15 3 88
P explain worries to C 11 4 1 96
C elicit P’s worries 7 4 13 42
Build a relationship (P) 22 1 3 88
Build a relationship (C) 7 11 8 69
Better than no interp. (P) 22 3 1 96
Better than no interp. (C) 14 8 4 85
P satisfied with review 25 1 0 100
C achieved desired outcome 11 6 9 65

Table 1. Satisfaction ratings for a variety of
questions. Key: “P” patient (N=26), “C” clinician
(N=9). “VS” very satisfied, “S” satisfied, “Other”
includes dissatisfied, very dissatisfied, don’t know
and (especially where marked *) not applicable.
Except where indicated, N=26, corresponding to the
number of sessions.

required to build SLT systems for certain
languages is so great, to seek alternative solutions.

4 Conclusions

Spoken language translation and MT for under-
resourced languages are two of greatest new
challenges for the MT community. Putting them
together gives a task that is almost impossible to
contemplate at the present time. In this paper we
have looked at one particular domain where the
need for such technology is particularly important,
and, in the spirit of the title of the TMI conference

series, have put forward some theoretical and
methodological issues related to that task. The
main theoretical point made has been the need to
focus on user-centered rather than technology-
centered design in SLT. And regarding
methodology, the point has been made that some
lesser technologies, as well as some ‘“cheats”, may
be the way forward, at least in the short term.
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Abstract

In this paper, we describe the first
data-driven automatic sign-language-
to-speech translation system. While
both sign language (SL) recognition
and translation techniques exist, both
use an intermediate notation system -
not directly intelligible for untrained I Recognition I
users. We combine a SL recogniz-
ing framework with a state-of-the-art
phrase-based machine translation (MT)
system, using corpora of both Ameri-
can Sign Language and Irish Sign Lan-
guage data. In a set of experiments Cj
. Translation

we show the overall results and also il-
lustrate the importance of including a
vision-based knowledge source in the | Know that. as for ve

, getable

development of a complete SL transla- Mary likes corn
tion system.

MARY_a VEGETABLE IX-1P
KNOW IX_a LIKE CORN

Figure 1: System setup with sample sentence
1 Introduction

The communication between deaf and hearinghe spoken language using standardized statistical
persons poses a much stronger problem than theachine translation (SMT) methods gives reason-
communication between blind and seeing peopleable results, even for extremely small corpora. In
While the latter can talk freely by means of a com-preliminary experiments, we also give an outlook
mon spoken language in which both are equallyof how to incorporate vision-based features used
proficient, the deaf have their own, manual-visualin the recognizer to improve the overall trans-
language. lation result. Our work focuses on translating
In this paper, we present an approach to autoAmerican Sign Language (ASL) and Irish Sign
matically recognize sign language and translate itanguage (ISL) into English (see Figure 1).
into a spoken language by means of data-driven The remainder of the paper is constructed as
methods. While the recognizer output is not easfollows. Section 2 introduces sign languages and
ily intelligible because of different grammar and gives an overview of the transcription methodol-
annotation format, we show that translation intoogy employed for capturing descriptions of sign
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languages. The area of gesture recognition is prgSutton, 1995). Developed as handwriting sys-
sented in section 3. Section 4 details data-drivetems, they use simple line drawings that are intu-
MT approaches for SLs and describes the MT sysitively and visually connected to the signs them-
tem we have employed. The experiments carriedelves.

out are described in section 5 and the results are Despite the development of these approaches,
discussed in section 6. Finally, we conclude thethey currently fall short of being either compu-
paper in section 7 and outline the future avenuesationally useful or comprehensive enough for

for our work. use in SL MT. For this reason we have cho-
) sen to use an approach referred tcaasotation
2 Sign Languages (Pizzuto and Pietrandrea, 2001). This involves

In spite of common misconceptions, SLs are natthe manual transcription of sign language taken
ural, indigenous and independent means of comffom video data that is reproduced irgkpss for-
munication for deaf and hard-of-hearing commu-mat. The gloss is a semantic representation of
nities worldwide. Since the languages have nofign language where, conventionally, the seman-
been created artificially but rather evolved natulic meaning of the sign is transcribed in the up-
rally, it is no surprise that most countries havePer case stem form of the local spoken language.
their own particular SL as well as local dialects. The annotation “IX” signifies a deictic reference
SLs are grammatically distinct from spoken lan-sSigned by a pointing gesture with the index fin-
guages and the grammar makes extensive ugter- Additional spatial and non-manual informa-
of the possibilities of a visual/gestural modality: tion may also be added. An example of annotated
locations, verb inflections, pronouns and manyglosses taken from our data is shown in Table 1.
other linguistic devices are conveyed by spatiaIThe first sentence is written in ASL glosses. The
information in front of the signer. Apart from the narrator (indicated by IX-1P) knows that Mary, at
obvious employment of the hands as informatiorihe spatial position referenced a®™ and in the
carriers, SLs also use affected facial expressiongubordinate clause, likes corn. Here, the deixis
tilts of the head and shoulder as well as the veloc:IX -a" serves as a pronoun to pick up the object of

ity of the sign to incorporate information such asthe subordinate clause again. A second sentence
Comparative degree or subclauses. closer to the EngllSh grammar is written in ISL

For examp|e, ISL, one of the SLs used inglosses. Note that, although both ISL and ASL

this paper, is the primary language of the Irishare glossed in English, the grammar and vocab-
Deaf community. Despite this, the language isularies of the two sign languages are completely
not recognised as an official language in Irelanddifferent.
however, the 5000 strong community is joined
by the Irish Deaf Sociefyand the Centre for 22 TheCorpus
Deaf Studie$in promoting ISL awareness and re- Data-driven approaches to MT require a bilin-
search across the country. gual data set. In comparison to spoken language
translation, SL corpora are difficult to acquire.
To tune and test our system, we assembled the
One of the striking differences between signedRwTH-Boston-104 corpus as a subset of a larger
and spoken languages is the lack of a formallyjatabase of sign language sentences that were
adopted writing system for SLs. There haverecorded at Boston University for linguistic re-
been some attempts to develop writing systemsearch (Neidle et al., 1999). The RWTH-Boston-
for SLs, many of which are based on the semi-104 corpus consists of 201 video sentences, con-
nal work of (Stokoe, 1960) and describe the handsisting of 104 unique words. The sentences were
shape, location and articulated movement of &jgned by 3 speakers and the corpus is split into
sign. These include the Hamburg Notation Sys-61 training and 40 test sequences. An overview
tem (HamNoSys) (Hanke, 2004) and SignWritingof the corpus is given in Table 2: 26% of the train-
 Thttp://www.deaf.ie ing data are singletons, i.e. we only have one at-
2http:/iwww.centrefordeafstudies.com tempt to train the models properly. The sentences

2.1 Sign Language Transcription
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Table 1: Gloss annotation examples

ASL gloss MARY _a VEGETABLE IX-1P KNOW IX.a LIKE CORN
English translation | know that, as for vegetables, Mary likes corn.
ISL gloss IX-FLIGHT FLIGHT B A ROUND TRIP IX-FLIGHT palm-up
English translation Is flight B A a round trip flight?

features(lbof et al., 2006). The word sequence
which best fits the current observation to the
trained word model inventory (which is related to

Table 2: RWTH-Boston-104 corpus statistics
Training Test

sentences 161 40 . .
running words 710 178 the acqustlc model in ASR) and language model
unique words 103 65 (LM) will be the recognition result.
singletons 27 9 . . L
ooV - 1 In our baseline system, we use intensity images
scaled to 3232 pixels as features. To model im-
o age variability, various approaches are known and
Table 3: ATIS corpus statistics have been applied to gesture recognition similar
Training Devel Test to the works of (Dreuw et al., 2007). The base-
sentences § 482 98 100 line system is Viterbi trained and uses a trigram
running words 3707 593 432 ; ; ;
unique words 375 88 128 LM. In subsequent steps, this baseline system is
singletons 144 28 10 extended by features that take the hand position
ooV - 30 4 and movement into account.

To extract manual features, the dominant hand

have a rather simple structure and therefore thé tracked in each image sequence. Therefore, a
language model perplexity is low. The test cor-robust tracking algorithm is required as the sign-
pus has one out-of-vocabulary (OOV) word. Ob-ing hand frequently moves in front of the face,
viously, this word cannot be recognized correctlymay temporarily disappear, or cross the other
using whole-word models. hand. We use an approach based on dynamic

Apart from this relatively small corpus, few Programming which is inspired by the time align-
data collections exist that are interesting for datamment algorithm in ASR and which is guaranteed
driven approaches. Much of what is available is int0 find the optimal path with respect to a given cri-
the form of conversation, stories and poetry whichi€rion and which prevents taking possibly wrong
is unsuitable for ASLR and MT as illustrated in local decisions. Given the position of the hand,
(Morrissey and Way, 2006). For this reason wefeatures such as velocity, trajectory, and accelera-
chose to create our own corpus. We used the Aiion can easily be extracted.
Travel Information System (ATIS) corpus of tran-
scriptions from speech containing flight informa-
tion in English as our base. The corpus consist4 Data-driven Sign Language M T
of 680 sentences. For the purposes of our trans-

lation work, we had the data set translated an%L MT is still a new area of research with work

signed into ISL by native deaf signers. This was, .. .

9 y . gner dating back only roughly a decade. Despite the
then manually annotated with semantic glosses as, .. . . .
described in section 2.1 relative novelty of the area in comparison with

h mainstream MT, it has followed the trend away
3 Sign Language Recognition from ‘second generation’ rule-based approaches
towards data-driven methods. An overview of
The automatic sign language recognitioncurrent developments in this area is given in sec-
(ASLR) system is based on an automatic speection 4.1 and the translation system used for our

recognition (ASR) system adapted to visualexperiments is described in section 4.2.
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4.1 Related Research maximizes the translation probability directly us-

There are currently four groups working on data-iNg & l0g-linear mode:
driven SL MT. Their approaches are described be-
exp (pioy A (], 7))

low: Iy ¢J
p(€1|f1 ) = M ~
e (Morrissey and Way, 2005) have explored Zé.[ exp (Zm:l Amhan (€1, f{ ))
Example-Based MT approaches for the lan- '
guage pair English—Sign Language of thewith a set of different features,,, scaling fac-
Netherlands with further developments be-tors \,,, and the denominator a normalization fac-
ing made in the area of ISL. tor that can be ignored in the maximization pro-
. cess. We choose theg, by optimizing an MT per-
* (Stein etal., 2006) have developed an SIVrrformance measure on a development corpus using
system for German and German sign Ian_-,[he downhill simplex algorithm.

gualg(:]((ej n thE dor;1a|ndg§_athe; reports(.j Their For a complete description of the system, see
work describes the addition of pre- an pOSt'(Mauser et al., 2006).

processing steps to improve the translation

for this language pairing. However, the 5 Experiments

methods rely on external knowledge sources

such as grammar parsers that cannot be ut®l RWTH-Boston-104

lized here since our source input are glossesBaseline. The baseline translation of the an-

for which no automatic parser exists. notated gloss data into written English for the

i RWTH-Boston-104 has a word error rate (WER)

e (Chiuetal, 2_007)_ present a sy_stem for theof 21.2% and a position-independent word error

language pair Chinese and Taiwanese S19P5te (PER) 0f20.1%. Looking at the data, the

language. The optimizing methodologies ar.,sjation is even more accurate than that — the
shown to outperform IBM model 2. main problem being the lack of sentence bound-

e (San-Segundo et al., 2006) have undertaked’y markers like dots and commas in sign lan-
some basic research on Spanish and Spagiage which are then omitted in the translation
ish sign language with a focus on a speechPrOCess.
to-gesture architecture. They propose a de- Recognition.  First, we analyze different
compensation of the translation process int@PPearance-based features for our baseline sys-
two steps: first they translate from written t€m. The simplest feature is to use intensity im-
text into a semantic representation of the@ges down scaled to 332 pixels. As a baseline,
signs. Afterwards a second translation intoWe obtained a WER a33.7%. For reducing the
graphically oriented representation is donenumber of features and thus the number of pa-
This representation can be understood by théameters to be learned in the models, we apply
avatar. Note, however, that this is the oppo-inear feature reduction technique to the data, the
site translation direction as the one proposedrincipal component analysis (PCA). With PCA,
here. a WER of 27.5% can be obtained (see Figure 2).

o _ _ A log-linear combination of two indepen-
4.2 Statistical Machine Translation dently trained models (PCA that include auto-
We use a state-of-the-art phrase-based statistinatic tracking of hand velocity (HV) and hand
cal machine translation system to automaticallytrajectory (HT), respectively), leads to our best
transfer the meaning of a source language semesult of 17.9% WER (i.e. 17 del., 3 ins., and 12

tence into a target language sentence. subst.), where the model weights have been opti-
Following the notation convention, we denotemized empirically.

the source language withl words asf/ = Sign-Language-to-Speech. If we translate

fi...fs, a target language sentence s = these recognized glosses into written English

e1 ... ey and their correspondence as thposte-  (again, with punctuation mark post-processing),
riori probability Pr(e!|f{). Our baseline system the overall score i27.6% WER and23.6% PER.
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40

5.2 ATISCorpus

The baseline translation of the annotated gloss
= data into written English has a WER @6.1%
RN j 3 and a PER 084.7%. While this is a much more

T\\/\/ | challenging result in itself if introduced with an

O Y additional error source like recognition, the pre-
. - - - - liminary recogniton of the ATIS videos had an er-

dimension ror rate of85% WER, with 327 deletions, 5 inser-

tions and 175 substitutions out of 593 words. Itis
apparent from these result that further translation

makes no sense at the moment if we start from the
recognized data.

