
Compiling Typed Attribute-Value Logic Grammars

Bob Carpenter

Computational Linguistics Program, Philosophy Department
Carnegie Mellon University, Pittsburgh, PA 15213

email: carp©lcl . emu . edu

Abstract The unification-based approach to processing attribute-value logic grammars, similar to Prolog interpretation, has become the standard. We propose an alternative, embodied in the Attribute- · Logic Engine (ALE) (Carpenter 1993) , based on the Warren Abstract Machine (wAM) approach to compiling Prolog (Art-Kaci 1991) . Phrase structure grammars with procedural attachments, . similar to Definite Clause Grammars (occ) (Pereira - Warren 1980) , are specified using a typed version of Rounds-Kasper logic (Carpenter 1992) . We argue for the benefits of a strong and total version of typing in terms of both clarity and efficiency. Finally, we discuss the compilation of grammars into a few efficient low-level instructions for the basic feature structure operations.
1 Compiling Type Defini-

tions

The first component of an ALE grammar is a
type specification, which lays out the basic types
of feature structures that will be employed in a
grammar, along with the inheritance relations be­
tween these types and declarations of appropriate
features and constraints on their values. Such a
specification includes declarations such as the fol­
lowing for lists of atoms:

bot sub [atom , list] .
atom sub [a , b] .

a sub [] .
b sub [] .

list sub [ne_list , e_list] .
e_list sub [] .
ne_list sub []

intro [hd : atom , tl : list] .

The idea here is that bot is the most general type,
with two subtypes atom and list. The type atom
has two subtypes, a and b, which are maximally
specific types. The list type also has two sub­
types, ne..list and e_list for non-empty and
empty lists, respectively. Note that the ne..list
type introduces two features, hd and tl, whose
values are required to be atoms and lists. The

39

idea here is that the only type which has a�y ap­
propriate fe�tures is the ne_list type, and it is
appropriate for exactly two features, hd and tl .

Inheritance of appropriateness specifications is
performed on the basis of the type hierarchy. For
instance, consider the following declaration from
HPSG:

sign sub [word ,phrase]
intro [phon : phon_list ,

synsem : synsem_obj ,
qstore : quant_list] .

word sub []
intro [phon : singleton_phon_list] .

phrase sub []
intro [dtrs : dtr_struct] .

Here the type sign introduces three features
and provides value restrictions. The subtype for·
words inherits these features and the associated
value restrictions, imposing the additional condi­
tion that the phonology value be a singleton list .
In addition, the subtype for phrases introduces an
additional features for daughters, which is only
appropriate for phrases. Thus, unlike the case for
order-sorted terms (see, for instance, · Meseguer
et al. (1987)) , not every subtype of a type need
have the same slots for values. This is significant
in terms of implementations, as memory cells are

40

only allocated on a structure for appropriate fea­tures . The initial stage of compilation in ALE in­volves just the type hierarchy. F irst, the tran­sitive closure of subsumption is calculated using Warshall 's algorithm (see O'Keefe (1990)) . Sec­ond, least upper bounds are computed for each pair of consistent types . A condition on type hier­archies is that they form a bounded-complete par­tial order (BCPO) , or in other words, that every pair of bounded (consistent) types, those pairs of types with a common subtype, has a least upper bound . This ensures that the unification of two types always takes a unique value . This reduces non-determinism at run-time, but might require additional types to be declared by the user (see Carpenter (1992)) . Such hierarchies can be com­piled automatically from either systemic networks or ISA/ISNOTA hierarchies, as shown in (Carpen­ter - Pollard 1991), and such a compiler has been developed and will be included in the next re­lease of ALE (Carpenter and Penn forthcoming) . The final stage involves calculating which features are appropriate for each type and their appropri­ate values . This is done by collecting all of the declared features on subtypes and unifying their value restrictions . The second condition on type hierarchies, in addition to their forming a BCPO, is that they introduce each feature at a unique most general type . This, along with the BCPO condition, ensures a unique solution to the type inference problem . If we only knew that a fea­ture f was defined, and nothing else about an object, then if there were two maximally gen­eral types for which f was appropriate, a decision could not be made as to which type it was and non-determinism would be introduced . As with the BCPO condition, this condition can be auto­matically eliminated by introducing a new · type appropriate for the feature which is more general than the two existing ones (see Carpenter (1992)) . We also forbid appropriateness cycles such as:
person sub [mal.e , female] intro [father : male , mother : female] . male sub [] . female sub [] .
We rule out this situation because type inference, as we define it below, can not find most general well-typings in such cases . To be a well-formed