Figure 2: Combination of PCA-frames using
PCA windowing

6 Discussion

Although the size of the corpus RWTH-Boston-
104 is far too small to make reliable assumptions
about the general significance of the results, at the
very least we show that statistical machine trans-
Figure 3: Sample frames for pointing near and fafation is capable to work as an intermediate step
used in the translation. for a complete sign-to-speech system. Even for
extremely small training data, the resulting trans-
lation quality is reasonable.

. . We have shown that the recognition output in
In another set of experiments, we derive the g P

itself is not directly intelligble, given the differ-

tracking positions from all of the sentences. The .
ent grammar and vocabulary of sign languages

positions of both hands have been annotated Mad shortages of the existing annotation system
ually for 1119 frames in 15 videos. We achieve g g y ’

, but together with the automatic translation, the
a 2.30% tracking error rate for a 220 search overal?system can be easily trained on new lan-
window (Dreuw et al., 2006). In order to distin-

. . . guage pairs and new domains. This set of sen-
guish between locative and descriptive pronouns, . .

. . ) ences could without any doubt be translated with

the tracking positions of the dominant-hand were o

a reasonable rule-based system, yet it is not the

clustered and their mean calculated. Then, for .. g
o . ultimate goal to translate this corpus but to show
deictic signs, the nearest cluster according to th

. . . at a sign-to-speech system is in principle pos-
Euclidean distance was added as additional word. 9 pe: y np piep
. ) . ) Sible using statistical methods, given reasonable
information for the translation model (see Figure

3 data.

) Moreover, adding features from the recogni-
In the translation, the incorporation of the tion process like the hand tracking position seems
tracking data for the deixis words helped theto help the translation quality, as it enables the
translation system to discriminate between deixisystem to distinguish between certain flexions of
as distinctive article, locative or discourse en-common words like the pointing gesturé X".
tity reference function. For example, the sen-We argue that this can be compared to adding
tence JOHN G VE WOMAN | X COAT” might  parts-of-speech (POS) information, to discrimi-
be translated into John gives the woman the nate for example between deixis as distinctive ar-
coat” or “John gives the woman over there the ticle or as locative discourse entity reference.
coat” depending on the nature of the pointing ges- As no grammar parser exists for sign language
ture I X". Using the tracking data, the transla- annotation, we propose a stemming of the glosses
tion improves in performance from 28.5% WER (i.e. leaving out the flexion) during recognition to
to 26.5% and from 23.8% PER to 23.5%. cope with data sparseness problems. The missing
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information can be included by adding the rele-tilt of the head (often indicating sub-clauses) or

vant features during the translation process, anathe shift of the upper body (possible indications

ogous to morpho-syntactic translation enhancefor direct or indirect speech). Also, a complex

ment to sparse language pairs with a rich gramentity model can be built up based on the location

matical parser on the source language side. of the signs. If a new character in the discourse
For the more sophisticated ATIS Corpus, transis introduced and stored on the right hand-side

lation is possible, at this stage, however, recogef the chest, later deictic pronoun signs pointing

nition produces far too much noise for a reasonto the same position can be interpreted correctly,

able translation adaption. Given the numbers ofvhile pronouns in spoken languages are usually

singletons alone, these are already quite an otambiguous.

stacle for translation, but if they consist of several

frames in a video where the exact starting and end

time is not passed on to the recogniser, they arf€f€rences

quite challenging for the algorithm. Moreover[Chiu et al.2007] Y-H. Chiu, C.-H. Wu, H.-Y. Su, and
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Abstract

Automatic evaluation metrics are often
used to compare the quality of differ-
ent systems. However, a small differ-
ence between the scores of two systems
does not necessary reflect a real differ-
ence between their performance. Be-
cause such a difference can be signifi-
cant or only due to chance, itis inadvis-
able to use a hard ranking to represent
the evaluation of multiple systems.

In this paper, we propose a cluster-
based representation for quality rank-
ing of Machine Translation systems. A
comparison of rankings produced by
clustering based on automatic MT eval-
uation metrics with those based on hu-
man judgements shows that such in-
terpretation of automatic metric scores
provides dependable means of order-
ing MT systems with respect to their
quality. We report experimental re-
sults comparing clusterings produced
by BLEU, NIST, METEOR, and GTM
with those derived from human judge-
ment (of adequacy and fluency) on the
IWSLT-2006 evaluation campaign data.

Introduction

}@computing.dcu.ie

MT system, helping to test the influence of var-
ious parameters on the final translation output:
addition or modification of rules in rule-based
MT systems, modification of training settings for
data-driven MT systems, etc. Moreover, they are
also often used to compare the quality of different
systems. Several evaluation campaigns strongly
rely on automatic evaluation metrics (NIST, 2006;
Paul, 2006) as well as on human judgment, which
remains the ultimate evaluation schema, to assess
the quality of participating MT systems.

The rankings of MT systems obtained with au-
tomatic evaluation metrics or human judgment
are not strict in the sense that those scores may not
be sufficient to distinguish between two systems.
Indeed, a small difference between two scores
does not necessary reflect a real difference be-
tween the performance of two systems. To test if
the difference between the scores of two systems
is significantor only due to chance, we can em-
ploy statistical significance tests using bootstrap
(Efron and Tibshirani, 1993; Koehn, 2004) or ap-
proximate randomization (Noreen, 1989; Riezler
and Maxwell, 2005) methods. This enables us to
introduce a cluster-based representation which we
feel is better suited to the ranking of system scores
than a strict ranking which might be based on in-
significant or accidental differences.

The quality of an automatic metric is often as-
sessed by computing its correlation with human

Automatic evaluation metrics for Machine Trans-judgment (of adequacy and fluency) on a segment
lation (MT) have been given a lot of attention in or system level. For an automatic evaluation met-
the recent years, as their importance for MT re+ic, a high correlation with human judgment de-
search is hard to ignore. They are extremely usenotes a capability to correctly identify the quality
ful in comparisons of developmental stages of arof an MT system. In this paper, instead of com-
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puting the direct correlation between automatidfied precision result$or the whole documerst
scores and human scores on a segment level, or @achn-gram level are combined together using
a hard ranking on a system level, we compare thgeometric average. Moreover, in order to pre-
clusters produced by automatic metrics and huvent unfair high precision scores for very short
man judgements using an adaptation of the Randentences, a brevity penalty is calculated over the
statistic. In other terms, in this context, a metrictest set, if the combined length of the translation
will be considered good if it ranks various sys-segments is equal to or shorter than the combined
tems in the same order and groups them in théength of best matching (closest in length) refer-
same clusters as human evaluators. We extend oance segments.
analysis to clusterings produced by several auto- Note that BLEU was developed with
matic MT evaluation metrics: BLEU (Papineni et document- or system-level evaluation in mind,
al., 2002), NIST (Doddington, 2002), METEOR and its construction does not allow for high
(Banerjee and Lavie, 2005), and GTM (Melamedcorrelation with human judgment on the level
et al., 2004), using the evaluation data from theof individual segments. At segment level, many
IWSLT-2006 evaluation campaign (Paul, 2006). sentences will be scored as zero for not providing
The remainder of this paper is organized as folat least one four-gram in common with the
lows. In Section 2, we introduce the automaticreferences, which artificially levels down their
evaluation metrics we tested. In Section 3, wequality. Segments shorter than four elements
present a statistical significance test based on apvill be scored as zero irrespective of the number
proximate randomization, the cluster-based represf lower n-gram matches. These effects are
sentation for ranking, and the cluster comparisorexacerbated as the number of available references
strategies. In Section 4, we report experimentatlecreases.
results. Section 5 concludes the paper and gives
avenues for future work. 2.2 NIST

NIST was developed on the basis of BLEU-
style n-gram calculation, but several improve-
Since the introduction of BLEU (Papineni et ments were added to raise the metric's correla-

al., 2002), a large number of other metricstions with human judgments (Doddington, 2002).
have been developed, but the string-based metdstead of geometric average, arithmetic average
rics like BLEU, NIST (Doddington, 2002), GTM is used to combine results from all levels up to
(Melamed et al., 2004), and METEOR (Banerjeefive grams, and the brevity penalty was adjusted
and Lavie, 2005) have remained among the mog® minimize the impact of small length variations.

popular, therefore we focus our analysis on themMost importantly, alln-grams are weighted ac-
cording to their information with respect to the

2.1 BLEU reference sentences, so that rarer and more infor-

The most popular evaluation metric BLEU mative sequences present in the translation will
(BiLingual Evaluation Understudy, (Papineni et contribute more to the final score than sequences
al., 2002)) is based on a simple calculation ofthat are more common, and thus less informative.
modified precisionModified precision counts the

number ofn-grams in the translation that match at?-3 GTM

least one of the references and caps the count dyxploring a different avenue of research, GTM
the maximum number of occurrences of a giveruses the standard notions of precision, recall, and
n-gram in a single reference. In other words, iftheir composite F-measure, to evaluate transla-
a translation consists entirely of the wdltere-  tion quality (Melamed et al., 2004). It calculates
peated five times, but in one of the referenttes  the word overlap between the translation and the
appears only once, and in the other only twice, weeference(s), preventing double-counting when a
are allowed to count only two of the five match- word occurs multiple times, and it caps the result-
ing words. This process is applied to amybutin  ing number of matches by the mean length of the
practicen-grams up to four are used. The mod-references. While it also has the option of weight-

2 Automatic Evaluation Metrics

222



ing contiguous sequences more than unconnectgroduce a large number of samples from that out-
matching fragments, Turian et al. (2003) con-put using sampling with replacement, and then
clude from their experiments that such a weightcreate clusters of MT systems by collecting those
lowers the correlation with human judgment. Inwith overlapping confidence intervals. However,
this work, we thus use the unweighted version ofin this paper we consider approximate randomiza-
GTM. Turian et al. (2003) also show that GTM tion rather than bootstrap, following Riezler and
outperforms both BLEU and NIST with respect Maxwell (2005) and Collins et al. (2005), who
to correlation, irrespective of the number of refer-suggest that approximate randomization is more
ences available. appropriate in such a context.

To compare the output of two systems using
2.4 METEOR approximate randomization, we proceed as fol-
The evaluation in METEOR (Banerjee and Lavie,lows. First, we assume that we have access to
2005) proceeds in several stages. First, all exn translations of the same sentences for the two
act matches between the translation and the rebystems. These translations are respectively de-
erence are found; next, the remaining words ar@otedT” (for system 1) and” (for system 2), with
stemmed and the matching process repeats; fi'| = |1'| = n. The set of reference transla-
nally, there is the option of using WordNet to find tions for these sentences is denofedThe score
matches between synonyms among the remairfor 7 and7” are respectively = M (T, R) and
ing non-matched words. The final score com-s’ = M(T’, R), where M denotes some metric
bines precision and heavily weighted recall at thee.g. BLEU); their difference is — s'.
unigram level with a penalty for non-contiguous Then, we build & new pairs of transla-

matches. tion sets obtained by randomly permuting the
_ _ translations in7T and 77, yielding the pairs
3 Comparing Multiple Systems (1,,1)),...,(T,,T}). For eachi € 1.k, the

shuffle (7}, T!) is obtained as follows: each pair
of sentence in(T,T") is randomly shuffled with
probability 0.5. Intuitively, if system1 is better
Since a small difference between the scores athat systen®, then we obtain a lower score for
two systems does not necessary reflect a real dithe translations iff; than for those in the original
ference between their performance, it is impor-T', sinceT; is obtained by replacing some transla-
tant to identify when this difference &gnificant  tions inT with some translations froffi’ of lower
or only due to chance. To discriminate betweemuality. Consequently, in this scenario, we have
these two cases, we assume a null hypothesid/ (7;, R) < M(T, R); similarly, we would also
which states that the two systems are of the samexpectM (T, R) > M(1’, R). In short, we ex-
quality, and we consider the difference betweerpect the newly created; to be of lower quality
their scores as significant only if we find statisti- than the originall".
cal evidence indicating that the null hypothesis is
false (with a certain degree of confidence). y
When assumptions can be made about the M(T;, R) — M(T;, )
probability distributions yielding the scores, it is < M(T,R) = M(T', R).
possible to employ parametric methods such as
the Student’s-test. When no specific assumption If this inequality is verified for; € 1..k, we set
can be made, as it is the case for automatic evaluy; = 0, andv; = 1 otherwise. If systent is better
ation metrics, we have to resort to non-parametri¢hat systen®, then we expecEf:1 v; to be close
methods, such as bootstrap (Efron and Tibshiranip 0. On the contrary, if syster is not signifi-
1993; Koehn, 2004) or approximate randomiza-cantly better than systef) then shuffling trans-
tion (Noreen, 1989; Riezler and Maxwell, 2005) lations has little effect on the difference between
methods. To use bootstrap, one would have tdhe scores obtained, a@le v; is unlikely to be
take the translation output of each MT systemclose to0. Thep-value is simply computed as fol-

3.1 Statistical Significance Testing using
Approximate Randomization
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RS-ASR p=0.05 RS-CRR p=0.05

Fluency Adequacy Fluency Adequacy

0 (0 ‘ 0)
1 1 1
R —
4 4 4 4
5 5 5

Figure 1. Examples of clusterings. Numbers 0-5 represent MT systems; clusters are created on the
basis of fluency and adequacy scores. Relative height of the clusters shows their order.

lows: . ducted in shared MT tasks, is done using a hard
p= (D i vi) +1 ranking of the participating sytems based on the
k ' system-level scores. However, as has been noted

The null hypothesis is rejected;ifis less than or already, the difference in scores between two MT
equal to a specified rejection level, traditionally sytems may not be significant. We feel therefore
set t00.05. In all our experiments, we uséd=  that such strict rankings are inadvisable and not
1000 shuffles. We use the same method for all thecompletely fair to the participating systems. In
considered metrics, including human judgement.order to represent the ranking of MT systems ac-
cording to their scores, we thus propose a cluster-
- o based representation. In this representation, two
In order to compute statistical significance gystems are placed in the same cluster if they can-
using approximate randomization, the values,ot he proven to differ in quality, i.e. if we have
M(T;, R) and M(T}, R) are required for each ot sycceeded in discarding the null hypothesis
shuffle (T;, T;). However, even for document- sing approximate randomization. A cluster thus
level metrics such as BLEU, we do not have to¢qntains systems that are pairwise indistinguish-
compute BLEU for each shuffle. Indeed, itis suf-apje By performing this comparison for all pairs
ficient to keep some information about each seng systems, this approach yields an ordered set of
tence (for BLEU: number of matching-grams,  c|ysters. Formally, the method is expressed as
lengths, etc.), and to aggregate them. follows. We notesy, so, ..., s, the scores of
Consequently, the potentially expensive COM-ystems. We note; > s, if 1 is significantly
parison between the reference sentences and tﬂ?gher thansy, ands; ~ so if their difference
test sentences is performed once; only the aggrés not statistically significant. Using this cluster-
gation of the sentence-level information, which isp55¢ representation, we obtain an ordered set of

3.1.1 Implementation Issues

fast and cheap, is performed = 1000 times.  jstersc; C,,, such that:
The computation of statistical significance for a
test set 0600 sentences, witk = 1000 shuffles Vi e l.m, Vk,l € C;, s ~ sy,

takes aboufd.3 second for BLEU, an@.7 second
for NIST on a Pentium 4 processor, 3GHz.

_ Vi, 7 € 1.m, s.t.i < j,
3.2 A Cluster-Based Representation 3k e Ciyl € C, 55> 1.
Most if not all comparisons of different MT

sytems, including large-scale evaluations conThis representation is suited to the ranking of sys-
—Y , tem scores, and differs from the initial hard rank-
Our C++ implementation, called FastMtEval, can

be freely downloaded frorttp://www.computing. ing, because one system can belong to several
dcu.ie/"nstroppa/softs/fast_mt_eval.tgz : clusters. By using differenp-values, we may
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obtain different cluster-based representations: thparison metric is then computed as follows:

smaller thep-value, the bigger the clusters. An n—1 <=n .. .
example of such a representation is given in Fig:5(C, D) = 2% izt =it $(C65), DG, 7))

ure 1. nx(n—1) ’
which yields a value betweenl and1. A value
3.3 Comparing Clusters of —1 denotes a complete disagreement on the

ranking, while a value ofi denotes a complete

In this section, we introduce a simple method t0agreement.
compare two clusterings. Our method is actu- For example, the “similarity” between the two
ally a simple adaptation of the Rand statistics (Cfclusterings associated with fluency and adequacy
Halkidi et al. (2001)), a method that can be usety, the left of Figure 1 is0.67. Indeed, they
to compare non-ordered clusterings. The adaptaagree on the following (10) pairg0,1), (0,4),
tion we propose aims at dealing with the ordered((), 5), (1,4), (1,5), (2,4), (2,5), (3,4), (3,5),
nature of the clusterings we consider. (4,5), and (weakly) disagree on the following

A clusteringC of n systems is a ordered set of pairs: (0,2), (0,3), (1,2), (1,3), (2,3), which
clustersC = {C1,...,Cp} suchthati € 1..m,  gives a final score o{% =0.67.
C; C 1.n, andU*C; = 1..n. Let us recall that a .
system may belong to several clusters, i.e. we d§ EXxperimental Results
not have necessarily; N C; = () for i # j. 4.1 Data

To compare two clusterings and D, we rely The experiments were carried out using the

on a pairwise comparison of systems, i.e. C|USterChinese—Eng|ish datasets provided within the
ingsC and D will be considered similar if for all IWSLT 2006 evaluation campaign (Paul, 2006)
pairs (i, j) of systems(’ and D agree on the fact extracted from the Basic Travel Expression Cor-

that systems and j should pe_put on the same pus (BTEC) (Takezawa et al., 2002). This multi-
cluster or not. The Rand statistics counts the numy

ber of h ( 4 divides it by the tot lingual speech corpus contains sentences similar
er ot such agreements an X(:Yllss' Y the 10, those that are usually found in phrase-books for
number of comparisons, i.€=3—=. Inthe or-  , rists going abroad. Three input conditions are

dered case, we have to add another factor. Indeegysidered: continuous speech (CS-ASR), read-
if C andD agree that andj should be placed on speech ASR (RS-ASR), and read-speech CRR
different clusters, but’ says that is significantly  (rs_cRR). In the first condition, the sentences to
better thary and D shows the opposite, there is a ygngjate correspond to natural continuous speech;
strong disagreement between the clusterings. FQf the second case, the sentences are read and the
a clusteringC', we noteC(i, j) the relationship  jnnt o translate comes from an ASR (Automatic
be?ween the systenisnd; according to the clus- Speech Recognition) system: in the last condi-
tering. We haveC'(i, j) € {'~/<,">'}. We  ion MT systems are given the correct recogni-
have’ ~/, " <, and’ >’ respectively when o vasuits. For each conditions, 6 systems are
¢ andj are indistinguishable, whepis signifi- - qnqidered. Since the various conditions corre-
cantly better than, and wheni is significantly  gnongs to different views of the same sentences,
better thary. The scoring is as follows: it is possible to “merge” all the conditions to-
gether, in order to compare a total of 18 different

1 if (c=4d) systems (referred to as Mixed Track). The out-
—1 if (c='<') and(d =">) puts of all systems were evaluated with respect to
s(e,d) = L1 i (d='<’) and(c =) both adequacy and fluency. Automatic evaluation
_ is performed using BLEU, NIST, METEOR, and
0 otherwise. GTM-1, with 7 references.

The first case corresponds to an agreement, tfe2 Cluster-Based Rankings
second and third cases are strong disagreementspr each input condition and each metric, we con-
and the last one is a weak disagreement. Our constructed cluster-based rankings to represent the
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S55-A5R p=0.05 R5-A5R p=0.05 RS-CRR p=0.05

Fluency Adeguacy Fluency Adeguacy Fluency Adeguacy

Figure 2: Clusterings of MT systems based on human judgements of fluency and adequacy

results obtained by the different systems. Fo#.3 Clusterings Comparison
those rankings, the level to test statistical signifi-Once constructed, we can compare the clusterings
car(;ce dls setip = gl.'%ll Thz _reil_JIts fo; ﬂll\Jlert]C)t/h obtained with different evaluation metrics, using

and adequacy are dispiayed in Figure 2. Nole %e comparison strategy introduced in Section 3.3
in this figure systems are numbered with respec

t0 thei K dina t tic. | emoi Mith a p-value 0f0.05). In particular, we com-
0 theirrank accoraing to a Metc, 1.e. SyStem 9 i, yoq the comparison scores between the auto-

the fluency clustering is the best system accordin%aﬁc evaluation metrics BLEU. NIST. GTM-1
to_fluency, and may be di_fferent from the systemand METEOR, and the human jl,Jdgem’ent for fI;J—
0in the adequacy clusterings. ency and adequacy. The results are displayed in

We can observe that adequacy scores do n(;IEabIe 1.

strongly differentiate the various participating
systems, and the resulting clusters are big. In the

Fluency Adequacy

case of fluency, there are more differences and SS-ASR BlhIIESL'JI' 0'27 %46
systems are easier to distinguish. We also observe METEOR 0 0 53
overlapping cases, in which a system belongs to GTM 013 6.6
several clusters. BLEU 047 033
To examine the influence of the significance RS-ASR NIST 0.4 0.27
level on the construction of the clusterings, we METEOR  0.33 0.13
performed some tests with different values for GTM 0.2 0.2
0.001, 0.002, 0.005, 0.01, 0.02, and0.05. For the BLEU ~ 0.73 047
condition SS-ASR, we report the obtained results RS-CRR NIST 0.4 0.27
in Figure 3. METEOR  0.53 0.26
GTM 0.33 0.33
As expected, with a very high significance level BLEU 0.58 0.70
(p = 0.001) it is not possible to distinguish be- Mixed Track  NIST 0.34 0.64
tween systems, and they are all placed in the same METEOR  0.39 0.71
cluster, with respect to fluency as well as ade- GTM 031 0.70

quacy. Overall, however, the clusterings seem
pretty stable: there are very few modifications
between the clusterings with thevalues0.002,
0.005, 0.01, 0.02, and0.05. For fluency, they are
actually identical for the value& 005, 0.01, and According to these comparison scores, BLEU
0.02. For adequacy, they are identical for the val-and METEOR seem to be better than NIST and
ues0.002, 0.005, and0.01. (See also Section 4.4 GTM at finding rankings similar to those obtained
for a discussion about the choice of a significancevith human judgement. In particular, BLEU
level.) yields consistently higher correlations with hu-

Table 1: Clustering comparison scores
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S-SR p=0.001 S54SR p=0.002 SS-A5R  p=0.005

Fluency Adeguacy Fluency Adeguacy Fluency Adeguacy

S8-ASR p=0.01 §5-A3R p=0.02 B85-A3R  p=0.05

Fluency Adeguacy Fluency Adeguacy Fluency Adeguacy

Figure 3: Clusterings obtained with diffreptvalues

man judgements of fluency, and GTM even ob- BLEU NIST METEOR
tains a negative score in the first input condition NIST 0.64 - -
(spontaneous speech), showing a negative corre- METEOR 0.77 0.79 -
lation with human ranking. In the case of ade- GTM 0.70 0.79 0.86

quacy, the picture is slightly less clear: BLEU
seems to be more stable than the other metrickable 2: Comparing Automatic Metrics (Mixed
(it is better in two input conditions), even if ME- Track)

TEOR has a higher correlation with adequacy in

the Mixed Track. GTM-1 also achieves a high
correlation for the Mixed Track. Let us also recall
that this (indirect) approach based on the comin Tables 1 and 2, the significance level is set
parison of clusterings gives a view different fromto 0.05, since it is quite common to use such a
the computation of the direct correlation betweervalue. However, this value affects the clusterings
segment-level or system-level hard rankiRgs. ~ we obtain using our method (see e.g. Figure 3).