CARPENTER

object of type male, a requirement is that the father feature is defined and filled by another male, leading to a non-halting procedure . Again, if we wish to represent people · with parents, the problem can be solved by adding types which are not required to have parents . During the compilation of the type system, many different kinds of errors are detected, such as: two types which mutually subsume one an­other, violations of the BCPO condition where two types have multiple unifiers, cases where in­consistent constraints are inherited by a feature, where there are appropriateness cycles, where there is no most general type appropriate for a feature, and so on . Other errors such as unde­clared types and multiple declarations are also recognized . In addition, a number of warnings are raised in cases which might not be desirable, such as a type with only one subtype or where dynamic type-inference during unification will be necessary. This latter condition arises when types s and t are both appropriate for f, with value re­striction s ' and t ' , but the unification of s and t, s+t, has a more specific restriction than s ' +t ' . In this case, when an s and t object are unified, additional constraints on their value for a feature must be checked .
2 Compiling Basic Opera-

tions

As with other grammar formalisms based on attribute-value logics, the primary data structure used in ALE is the feature structure. The struc­tures used in ALE are similar to those in other systems, with the primary difference being that they are required to be totally well-typed (see Carpenter (1992)) . In other words, every fea­ture structure must be assigned a type and ev­ery feature appropriate for that type must ap­pear with an appropriate value . This can be con­trasted with sorted, but untyped systems, which allow sorts to label feature structures and partic­ipate in unification, but don't enforce any typing conditions . It can also be contrasted with sys­tems which only perform type inference on val­ues, but do not require every appropriate feature to be present . There are a number of benefits to typing a programming language . Not the least of these benefits is the ability to detect errors at

COMPILING TYPED ATTRIBUTE-VALUE LOGIC GRAMMARS 41
compile-time. For instance, rules which can not be satisfied and lexical entries which are not well­typed are flagged as such. Practice has shown that this cuts down on grammar development time significantly, because one of the most preva­lent grammar-writing errors is being inconsistent about which features appear at which level in a structure and how they are bundled together, es­pecially when grammar formalisms approach the 200 node lexical entry level as found in significant fragments of HPSG (see Penn (1993b)) . Ariother significant benefit of employing typed structures is that the features appropriate for a type can be determined at compile time. This has two advantages. First, it allows memory allo­cation and deallocation to be handled efficiently, as the type of ea,<;.h structure is known. Second, it allows unification to be greatly speeded up as there is no need to merge features represented as lists; the positions of relevant features are known at compile time. We consider these two benefits in turn.

ALE is currently implemented in Prolog, though plans are underway to implement it in C, using WAM techniques directly. As things stand, the WAM implementation of Prolog is exploited heavily to develop WAM-like behavior for ALE. Us­ing Prolog for feature structure unification sys­tems has its advantages and drawbacks. The drawback is that there are no pointers in Prolog, and thus path compression during dereferencing can not be carried out efficiently (though it is car­ried out on inactive edges during parsing) . The advantage is that Prolog is very good at struc­ture copying, last call optimization, incremental clause evaluation and search. We will consider all of these topics. But first, we note that the data structure used for feature structures in ALE is:
Tag-foo (V1 , . . . , Vn)

where Tag is a reference pointer, signalling the in­tensional identity of the structure, much as a posi­tion in memory in an imperative language would do, and where foo is the name of the type of the structure, which must be a Prolog atom, of course, and where V1 through Vn are the values for the features F1 through Fn that are appropri­ate for type foo. Given Prolog's compilation to the WAM, this amounts to having the following kind of record structure for feature structures:

I Tag I

o-- 1 --> I foo I

0-- 1 --> V1

0-- 1 --> Vn
Contrast this with a representation such as:

Tag-foo ([F1 : V1 , . . . , Fn : Vn])

where the features are coded explicitly in terms of a list. Here the structure required is as follows (ignoring the tag) :
I foo I