We also compared how the clusterings obtained Particular, a very smap-value (such ag.001)

using the automatic evaluation metrics (BLEu,yieIds inevitably a unique cluster containing all
NIST, GTM-1, and METEOR) relate to each the systems, independently of the metric, which

other. The results are displayed in Table 2. results in a correlation of when comparing any

. . two metrics. Obviously, there is a clear trade-off
Interestingly, the comparison scores between - .
. . . . between the ability to produce a ranking and the
automatic evaluation metrics are higher than be; . . .
) . ) level of confidence about this ranking.
tween the automatic evaluation metrics and the : : .
In order to quantify the influence of this param-

human judgement, which suggests that all thesgter we compute the correlation between auto
automatic metrics fall prey to some systematic er_mati,c and hurrl?an evaluations, with various values
ror in evaluating translation quality. N L
of p. The results we obtain are displayed in Fig-
ure 4 for fluency and in Figure 5 for adequacy.
2We_do not claim that our method is better than direct |n terms of correlations with human judge-
correlation; instead it provides an alternative approach which ts of fl th q fth t fi |
is suited to the situation when an automatic metric is used tJ“e_” S0 u_ency' € order of the automatic e_V8'_'
compare multiple systems. uation metrics does not seem to depend on signif-

4.4 Influence of the Significance Level
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Figure 4: Influence of thg-value on the correlation with human judgements of fluency

icance level, and there is little variation betweenlation, each with its own set of conditions, so it
p = 0.002 andp = 0.05, although a very gentle is possible for systems to differ in the fluency of
decreasing trend can be noticed. Consequentiyheir output while being similar with respect to the
in this case, the choice ofjavalue does not ap- semantic/lexical content. This duality of evalua-
pear to be crucial. We can clearly observe thation is often ignored in the creation of new auto-
BLEU achieves the highest correlation with hu-matic metrics for MT evaluation, where the guid-
man judgements of fluency by a large margin.  ing factor is usually the metric’s correlation with
Concerning adequacy, there is again little varitheaveragehuman judgemeri.

ation betweerp = 0.002 andp = 0.05, even The comparison of clusters produced by
if the relative order of the various metrics is not g EU, NIST, GTM, and METEOR on one hand,
as stable. However, it seems that METEOR an%nd human scores on the other’ presented in Ta-
GTM-1 are consistently better than the two othemje 1, provides some surprising results. It turns
metrics, at least untj = 0.05. out that BLEU, despite being widely criticised for
low correlations with human judgements on seg-
ment level (Callison-Burch et al., 2006), consis-
The variation in the number of clusters betweertently produces the most reliable clusters on the
tables in Figure 3 confirms the intuition that assystem level when it comes to judgements of flu-
the level of required confidence increases, it beency, and this trend is not influenced by the re-
comes more and more difficult to distinguish be-quired significance level. Since BLEU was devel-
tween different systems. The number of cluster®ped with system-level evaluation in mind, this
ranges from one at = 0.001, where all systems is understandable; what is interesting, though,
are seen as equal and the null hypothesis canngt that NIST, GTM, and METEOR, which are
be disproved, to four ab = 0.05 for fluency. supposed to produce better segment-level evalu-
Interestingly, clustering the systems with respection than BLEU, are much worse than BLEU at
to their adequacy scores does not show the same
level of refinement: ap = 0.05 there are only 3pPerhaps this is the reason why automatic metrics still
two (albeit non-overlapping) clusters. This ten-seem so far away from successfully modeling human evalu-
. . . tion; it would be interesting to see whether we could devise
dency is not surprising, given that adequacy an

- X better metric by focusing on the two dimensions of fluency
fluency are two separate dimensions of a transand adequacy separately.

5 Discussion and Conclusion
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Figure 5: Influence of thg-value on the correlation with human judgements of adequacy

the system level - after all, we would expect the Our future work includes conducting the clus-
system-level evaluation to be directly dependentering tests with a larger number of MT systems,
on the evaluation of its segments. This emphato see whether the trends mentioned above hold
sizes the need to carefully choose one’s metric den situations with a greater number of clusters.
pending on the type of task: it seems that for mul-We also plan to add more metrics to our compar-
tiple system comparison BLEU does rather well,ison, and vary the test with respect to the num-
even though NIST, GTM, and METEOR might be ber of references available to the automatic met-
more useful in the process of developing a singleics. Additionaly, we would like to compare the
system (where the improvements often relate talusterings achieven in approximate randomiza-
specific types of sentences or structures and theréion experiments with clusterings produced by a
fore a metric with a higher segment-level reliabil- bootstrapping method for the same set of data.
ity would be better).
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Abstract other target sentences), one could ask whether it
is also possible to explogource similarityi.e. to
In this paper, we introduce context- take into account the context in which the source
informed  features in a log-linear phrases to be translated actually occur.

phrase-based SMT framework; these
features enable us to exploit source
similarity in addition to target similar-

ity modeled by the language model. We
present a memory-based classification
framework that enables the estima-
tion of these features while avoiding

sparseness problems. We evaluate
the performance of our approach
on Italian-to-English and Chinese-

to-English translation tasks using a
state-of-the-art phrase-based SMT
system, and report significant improve-
ments for both BLEU and NIST scores
when adding the context-informed 2 Log-Linear Phrase-Based SMT

features.

In this paper, we introduce context-informed
features in the original log-linear model, en-
abling us to take the context of source phrases
into account during translation. In order to
tackle the problems related to the estimation of
these features, we propose a framework based on
a memory-based classifier, which performs im-
plicit smoothing. We also show that the addi-
tion of context-informed features, i.e. the source-
similarity exploitation, results in an improvement
in translation quality, for Italian-to-English and
Chinese-to-English translations tasks.

In statistical machine translation (SMT), transla-
tion is modeled as a decision process, in which
the translatione{ = e1...¢;...e; Of a source

In log-linear phrase-based SMT, the probabilitysentencefy = f/ = fi...f;... f; is chosen
P(el|f{) of target phrase! given a source phrase to maximize:

f{ is modeled as a (log-linear) combination of

features that usually comprise some translational argmax P(e!| ) = argmax P(f{|e]).P(el),
features, and a language model (Och and Ney, Lel Lel

2002). The usual translational features involved )

in those models express dependencies betweeavhereP(f/|el) andP(e!) denote respectively the
source and target phrases, but not dependencié®nslation model and the target language model
between source phrases themselves. In particulgiBrown et al., 1993). In log-linear phrase-based
the context in which those phrases occur is neveBMT, the posterior probability?(el|f{) is di-
taken into account during translation. While therectly modeled as a (log-linear) combination of
language model can be seen as a way to eXeatures (Och and Ney, 2002), that usually com-
ploit target similarity(between the translation and prise M translational features, and the language

1 Introduction
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model:

m

logP(ef| f{) = D Amhm(f{ €1,

m=1

K
1

)

+ AparlogP(el), (2)

where si s1...s, denotes a segmentation

of the source and target sentences respectively

into the sequences of phrasgs, ..., ¢;) and
(f1,- .., fr) such that (we set := 0):

V1<k<K, sp:= (ir; by, jr),
6~k = €ik71+1 e eik?
Jr = fo, - [

C’é una partita di baseball oggi ?
(& Is there a baseball game today?

— Possible translations fgartita:

game | partita di calcio< a soccer game

gone | & partita< she has gone

partita | una partita di Bach= a partita of Bach
— Possible translations faii:
una tazza di caff< a cup of coffee
prima di partire & before coming

Figure 1: Examples of ambiguity for the (ltalian)
word partita, easily solved when considering its
context

3 Context-Informed Features

A remarkable property of this approach is that3 1 context-Based Disambiguation
the usual translational features involved in those

models only depend on a pair of source/targetl & Optimization of the feature weighis, can
phrases, i.e. they do not take into account the cor2€ Performed in aiscriminativelearning setting
texts of those phrases. This means that each fe4QCh and Ney, 2002). However, itis important to

ture h,,, in equation (2) can be rewritten as:

K
h,m(fi]76{,SK) - hm(fkve~k78k)7

®3)

note that these weights ameeta-parametersin-
deed, the dependencies between the parameters of
the standard phrase-based approach consist of: (i)
relationships between single phrases (modeled by

k=1 h), (i) relationships between consecutive target
words (modeled by the language model), which
is generally characteristic ajenerativemodels
(Collins, 2002; Dietterich, 2002). Notably, de-
pendencies between consecuts@urce phrases
are not directly expressed.

Discriminative frameworks usually allow for
the introduction of (relatively) unrestricted de-
pendencies that are relevant to the decision pro-
cess. In particular, disambiguation problems

In this context, the translation process amount§an be solved by taking the direct context of
to: (i) choosing a segmentation of the sourcdhe entity to disambiguate into account (e.g.
sentence, (i) translating each source phrase, arldietterich (2002)). In the translation example dis-
possibly (jii) re-ordering the target segments ob-Played in Figure 1, the source right context is
tained. The target language model is used tgufficient to solve the ambiguity: when followed
guide the decision process; in case no particuby di baseball the (ltalian) wordpartita is very

lar constraints are assumed, it is common to emlkely to correspond to the (English) wogame
ploy beam search techniques to reduce the num- However, in the standard phrase-based ap-
ber of hypotheses to be considered (Koehn, 2004roach, the disambiguation strongly relies on the
Equations (2) and (4) characterize what is referredarget language model. Indeed, even though the
to as thestandard phrase-based approachthe  various translation features associated vaér-
following. tita andgame partita andgone etc., may depend
on the type of data on which the model is trained,

Here, for notational purposes, we exclude re-ordering,, - likelv that £ del ill select
features that might not be expressed using equation (3). Thil:t IS likely that most language models will selec

does not affect our general line of reasoning. the correct translatiobaseball gamas the most

where h,, is a feature that applies to a single
phrase-pait. It thus follows:

E(fk? e~k7 Sk),

m K
Z Am Z Bm(fk; €ks Slc) =

m=1 k=1

with h = Ao P

Mz T

1

3
I
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probable among all the possible combinations ofClass-based features In addition to the context
target words: gone of baseballgame of base- words themselves, it is possible to exploit sev-
ball, baseball partitabaseball gameetc., but this  eral knowledge sources characterizing the con-
solution appears to be more expensive than simtext. For example, we can consider the Part-Of-
ply looking at the context. In particular, the con- Speech of the focus phrase and of the context
text can be used to early prune weak candidatesyords? In this case, the contextual information
which allows spending more time on promisingtakes the following form for a window of size 3:
candidates.