0-- 1 --> I cons I

o--- 1 --> I

I o I
-- 1 ---

1
I

V

I cons I

I F1
0-- 1 --> V1

In general, our representation requires 4 + n cells for a structure with n features, while the usual one requires 4 + 6n cells for the same struc­ture. This constitutes a huge discrepancy when we consider the amount of overhead this induces throughout the grammar in areas such as lexi­cal retrieval and copying edges into the chart. Note that this difference between using record­like structures as opposed to lists of feature-value pairs is Prolog-independent. We have not said much about the tag . . It is based on the same principle as O'Keefe's method

42
of encoding arrays in Prolog using variables, which provides constant time access and update (see the Quintus library). The basic idea is that each slot in an array is associated with a value and a pointer, which is either a variable or a struc­ture consisting of another value and a pointer. Updates are performed by instantiating the vari­able to a new pair consisting of a variable and value. Thus values are found by tracking the pointer until it's a variable. To maintain con­stant time, the entire array must be regularly up­dated. In our case, the tag plays the role of the pointer, and dereferencing is performed by follow­ing the tag value until it is a variable. The num­ber of dereferencing steps needed at any stage is bounded by the depth of the inheritance hierarchy (of course, Prolog does its own internal derefer­encing, so we can not statically bound the total number of dereferencing steps needed during uni­fication). Path compression is then the equivalent of O'Keefe's array updating, and is performed when a completed edge is found during parsing. We will see examples of the use of tags shortly. The second benefit we mentioned for typing structures is that we are able to carry out unifi­cation without merging feature-value lists. The standard method in unifying feature structures is to take two lists of features, find the common elements, unify them, and take both symmetric differences and copy the results of this into the final result. Such tasks are extremely costly, es­pecially as the number of features grows. Instead, our compiler will produce the following kind of code to perform unification (which has been sim­plified here, but will be expanded upon later):
unify (T-ne_list (H , R) , T-ne_list (H2 , R2)) : -

unify (H , H2) , unify (R , R2) .

The positional encoding of feature value_s means that at compile time, we know which features any two types have. Also note that the tags are iden­tified to make sure any update of one structure is felt by the other. Compare the number of op­erations required in the above procedure _ to one that had to look through two lists of feature value pairs, and act conditionally depending on the re­sults of comparisons, and detect termination con­ditions. While our unification in the above case requires only two logical operations in Prolog, the list merging method would require at least two comparisons, a termination test and the same two

CARPENTER

logical operations as our method, more than dou­bling the cost in the best possible instance. Of course, matters are much worse if the features are out of order or don't line up exactly in the two structures. Having motivated our approach, we now con­sider two operations on feature structures which are calculated at compile time. The first of our operations on feature structures involves adding the information that it is of a given type. For in­stance, we might have a list and want to add the information that it is non-empty. In this case, the system produces the following code:
add_to (ne_list , Tag-TVs) : -

add_to_ne_list (TVs ,Tag) .

add_to_ne_list (list , _-ne_list (T1-bot ,
T2-bot)) : ­add_to_atom(bot , T1) ,

add_to_list (bot ,T2) .

Note that to add the information that a struc­ture is a ne-1.ist at the top level, we make the first argument the type-value term. The rea­son for doing this is that the WAM performs first-argument indexing. This means that given the current structure, of type list, hashing is done to find the code to add the fact that it is a non-empty list to it. In fact, the clauses for add_to/2 are never used at run-time, as can be seen from the second of the above clauses, which call add_to_atom(TVs , Tag1) rather than add_to (atom , Tag1-TVs) . At this , stage, we should point out that it would be more efficient to use the following code: -
add_to_ne_list (list , _-ne_list (_-atom , _-list)) .
For completely fresh features such as the head and tail above, there is really no reason to create a structure Tag-bot and then immediately add a type to it. The next release of ALE (Carpenter and Penn forthcoming) will have such an opti­mization, as it is statically computable. On the other hand, consider the effect of adding the type word to the type sign given above:
add_to_word (sign(T1-Phon , SynSem , QSt) ,

_-word (T-Phon , SynSem , QSt)) : ­
add_to_singleton_phon_list (Phon , T) .