Several discriminative frameworks have beenCI(f;,) = (POS(f), POS(fy, 1), POS(fj,11))-
proposed recently in the context of MT to
fully exploit the flexibility of discriminative ap- We can also combine the class-based and the
proaches (Cowan et al., 2006; Liang et al., 2006word-based information.
Tillmann and Zhang, 2006; Wellington et al.,
2006). Unfortunately, this flexibility usually Feature definition One natural definition to ex-
comes at the price of training complexity. An al- Press a context-informed feature consists of view-
ternative in-between approach, pursued in this palg it as the conditional probability of the target
per, consists of introducing context-informed fea-Phrase given the source phrase and its context in-
tures in the original log-linear framework. This formation:
enables us to take the context of source phrases . . -
into accounts, while benefiting from the existing hm (&, C1(fx), €k, sk) = log P(€x| fr, CI(fi))-

training and optimization procedures of the stan- o
dard phrase-based approach. The problems related to the estimation of these

probabilities are addressed in the next section.
3.2 Context-Informed Features
In this Section, we introduce several features thaft Memory-Based Disambiguation

take the context of source phrases into account. 41 A Classification Approach

Word'—based featu_res A feature that includes 1.4 girect estimation @ (cil o, CI(f1)), for ex-
the direct left and right context words (res. -1 ample using relative frequencies, is problematic.
and fj,+1) of a given phrasefy = fi, .- fix  |ndeed, it is well known that the estimation of
takes the following form: P(éx| i) using relative frequencies results in the
K overestimation of the probabilities of long phrases
hon(f{, €], s5) = Zﬁm(fmfbk_l, Fivt1s €hs SE)- (Zens and Ney, 2094; Fo_ster et gl., 2006); a f_re-
=1 guent remedy consists of introducing a smoothing
) ) ] factor, which takes the form of lexical-based fea-
In this case, the contextual information can betures (Zens and Ney, 2004). Similar issues and

seen as a window of size 3 (focus phrase + Ieff, \arjety of smoothing techniques are discussed
context word + right context word), centered on;,, (Foster et al., 2006). In the case of context-

the source phrasg.. Larger contexts may also be jntormed features, since the context is also taken

considered. More generally, we have: into account, this estimation problem can only
K worsen, which forbids us to use relative frequen-
hn(fi €1, 51) = hun(fe, CI(fi), €y 58),  CI€S:
k=1 To avoid these issues, we use a memory-
. based classifier, which enablesplicit smooth-
whereC'I( f;) denotes some contextual informa-ing. More precisely, in order to estimate the prob-
tion aboutfy.? ability P(é; | fi, CI(f)), we ask a memory-based

2The definition of the context may be language depenClassifier to classify the inpuffy, CI(f)) (seen

dent. For example, one could consider only the rightcontext
if it makes sense to do so for a particular language; the same *The POS of a multi-word focus phrase is the concatena-
remark holds for the size of the context. tion the POS of the words composing the phrase.
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as a fixed-length vector). The result of this clas-same class label. A node is either a leaf or a non-
sification is a set of weighted class labels, repreending node that branches out to nodes at a deeper
senting the possible target phraggs Once nor- level of the trie. Each branch represents a test on
malized, these weights can be seen as the postafeature value; branches fanning out of one node
rior probabilities of the target phraseg, which  test on values of the same feature.
thus gives access ®(¢;| fx, CI(fx)). Prediction in IGTREE is a straightforward

In order to build the set of examples requiredtraversal of the trie from the root node down,
to train the classifier, we slightly modify the where a step is triggered by an exact match be-
standard phrase extraction procedure describeveen a feature of the new example and an arc
in (Koehn et al., 2003) so that it also extractsfanning out of the current node. When the next
the context information of the source phrasesstep ends in a leaf node, the homogeneous class
since these aligned phrases are needed in the staat-that node is returned; when no match is found
dard phrase-based approach, the context extraedth an arc fanning out of the current node, the
tion comes at no additional cost. most likely class stored at that node is returned.

Note that there are several reasons for using a To attain high compression levels, IGEE
memory-based classifier: (i) training can be peradopts the same heuristic that most other
formed efficiently, even with millions of exam- decision-tree induction algorithms adopt, such as
ples, (i) it is insensitive to the number of output C4.5 (Quinlan, 1983), which is to create trees
classes, (iii) its output can be seen as a posteridrom a starting root node and branch out to test on

distribution. the most informative, or most class-discriminative
o features first. Like C4.5, IGREE uses infor-
4.2 |GTree Classification mation gain (IG) to estimate the discriminative

In the following, we describe IGAEE* an al- power of features. The key difference between

gorithm for the top-down induction of decision IGTREE and C4.5 is that IGREE computes
trees that can be seen as an approximatioirof the IG of all features once on the full database
nearest neighbor that stores and classifies exarff training examples, makes a feature ordering
ples efficiently (Daelemans etal., 1997). I&de  once on these computed |G values, and uses this
compresses a database of labeled examples intg?dering throughout the whole trie. Moreover,
lossless-compression decision-tree structure thaf TREE does not prune its produced trie, so that
preserves the labeling information of all exampledt performs a lossless compression of the labeling
(and technically should be namedrae accord- information of the original example database. In
ing to Knuth (1973)). In our case, a labeled ex-case of exact matches, the exact same output will
ample is a fixed-length feature-value vector repbe retrieved.

resenting the source phrase and its contextual in- IGTREE bases its classification on the example
formation, associated with a symbolic class labethat matches on most features, ordered by their
representing the associated target phrase. The tri®, and guesses a majority class of the set of
that is constructed can then be used to predict @xamples represented at the level of mismatch-
target phrase given a source phrase and its cofRg. In our case, we do not keep just the ma-
text. A typical trie is composed of nodes thatjority class since we want to be able to estimate
each represent a partition of the original examplé®(€x|fx, CI(fx)) for all possibleey; we are thus
database, together with the most frequent claskterested in the entire set of labels represented
of that partition. The root node of the trie thus at the level of mismatching. Each possible target
represents the entire example database and carripBrase can be supported by multiple votes, which
the most frequent value as class label, while endeads to a weighted set of target phrases. By nor-
nodes (leaves) represent a homogeneous partitidnalizing these weights, we obtain the posterior
of the database in which all examples have therobability distributions we are interestedn.

“An implementation of IGTree is freely available as part  °It is also interesting to note that if we do not include
of the TiIMBL software package, which can be downloadedany context information, the (normalized) output provided
from http://ilk.uvt.nl/timbl . by IGTREE exactly corresponds to the conditional probabil-
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4.3 Memory-Based Features Phrase-based SMT decoders such as (Koehn,

The weighted set of possible target phrases givef004) rely on a phrase-table represented as a list

a source phrase and its context is an intermediar?f aligned phrases accompanied with several fea-
result of the estimation df’(ék\fk CI(fk)). In ures. Since these features do not express the con-

addition to the featurd,, (fi, CI(f), &, s1) = text in which those phrases occur, no context in-
logIP(ék|fk,C’I(fk)), we consider a simple bi- formation is kept in the phrase-table, and there

nary feature based on this intermediary result: IS N0 way to recover this information from the
phrase-table. In order to take into account the

context-informed features with this kind of de-

coders, we use the workaround described in what
_ follows. Each word to be translated (i.e. appear-
0 otherwise, ing in the test set) is assigned a unique id, and

here “ ., he hiah b each phrase to be translated which is also present
where “most support” means the highest probag, phrase-table is given to I&GEE for classi-

bility according toP(cy|fi, CI(fi))- The WO fiqion e merge the initial information of the

featureshy, and fye,; are integrated in the log- phrase-table concerning this source phrase with

linear model. AS_ . _the standa_rd_ phras_e—the output for IGREE, to obtain a new phrase-
based approach, their weights are optimized USINEhple containing the standard and the context-

minimume-error-rate training (Och, 2003).

1 if € is (one of) the target phrases
Ppest = with the most support

informed features. In this new phrase-table, each
source phrase is represented as a sequence of ids

o _ (of the words composing the phrase). By replac-
When predicting a target phrase given a sourcgy 4| the words by their ids in the test set, we

phrase and its context, the source phrase is ingap transiate it using this new phrase-table.
tuitively the feature with the highest prediction

power; in all our experiments, itis the feature with4.5  Source vs. Target Similarity

the highest IG. In the trie constructed by |&HE, SMT and target-based similarity The prob-

this is thus the feature on which the first branch-_, .. .
. L ability of a (target) sentence with respect to a
ing decision is taken. Consequently, when clas-

g P -gram-based language model can be seen as a
sifying a source phrasg, with its context, there ng ! ‘anguag .
. Lo L measure of similarity between this sentence and
are two possible situations, depending fanbe-

o L : . the sentences found in the corpdson which
ing in the training material or not. In the first case, pas

7. Is matched, and we proceed further down thethe language model is trained. Indeed, the lan-

. . : uage model will assign high probabilities to
trie. Atthis stage, it follows thatthetargetphrases? g 13519 gh p .
g hose sentences which share lotsiajrams with
that can be retrieved are only those that have be

. = e sentences af, while sentences with few-
aligned tofi. In the second casg cannot be

matched, so the full set of labeled leaves of th%girams matches will be assigned low probabili-

entire trie is retrieved. Since the second case doeises' In other words, the language model is used

. . ... 10 make the resulting translation similar to pre-
not present any interest, we limit the classification . . :
. . . viously seen (target) sentences: SMTtasget-
to the source phrases contained in the training ma-.

terial. By limiting ourselves to the first situation, similarity based.

we ensure that only target phrasgsthat have EBMT and source-based similarity In order
been aligned withy will be retrieved. Thisis a to perform the translation of a given sentence
desirable property that may be not be necessarily, Example-Based Machine Translation (EBMT)
verified if we were using a different type of clas- systems (i) look for source sentences similar to
sifier, more prone to over-generalisation issties. f in the bilingual corpus (retrieval), (i) find use-

4.4 Implementation Issues

ities P(¢x| f) estimated with relative frequencies on the setthere is in the general case nothing preventing a classifier to

of aligned phrases. output a target phrasé, that was never aligned td,. If

®From the point of view of the classification task, the setwe use IGTree and if the source phrase is the feature with
of class labels is the set afl the target phrases encoun}ered the highest information gain, then we have the mentioned
in the training data. Consequently, given a source phfase desirable property.
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ful fragments in these sentences (matching), (iii
adapts and recombine the translation of thes
fragments (transfer) (Nagao, 1984; Somers, 199¢
Carl and Way, 2003). A number of matching tech-
nigues and notions of similarity have been pro-
posed. Consequently, EBMT crucially relies on
the retrieval obourcesentencesimilar to f in the
bilingual training corpus; in other words, EBMT
is source-similaritybased. Let us also mention
(Somers et al., 1994), which marks the fragment
to translate with their (left and right) contexts.

Source and Target Similarity While the use

Chinese-English [talian—English

Train.

ESentences 44,501 21,484

): Running words | 323,958 351,303 156,237 169,476
Vocabulary size| 11,421 10,363| 10,418 7,359
Train. examples 434,442 391,626
Dev.
Sentences 489 (7 refs.) 489 (7 refs.)
Running words | 5,214 39,183 | 4,976 39,368
Vocabulary size| 1,137 1,821 1,234 1,776
Test examples 8,004 7,993
Eval.

L. Sentences 500 (7 refs.) 500 (7 refs.)

P Runningwords | 5,550  44,089| 5,787 44,271
Vocabulary size| 1,328 2,038 1,467 1,976
Test examples 8,301 9,103

of target-similarity may avoid problems such asTable 1. Chinese-English and lItalian-English
boundary-friction usually encountered in EBMT COrpus statistics

(Brown et al., 2003), the use of source-similarity

may limit ambiguity problems (cf. Section 3). BY renqrt statistical significance-values, estimated
using approximate randomization (Noreen, 1989;
Riezler and Maxwell, 2005).
To assess the validity of our approach, we
use the state-of-the-art phrase-based SMT sys-
tem MOSES (Koehn et al., 2007§. The base-

exploiting the two types of similarity, we hope to
benefit from the strength of both aspects.

5 Experimental Results

5.1 Data, Tasks, and Baseline

The experiments were carried out using th
Chinese—English and
provided within the IWSLT 2006 evaluation cam-

paign (Paul, 2006), extracted from the Basic

Travel Expression Corpus (BTEC) (Takezawa e

éine system is composed of the usual features:
ltalian—English daltasetghrase-based probabilities and lexical weighting

in both directions, phrase and word penalties, and

al., 2002). This multilingual speech corpus con-2"
tains sentences similar to those that are usuall¥ 5 1yansiation Results

found in phrase-books for tourists going abroad
Training was performed using the default train-

vset2, and devset3. The development set (devsb\fv
4) was used for tuning purposes (in particular for®

the optimisation of the weights of the log-linear

ing the test set (using the CRR=Correct Recog
nition Result input condition). For both Chinese

and ltalian, POS-tagging is performed using the"O"

MxPoOsST tagger (Ratnaparkhi, 1996). Table 1
summarizes the various corpus statistics.
number of training/test examples refers to the ex
amples involved in the classification task.

For all experiments, the quality of the transla-

re-ordering. Our system additionally includes the
{nemory—based features described in Sections 3

The results obtained for the Italian—English
ing set, to which we added the sets devsetl dend Chinese—English translation tasks using the

SLT data are summarized in Table 2. The
ontextual information may include the (con-

text) words, their Part-Of-Speech, or both, re-

model), and the final evaluation is conducted usSPectively denoted by Words-only, POS-only, and

Words+POS in the following. In all cases, the size
of the left context is 2 and so is the size of the right

text?

In the case of Italian—English, a consistent im-

Th&rovement is observed for all metrics, for the
three types of contextual information (Words-

only, POS-only, Words+PQOS). Relatively to the
baseline results, this improvement is significant

tion output is evaluated using the accuracy mea- 7The code for statistical significance testing can be freely

sures BLEU (Papineni et al., 2002), NIST (Dod- downloaded fronhttp://www.computing.dcu.ie
“nstroppa/softs/fast_mt_eval.tgz

dington, 2002), and METEOR (Banerjee and

Lavie, 2005), using 7 references and ignoring

8http://www.statmt.org/moses/
These are the values which led to the best results on the

case information. For BLEU and NIST, we also development set during the exploratory phase.
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BLEU[%] (p-value) NIST p-value) METEOR[%)]
Italian—English

Baseline 37.84 8.33 65.63
POS-only 38.56 (< 0.1) 8.45 (< 0.02)  66.03
Words-only 37.93 (x) 8.43 (< 0.02) 66.11
Words+POS 38.12 (x) 8.46 (< 0.01) 66.14
Chinese—English

Baseline 18.81 5.95 47.17
POS-only 19.64 (< 0.005) 6.10 (< 0.005)  47.82
Words-only 19.86 (< 0.02) 6.23 (< 0.002) 48.34
Words+POS 19.19 (x) 6.09 (< 0.005) 47.97

Table 2: Italian—English and Chinese—English Translation Results

for NIST, and marginally significant for BLEU ous contextual elements, we rank the contextual
(p-value < 0.1) for POS-only. The combination features of the Words+POS model based on their
of the words and POS information leads to a slightnformation Gain (cf. Table 3). W(0) and P(0) de-
improvement for NIST and METEOR relatively notes the focus phrase and its POS, whilei)wW/(
to Words-only and POS-only. As for the BLEU and P{) denotes the word and the POS of the
score, the best results are obtained with POSwords at position relative to the focus phrase.
only. The difference between POS-only, Word-The rankings for Italian and Chinese are globally
only, and Words+POS is never statistically signif-
icant. The difference of significance between the
BLEU and NIST scores is investigated in more
depth in Section 5.3.

[talian—English || Chinese—English
Rank | Feature| IG Feature| IG
W(0) 7.82 || W(0) 6.74
P(0) 4.59 || W(+1) | 3.73

. . . W(+1) | 4.24 || P(O 3.23

In the case of Chinese—English, the improve- W&_l)) 4.09 V\f(_)l) 3.91
ment is also consistent for all metrics, and sig- W(+2) | 3.19 || W(+2) | 2.90

1
2
3
4
5
nificant for both BLEU and NIST for Words- ? W(-2) | 284 | W(-2) | 2.25
8
9
1

) P(+1) | 1.75 || P(-1) | 1.18
only, POS-only, and Words+POS. Interestingly, P(-1) 161 || P(+1) | 1.03
the addition of Part-of-Speech information does P(-2) | 094 || P(-2) | 0.77
not seem to be benefitial in the case of Chi- 0 [ P(2) |090 ] P(+2) | 0.7
nese. Indeed, the results of Words-only are Table 3: Feature Information Gain
higher than those obtained with both POS-only
and Words+POS. In order to understand bettegimilar, and we can observe the following tenden-
why this is the case, we manually inspected the&ies:
tagger’s output for the Chinese data. The most  word information> POS information,
obvious explanation is simply the (poor) qual- Focus> Right context> Left context.
ity of tagging. Indeed, we found lots of tagging
mistakes, which contributes to the introduction of5-3  Statistical Significance forn-gram Based
noise in the data. We also manually checked that ~ Metrics
in the case of Italian, the tagging accuracy is qualSince the BLEU and NIST metrics are both
itatively higher. Consequently, even if there isprecision- and n-gram-based (Doddington,
something to be gained from the addition of POS2002), it is somehow strange that an improve-
information, it seems important to ensure that thenent may be statistically significant for NIST
accuracy of tagging is high enough. Also, withand insignificant for BLEU (as it is the case
larger training data, it may be sufficient to rely on3 times in Table 2). The differences between
the words only, since the need for generalizationthe two metrics are: (i) the maximum length
is less important in this case. of the n-gram considered (4 for BLEU, 5 for

In order to know the contribution of the vari- NIST), (ii) the weighting of the matchea-grams
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(no weighting for BLEU, information-based account contextual information about the source
weighting for NIST), (iii) the type of mean used phrases to translate. This contextual informa-
to aggregate the number of matche@rams for tion can take the form of left and right context
differentn (geometric for BLEU, arithmetic for words, as well as other source of knowledge such
NIST), (iv) the length penalty. as Part-Of-Speech information. We presented a
To test which of these options were responsiblanemory-based classification framework that en-
for the difference in significance, we created theables the estimation of these features while avoid-
24 metrics corresponding to all the possible com4ng sparseness problems.
binations of options, and we ran the significance We have evaluated the performance of our ap-
tests for the three cases for which there was a digsroach by measuring the influence of the addition
agreement between BLEU and NIST with respecbf these context-informed features on lItalian-to-
to significance. We found out that the most im-English and Chinese-to-English translation tasks,
portant factors are the information-based weightusing a state-of-the-art phrase-based SMT sys-
ing, and the type of mean used. This is actualltem. We report significant improvements for both
consistent with our expectation for our system reBLEU and NIST scores.
garding lexical selection. Indeed, BLEU's geo- As for future work, we plan to investigate the
metric mean tends to ignore good lexical changesaddition of features including syntactic informa-
which may be shadowed by lowgrams results tion. For example, one could consider depen-
for high values ofn; similarly, the information- dency relationships between the words within the
based weighting favors the most difficult lexical focus (source) phrase or with its close context.
choices. Note that these remarks are also consigye could also introduce context-informed lex-
tent with the findings of (Riezler and Maxwell, jcal smoothing features, similarly to the stan-
2005). dard phrase-based approach. Finally, we plan to
6 Related Work modify the decoder to directly integrate context-
informed features.
Several proposals have been recently made to
fully exploit the accuracy and the flexibility
of discriminative learning (Cowan et al., 2006; References

Llang et al,, 2006; Tillmann and Zhang, 2006;Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
Wellington et al., 2006). These papers gener- aAn automatic metric for mt evaluation with im-

ally require one to redefine one’s training proce- proved correlation with human judgments. Rro-

dures; on the contrary our approach introduces Eeed'”QSEOf tlhe the QCL Work?hosl_lc_)n '3}”5'§ and
; : xtrinsic Evaluation Measures for MT and/or Sum-

new features while keeping the strength pf ex- marization pages 65-72, Ann Arbor, MI.

isting state-of-the-art systems. The exploitation

of source-similarity is one of the key componentspeter F. Brown, Stephen A. Della Pietra, Vincent

of EBMT (Nagao, 1984; Somers, 1999; Carl and J. Della Pietra, and Robert L. Mercer. 1993. The

Way, 2003); one could say that our approach is Mathematics of statistical machine translation: Pa-

N . _ rameter estimation. Computational Linguistics

a cpmblnatlon of E.BMT'and SMT since We ex- 1g0y.563 311,

ploit both source similarity and target similarity.

(Carpuat and Wu, 2005) present an attempt to UsRalf D. Brown, Rebecca Hutchinson, Paul N. Ben-

word-sense disambiguation techniques to MT in nett, Jaime G. Carbonell, and Peter Jansen. 2003.

order to enhance lexical selection; in a sense, we Feducmg bO‘IJ”daVIXI’P f”C“OC';‘, US'”? htragsr]'al\t/'lon'
: . .. fragment overlap. roceedings of the 9th Ma-

are a_llso performlng some sort of Word_sense dis- e Translation Summipages 24-31, New Or-

ambiguation, even if the handling of lexical selec-  |eans, LA.

tion is performed totally implicitly in our case.

) Michael Carl and Andy Way, editors. 2003Recent
7 Conclusion Advances in Example-Based Machine Translation
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for log-linear phrase-based SMT, that take into Netherlands.
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Abstract

A novel approach is presented for extracting syntacti-
cally motivated phrase alignments. In this method we
can incorporate conventional resources such as diction-
aries and grammar rules into a statistical optimization
framework for phrase alignment. The method extracts
bilingual phrases by incrementally merging adjacent
words or phrases on both source and target language
side in accordance with a global statistical metric. The
extracted phrases achieve a maximum F-measure of
over 80 with respect to human judged phrase align-
ments. The extracted phrases used as training corpus
for a phrase-based SMT shows better cross-domain
portability over conventional SMT framework.

1 Introduction

In the phrase-based SMT framework (Marcu & Wong,
2002; Och & Ney, 2004; Chiang, 2005), extraction of
phrase pairs is a key issue. Currently the standard method
of extracting bilingual phrases is to use a heuristics such as
diag-and (Koehn et. al., 2003). In this method starting with
the intersection of word alignments of both translation di-
rections additional alignment points are added according to
a number of heuristics and all the phrase pairs which are
consistent with the word alignments are collected.

Although this method is effective by itself it is very dif-
ficult to incorporate syntactic information in a straight
manner because phrases extracted by this method have
basically little syntactic significance. Especially if we in-
tend to combine strength of conventional rule-based ap-
proach with that of SMT, it is essential that phrases, or
translation units, carry syntactic significance such as being
a constituent (YYamada & Knight, 2001).

Another drawback of the conventional method is that
the phrase extraction process is deterministic and no quan-
titative evaluation is applied. Furthermore if the initial
word alignments have errors, these errors propagate to the
phrase alignment process. In doing so the burden of statis-
tical optimization is imposed on the final decoding process.
We propose in this paper a novel phrase alignment method

in which we can incorporate conventional resources such
as dictionaries and grammar rules into a statistical optimi-
zation framework for phrase alignment.

The outline of the proposed method, applied to Japa-
nese-English bilingual corpus, is as follows.

1) The training bilingual corpus is first word-aligned by
GIZA++ (Och & Ney, 2000).

2) A word translation model is learnt by relative frequency
from the word-alignment and smoothed by a bilingual dic-
tionary.

3) Chunking is performed on both sides.

4) The probability that an English word belongs to a Japa-
nese chunk is evaluated from which an entropy score is
computed.

5) The entropy score is used to guide the process of merg-
ing adjacent phrases of both languages.

6) The merging process terminates when the score takes a
minimum value.

Although the above steps are purely guided by a statistical
metric, some syntactic preferences or constraints can guide
the search.

The objective of this work is to extract alignments of
phrases which are linguistically motivated. However, there
is no guarantee that even manually extracting, out of
aligned sentences, bilingual phrases which correspond to
each other in meaning results in a collection of pairs of
source and target phrases which are both constituents.
There might be cases in which a phrase in one language
constitutes a constituent while the corresponding phrase in
the other language does not. Therefore the basic strategy
we adopt here is to try to extract bilingual phrases whose
source language side at least constitutes a constituent. As
for the target language side, a preference is given to con-
stituent constructs.

2 Phrase Alignment Method

The phrase alignment method we propose here extracts
bilingual phrases by incrementally merging adjacent words
or phrases on both source and target languages in accor-
dance with a global statistical metric along with syntactic
constraints and preferences.
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The merging process is guided by an entropy score
which is calculated from the alignment matrix. Figure 1
shows an example of the alignment matrix for the follow-
ing sentence pair:

(1a)

(1b) To calculate an average value weighed in the present
data with a simple arithmetic circuit by repeating the loop
of multiplication of the stored value in the arithmetic cir-
cuit and the addition of a new data.

In the alignment matrix, English words are arranged in
each row and Japanese chunks are arranged in each col-
umn. The value of the (i, j) element divided by the margin
of the i-th row represents the probability that the translation

of the i-th English word (w;) appears in the j-th Japanese
chunk (f ). For example, the translation of ; (calculate)

canbe® 7, which appearsin jq (*
” ) and j8 (“ ”)' or “ ", WhiCh
appears in jy53 (“ "), or® ”, which

appears in j; and j; in addition to j,, jg and jq3. Since
“calculate” is more likely to be translated as ”” than
others, the (1, 13) element has larger value than other ele-
ments in the same row. Determiners, prepositions, con-
junctions, and other function words are treated as
stopwords and their elements are all assigned a value of
zero. When there is more than one element with a positive
value in the same row, these elements are shown in Figure
1 with a shaded square, and this means that the correspond-
ing English word is ambiguous on the identity of the corre-
sponding Japanese chunk. On the other hand, if there is
only one element, say (p,q), with positive value in the same

row, it is certain that the English word w, belongs to the

Japanese chunk J,. If there is one and only one nonzero
element in each row and in each column, then we have a
complete one-to-one matching between Japanese elements
(phrases) and English elements (words or phrases). The
intuition behind the proposed method is that by merging
adjacent elements which constitute a phrase and tend to
stay together in both languages, the alignment matrix ap-
proaches a one-to-one matching. Therefore if there is a
global measure that shows how close the current alignment
matrix is to a one-to-one matching, we can use it to guide
the merging process. We use the entropy score which is
described in the next section.
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Figure 1: An example of the alignment matrix

2.1 Without Syntactic Information

We begin by describing the proposed phrase alignment
method in the case of incorporating no syntactic informa-
tion. Figure 2 shows the framework of the phrase aligner.
In the case of incorporating no syntactic information, Syn-
tactic Component in the figure plays no role. We take
here an example of translating from Japanese to English,
but the framework presented here basically works for any
language pair as long as a conventional rule-based ap-
proach is applicable.

As a preparation step, word alignments are obtained
from a bilingual corpus by GIZA++ for both directions
(source to target and target to source), and the intersection
A = Al 1 A2 of the two sets of alignments are taken. Then
for each English word e and Japanese word j, the fre-
quency N(e) of e in A and the co-occurrence frequency
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N(e, j) of eandjin A are calculated. Furthermore, using
a discrimination function & (e, j) which determines
whether e and j are a translation of each other with respect
to a predefined bilingual dictionary, word based empirical
translation probability is obtained as follows.

(2)  Pe(le) = (N(e)j) +S(.))/(N(e)+ Z:S(e.t)

(e, ) takes a value of 1 when (g, j) appears in the bilin-
gual dictionary, and 0 otherwise.

An input to the phrase aligner is a pair (J, E) of Japa-
nese and English sentences. The pair (J, E) is first chunk-
parsed to extract base phrases, such as minimum noun
phrases and phrasal verbs on both sides.

LetJ =ji, ja ..., Jw be a series of Japanese chunks.
These chunks are the minimum units for composing a final
phrase alignment on Japanese side. Let E =wy, Wy, ..., Wy
be a series of English words. Then the probability that the
translation of word w; appears in chunk j in the given sen-
tence pair is given by (3)".

) PG Iw)=C; /7 = Cy
, where
(4) Cij= = Pc(t] w;) P(t appears in j )

is what we will call an alignment matrix which represents

the relative likelihood that the translation of word w; ap-
pears in chunk j in comparison with other Japanese
chunks, tis a translation candidate of w;, and P(t ap-
pears inj )is zero if j doesn’t contain tas a substring and
one if it does. Note that the values of C;; can be calculated
form the parallel sentence pair and the empirical transla-
tion probability (2).

Similarly for Japanese phrases, we can calculate the
probability P(w; |j ) that the translation of j is repre-
sented as w; as follows.

©) P wl]

Given the translation probability (3), we can define the
entropy H(i) of the probability distribution P( | w;) as
follows.

6) H() = =5 PA | w; )log, PG | Wi )

Since limy_ 4 X log, X = 0, we define H(i) = 0 when
PG | w) =0 forallj.

In the proposed method, a statistical metric based on
the entropy (6) is used for judging which adjacent phrases
are to be merged. We calculate the change in the evalua-
tion metric resulting from the merge just in the same way
as we calculate the information gain (the reduction of en-
tropy) of a decision tree when the dataset is divided ac-
cording to some attribute, with the only difference that in a
decision tree a dataset is incrementally divided, whereas in
our method rows and columns are merged. We treat each
row and each column of the alignment matrix as a dataset.
The entire entropy, or uncertainty, of mapping English
phrases to Japanese phrases is then given by:

The entropy of mapping Japanese phrases to English
phrases is obtained in the same way.

@H = X [ G IHA)/ =% G5

Finally we define the total statistical metric, or an evalua-
tion score, as the mean value of the two.

Heot = (H + HD/2

) =G/ = G

Phrase Extraction
The merging process is terminated when the evaluation

score Hy, takes a minimum value. When the final value of
the alignment matrix is obtained, then for each non-zero

! Interested readers are referred to (Ushioda, 2007) for more details
of the derivation of equation (3).
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element C;; the corresponding English phrase in the i-th
row and the Japanese phrase in the j-th column are ex-

tracted and paired as an aligned phrase pair. Even after H ¢

reaches zero we can continue merging as long as Hyq¢ Stays
zero and a different set of phrase pairs can be extracted at

each merging step while Hy; stays zero. Whether rows are
merged or columns are merged at each merging step is
determined by the evaluation score. Since the merging
process is easily trapped by the local minimum with a
greedy search, a beam search is employed while keeping
multiple candidates (instances of alignment matrices). The
typical beam size employed is between 300 and 1000.

One of the advantages of the proposed method is that we
can directly incorporate dictionary information into the
scheme, which is quite effective for alleviating data
sparseness problem especially in the case of small training
corpus. Another distinctive feature of the method is that
once word alignments are obtained and the empirical trans-
lation probability Pc(jle) is calculated together with the
dictionary information, the word alignments are discarded.
This is how this method avoids deterministic phrase
alignment, and keeps a possibility of recovering from word
alignment errors.

Multiple Correspondences

As we saw in the example of Figure 1 there is very often
more than one element with a positive value in the same
row of the alignment matrix. Usually only one nonzero
element is correct and others are erroneously assigned non-
zero values due to an accidental string match between the
Japanese chunks and the translation of the English word.
However there is no simple way of preliminarily disam-

biguating the identity of the corresponding Japanese chunk.

To cope with this initial ambiguity, a separate initial
alignment matrix is constructed for each combination of a
nonzero element of a row so that each row has at most one
nonzero element. If there are n words w,, w,, ...w, in

the English sentence, and each word w; has &; possible
corresponding Japanese chunks, then the number of com-
binations is &k, ...k, , which sometimes becomes huge.
However, in the process of merging, most of the erroneous
word alignments disappear in confrontation with correct
word alignments. Figure 3 shows two examples of an ini-
tial alignment matrix candidate for the sentence pair (1)
and phrase alignments obtained after the merging process.
Since the evaluation score of (c) is zero, (a) is considered
to be the correct initial alignment matrix. As a result, the

initial ambiguity on the identity of the corresponding Japa-
nese chunk for each English word is resolved.

In some cases, however, multiple correspondences be-
tween English words and Japanese chunks are intrinsic.
Consider the following sentence pair.

(11a)

(11b) To provide a tube energized in vacuum and establish
a method for distributing additives during the process of
taking out the blood.

Figure 4 shows the phrase alignment result for this pair
and Figure 5 shows the initial and final alignment matrices.
As Figure 4 shows the Japanese verb 7 (f) is
aligned with both “To provide” (t) and “and establish” (v).
This is because in the clausal conjunction different verbs
are used for different objects (a tube and a method) in Eng-
lish whereas the same verb (f) is used in Japanese. In those
cases one-to-one correspondence can never be achieved
through merging, but still the evaluation score is expected
to lead the merging process to a correct alignment result.

2.2 With Syntactic Information

The proposed framework also has a capability of in-
corporating syntactic constraints and preferences in the
process of merging. For example, suppose that there
are two competing merging candidates; one is to merge
(i-th row, i+1-th row) and the other is to merge (k-th
column, k+1-th column), and that their evaluation
scores are H1 and H2 respectively. Then if there are
no syntactic constraints or preferences, the merging
candidate which has the lower evaluation score is
elected. But if there are syntactic constraints, the
only merging candidate which satisfies the constraints
is executed. When a syntactic preference is introduced,
then the evaluation score is multiplied by some value
which represents the degree of the strength of the prefer-
ence. If we intend to extract only pairs of phrases which
constitute a constituent, then we introduce a constraint
which eliminates merging candidates that produce a phrase
which crosses a constituent boundary. Although our goal
is to fully integrate complete set of CFG rules into the
merging scheme, we are still in the process of constructing
the syntactic rules, and in the present work we employed
only a small set of preferences and constraints. Table 1
illustrates some of the syntactic constraints and preferences
employed in the present work.

Merging lines or columns in the alignment matrix can
be viewed as a form of bottom-up parsing. When we trace
the process of the merging, its history can be converted to
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Figure 3: Two examples of an initial alignment matrix candidate for the sentence pair (1) and their merging re-
sults. (c) and (d) are the results of merging (a) and (b), respectively.
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Figure 4. An example of intrinsic multiple correspondences.
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Figure 5: Initial (a) and final (b) alignment matrices for
sentence (11)

a binary parse tree on both language sides. Since we are
not yet incorporating grammar rules in our phrase align-
ment system, the merge history-induced inner-structures of
the obtained bilingual phrases are not quite linguistically
intuitive, although the obtained phrases themselves are
intended to be linguistically motivated. However, even
within the current setting, the obtained alignment matrix
can be useful for guiding parsing process or correcting
parse results via interplay between parsers of both sides
through the alignment matrix. Figure 6 illustrates an exam-
ple. If we suppose that the Japanese parse tree is more
reliable than the English parse tree, then the alignment ma-
trix can be used to convert Japanese tree structure into
English one and to correct the PP-attachment error of the
original English parse tree in which "by forming" is at-
tached to "to perform" instead of the correct attachment
site which is the conjunction of the preceding two clauses.

3 Experimets

This section describes experiments with the proposed
phrase alignment method. For the evaluation of the ob-
tained phrase alignments, two types of experiments are
conducted. One is to evaluate the F-measure of the ob-
tained phrase alignments with respect to a hand crafted
golden standard. The second type is to measure the quality
of phrase-based SMT which uses the obtained phrase pairs
as a bilingual corpus. Each experiment is described in the
following subsections. We used the test collection of a
parallel patent corpus from the Patent Retrieval Task of the
3rd NTCIR Workshop (2002) for training word alignments.
The corpus comprises of patent abstracts of Japan (1995-
1999) and their English translation produced at Japan Pat-
ent Information Organization. We extracted 150 thousand
sentence pairs from the PURPOSE part of the test collec-
tion of the year 1995. Each patent has its IPC category,
from A through H. In-house English and Japanese parsers
are used to chunk sentences and to make a constituent
judgment. We also used in-house bilingual dictionary with
860 thousand word entries. For phrase alignment, we ex-
tracted 13,000 sentence pairs with English sentences of
length smaller than 75 words, out of the sentence pairs in
G-category (Physics) of the above word alignment train-
ing set. The sentence length is constrained to reduce the
computational load. Table 2 summarizes the training cor-
pora used. Out of 13,000 sentence pairs 208 thousand
unique phrase pairs are extracted. More than one set of
phrase alignments can often be extracted from one pair
of aligned sentences when the evaluation score reaches
zero.

Figure 7 shows examples of obtained phrase align-
ments. Japanese phrases acquired are mostly constituents,
whereas many of English phrases are not, such as “ by
arranging”, or “of infrared absorption ink”. This is partly
due to the fact that Japanese phrases are constructed out of
base phrases, or chunks, whereas English phrases are con-
structed starting from individual words. Another reason is
the fact that Japanese precedence rule takes precedence
over English one as stated in Table 1.

3.1 Evaluation of Phrases with Human Judgment

Out of the 13,000 sentence pairs used for phrase align-
ments, 160 sentence pairs are randomly extracted for man-
ual annotation. Although there have been a number of
attempts to manually annotate word alignments, much less
attempts have been made to construct a golden standard for
phrase alignments. The major difficulty of aligning phrases
is that there are many possible ways of aligning phrases,
whereas word alignments have not much ambiguity.
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(a) Japanese parse tree
(by a monolingual parser)

(b) Initial English parse tree
(by a monolingual parser)

Figure 6: An example of correcting an English parse re-
sult by the combination of Japanese parse tree and the
alignment matrix. In the initial English parse tree (b), the
phrase “by forming” can be interpreted to be attached to
“and to perform”. Through the alignment matrix (c), the
Japanese parse tree (a) can be automatically mapped to
the English parse tree (d) which can for instance derive
the correct interpretation of the attachment site of the
phrase “by forming”.

Since there is no obvious criterion to decide which phrase
pairs are superior and which are not, we choose to extract
all the possible ways of dividing a sentence pair into a set
of bilingual phrases. Of course it is too much work for a
human to exhaust all the possible combinations. However,
there is a way of automatically generating all the possible
phrase alignments from a result of manual work which is
just repeating a simple task of dividing a phrase pair into
pairs of sub-phrases. For example, consider a phrase pair
is first divided into two phrase pairs, (“j1j2”, “e4e5”) and
(“j3j4j5”, “ele2e3”). There are in total four possible divi-
sion steps like this:

(12a) (“j1j2j3j4j5”, “ele2e3ede5”) (“j1j2”, “edeb5™) ,
(“j3j4j5”, “ele2e3”)
(12b) (“j1j2”, “ede5™)  (“j1”, “€5”), (“j27, “ed™)

(12c) (“j3j4j5”,“e1le2e3”)  (“j3”,“e3"), (“j4j5”, “ele2”)
(12d) (“j4j5”, “ele2™)  (“j4”,“e2"), (“j5”, “el™)

Given these four possible divisions, all the possible
phrase alignments can be automatically calculated and the
results are as follows.

(*j1j27, “e4e5™) ,(“j3j4j5”, “ele2e3”)

(“j1j27, “edeb™), (“j37,“e3™), (“j4j5”, “ele2”)
(“j1j27,“ede5™),(*j37,“e3”),(“j47,“e2"), (“j5”,"el”)

(“517, “e5™), (“j27, “ed™), (“]3j4j5”, “ele2e3™)
(*j17,"e57),(“j27,“ed™),(“j3”,e3”),(“j4j5”, “ele2”)

(17, e57),(*]2" "ed"), (13" "3") (14", "62"), (‘5" "e1”)

Therefore the task of human annotator is to keep dividing a
phrase pair into pairs of sub-phrases. The procedure of the
manual annotation is as follows.

1) Letthe aligned sentence pair be a pair of aligned phrases.
2) Pick a pair of aligned phrases and try to divide it into
two constituents so that each of the Japanese sub-phrases
can be regarded as a translation of either of the English sub-
phrases. An Example is given in Figure 9(a) and 9(b).

3) If 2) succeeds, repeat steps 2) through 4). If 2) fails,
then try to divide the picked aligned pair of phrases into
three, four, or more constituents in turn so that each of
Japanese sub-phrases can be regarded as a translation of
either of the English sub-phrases.

4) If 3) succeeds, repeat steps 2) through 4). Otherwise
stop dividing the current pair of phrases and go through
steps 2) through 4) with the next pair of phrases. If no
more pair of phrases is available for dividing, terminate
and output the set of division steps.

Figure 9 shows an example of dividing a pair of sen-
tences into aligned phrases. The set {(a), (b)} constitutes
one division step like (12a), as is also the case with sets
{(c), (d)} and {(e), (H}. From manually created division
steps for the 160 sentence pairs, all the possible phrase
alignments are generated and stored as a set of golden
standard.  Outputs of phrase aligner for these 160 sen-
tences are then compared with the golden standard. For
each phrase alignment in the golden standard, F-measure
is calculated with the system output, and the maximum
value among all the phrase alignments of the golden stan-
dard is recorded as the F-measure of the system output.
The mean value of the F-measures of all the 160 sentences
was 80.4. The average number of phrases in a sentence for
the golden standard phrase alignments which give the
maximum F-measure was 6.0. Therefore it is not the case
that the most simple phrase alignment, which is a partition
of a sentence into two parts, is earning high F-measures. In
order to examine the contribution of simple phrase align-
ments, F-measures are calculated by gradually eliminating

247



Constraint | Preference
conjunctions and when the score
‘]apanese punctuations are ties, a merge which
merged with the creates a
preceding entities constituent takes
precedence
H conjunctions, when the score
Eng I ISh prepositions and ties, a merge which

punctuations are
merged with the
following entities

merging across
base-phrase
boundary is pro-
hibited

creates a
constituent takes
precedence. If the
English pref-erence
conflicts with the
Japanese prece-
dence, the latter

takes precedence.

Table 1: Syntactic constraints and preferences

Training year size(sent) IPC CAT

Word 1995 150,000 A-H
Alignment

Phrase 1995 13,000 G
Alignment

Table 2: Training set description

from golden standard phrase alignments with small hum-
ber of phrases. Table 3 shows the result. There are no big
drops until MinNum = 4 , and after that F-measure de-
clines rather rapidly. This also suggests that golden stan-
dard phrase alignments with 2 or three phrases are not

playing a major role in the evaluation of the system outputs.

3.2 Evaluation of Phrases with SMT

The extracted phrase alignments were also evaluated with
an SMT engine. We used Pharaoh (Koehn, 2004) as the
baseline. Although our goal is to use obtained phrase
alignments as translation units of Rule-based/SMT hybrid
systems, we haven’t yet processed large amount of parallel
corpora, and the decoding scheme which takes advantage
of the constituent oriented phrase alignments is still under
development. Therefore, instead of testing the phrase
alignments as translation units, we tested the cross-domain
portability of the obtained phrase alignments. One of the
major merits of a syntactic constituent is its generalization
capability. N-gram statistics extracted from a large collec-
tion of data in a specific domain is a powerful resource
within the same domain, but quite often fails to adopt to

quite different domains. Constituents, or grammatical
categories, on the other hand, cannot easily be tuned to a
specific domain, but possess a generalization capability. In
this experiment we trained Pharaoh using parallel sen-
tences in one domain, namely IPC-G category (Physics),
and tested the decoder in different domains. The training
corpus we used for a baseline setting is the 13,000 sentence
pairs in IPC-G category listed in Table 2 . We then used a
set of aligned phrases extracted from the 13,000 sentence
pairs for training Pharaoh (PhrAlign). The phrases are
used alone and not mixed with the original parallel sen-
tences. For testing, a set of 500 sentence pairs are ran-
domly extracted from each IPC category. For
development, another set of 500 sentence pairs are ex-
tracted from IPC-G category. Table 4 shows the result.
PhrAlign outperforms Baseline in all the categoris. Espe-
cially in category E, PhrAlign scores 1.49 points higher
than Baseline, which is relative percentage of 16% increase
from Baseline. Since the training corpus is fairly small it is
possible that the difference of the two cases decreases as
the training data is increased, but this result suggests a gen-
eralizing capability of the syntactically oriented phrase
alignments.

4  Related work

The inversion transduction grammar formalism (Wu,
1997) is one of the pioneering approaches for stochasti-
cally extracting bilingual phrases with constituent structure.
A concept of bilingual parsing, where the input is a sen-
tence pair rather than a sentence, is introduced in this
framework. By allowing the inverse order of the right-
hand-side of productions, the expressiveness of the gram-
mar is shown to be considerably enhanced. In order to con-
trol the computational complexity, however, several severe
constraints are applied, which makes it difficult to apply
ITG to free-word-order languages like Japanese. This for-
malism is also not intended to be robust against the transla-
tion lexicon inadequacies: sentences containing more than
one word absent form the translation lexicon are rejected in
the reported experiment. The proposed method, on the
other hand, is quite robust to a sparse alignment matrix
because of the utilization of statistical word-alignment and
the robustness of the chunkers.

Integrated Segmentation and Alignment (Zhang and
Vogel, 2005), or ISA, is probably most similar in concept
to the proposed approach. ISA employs a greedy algo-
rithm, called CGA, to extract phrase pairs out of a bilingual
corpus. CGA extends the competitive linking algorithm
(Melamed, 1997), a greedy word alignment algorithm with
one word-to-one word assumption, to allow for combining
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Figure 7: Examples of obtained phrase alignments

Min num of phrases 2 3 4 5 6 7

F-measure

80.4 | 784 | 784 | 726 | 69.6 | 64.6

Table 3: F-measure with minimum number of phrases
in the golden standard varied

the detected “sure” word pair (a seed) with its neighbors to
form a group. ISA uses X?  statistics to measure the mu-
tual translation likelihood between words, and the word
pair with the highest X2 value is selected as a seed.
Neighboring words to be joined with the seed are also
greedily searched on the basis of % values. Although both
approaches use a statistical measure for the decision of
agglomeration, CGS uses a word-to-word association for
the judgment of local grouping, whereas the proposed ap-
proach uses a sentence level, or global, association metric
for the judgment of merging, which makes the merging
judgment justifiable not only for the merged phrase pairs,
but also for the other words and phrases in the sentence
pair. The n-best search in the proposed method also avoids
the greediness of the merging process. Another difference
is that in order to make the computation tractable, ISA em-
ploys a “locality assumption” which requires that a source
phrase of adjacent words only be aligned to a target phrase
composed of adjacent words. This assumption is again not
suitable for language pairs of a quite different word order
like the pair of Japanese and English.

5 Conclusion

A novel approach is presented for extracting syntacti-
cally motivated phrase alignments. In this method we

J1 j2 j3 j4 j5

el
e2
e3
e4
eb

Figure 8: Multilayered Phrase Correspondences

IPC CAT| A B C D E F G H

Baseline | 7.94] 11.43] 10.24] 7.42] 9.29] 11.38] 14.66] 12.03

PhrAlign] 8.91] 11.78] 10.85] 8.37] 10.78] 12.48] 15.70] 13.08

Table 4: Bleu score of the baseline and the proposed
method.
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Figure 9: Manual Annotation of Phrase Alignments

can incorporate conventional resources such as dic-
tionaries and grammar rules into a statistical optimiza-
tion framework for phrase alignment. The method
extracts bilingual phrases by incrementally merging
adjacent words or phrases on both source and target
language sides in accordance with a global statistical
metric along with constraints and preferences com-
posed by combining statistical information, dictionary
information, and also grammatical rules. The extracted
phrases achieved a maximum F-measure of over 80
with respect to human judged phrase alignments. The
extracted phrases used as a training corpus for a
phrase-based SMT showed better cross-domain port-
ability over conventional SMT framework.
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