COMPILING TYPED ATTRIBUTE-VALUE LOGIC.GRAMMARS 43
Here we see that (pointers to) the feature values for sign are copied over into the new word struc­ture created and the additional constraint that the Phon value be a singleton list must also be resolved. Note that this extra bit of (pointer) copying is something that is usually also done in encodings using feature-value pairs. As we hinted at above, the procedure to per­form unification on two structures is also com­piled before run-time. In particular, consider the code to unify two ne_lists, in its full form:
unify_deref (FS1 , FS2) : -

deref (FS1 , Tag1 , TVs 1) ,
deref (FS2 , Tag2 , TVs2) , (Tag1 == Tag2 , !
; unify (TVs l , TVs2 , Tag1 , Tag2)
)

unify (ne_list (H1 , T1) , TVs2 , Tag1 , Tag2) : ­
unify_ne_list (TVs2 , H1 , T1 , Tag1 , Tag2) .

unify_ne_list (ne_list (H2 , T2) , H1 , T1 , T , T) : ­
unify_deref (H1 ; H2) ,
unify_deref (T1 , T2) .

The strange argument order and extra level of indirection comes about to exploit the first­argument indexing of the WAM . In effect, what happens when unifying two structures is that they are first dereferenced, then two hashings are per­formed, one on each of their types, and finally their shared feature values are unified. This il­lustrates one of the simplest cases of unification. Note that absolutely no type inference is required at run time because the compiler knows that when two structures of the same type are unified, then their features already meet the type con­straints, and hence so will the result of unifying them. Other cases might involve add_to_sort/2 goals being called and tags being instantiated, when unifying the two structures leads to a new structure with a type higher than each of the in­puts. For instance, suppose we have:
b sub [c] intro [f : x , h : u] . d sub [c] intro [g : y , h : v] . c sub [] intro [f : x2 , h : u+v , j : z] .
where u+v is the type unification of u and v. Then we would have:
unify (b (V1 , V2) , TVs2 , Tag1 , Tag2) : -

unify_b (TVs2 , V1 , V2 , Tag1 , Tag2) .

unify_b (d(V3 , V4) , V1 , V2 ,
_-c (Vi , V2 , V3 , T-bot) ,
_-c (V1 , V2 , V3 , T-bot)) : ­

unify_deref (V2 , V4) ,
deref (V1 , Tag1 , SVs1) ,
add_to_x2 (SVs 1 , Tag1) ,
add_to_z (bot , T) .

When unifying structures of type b and d, we must instantiate both of their reference pointers to a new structure of type c, with a new featu.re j , and in addition, perform the extra type inference on the value of f . It is worth noting that all and only the necessary type inference is determined at compile-time. For instance, the fact that the h value of c is required to satisfy the unification of the constraints on h in b and d is enough to let the compiler determine that no additional type inference will be required.
3 Compiling Descriptions

In this section, we consider compiling descriptions taken from ALE's attribute-value logic:
<desc> <type> <var> <feat> : <desc> <desc> and <desc> <desc> or <desc>
As was shown by Smolka (1988) , the lack of vari­ables can lead to a quadratic increase in the size of descriptions using only path equations; with variables, path equations are no longer necessary. A complete proof theory with respect to both an algebraic semantics and a feature-structure based interpretation can be found in (Carpenter 1992) . Descriptions are compiled into the operations of add_to_sort, unify, deref , and a combina­tion of conjunction and disjunction in Prolog. In addition, to handle constraints of the form <feat> : <desc>, which tell us to add the descrip­tion to the value of the feature, we need a proce­dure for extracting a feature's value from a struc­ture. This is done with clauses such as:
f�atval (hd , FS , Val) : -

deref (FS , Tag , TVs) ,
featval_hd (TVs , Tag , Val) .

44

featval_hd (ne_list (H , _) , Tag , H) .

Again, we present the first clause for convenience;
only the second is used at run-time, combined
with the necessary dereferencing. Note that if we
look for the hd value of a structure of type list,
we coerce l ist to ne_list:

featval_hd (list , _-ne_list (T-atom , _-list) ,
T-atom) .

Here we create a new structure of type ne.J.ist,
with a fresh head and tail, and return the fresh
head as the result. In general, this might require
additional type inference, as could be seen by con­
sidering what would happen if we took the value
of the feature j in an object of type d in the above
type system. In this case, the type d object would
be coerced to one of type c, which in turn requires
boosting the type of its h value and adding new
f and j values:

featval_j (d (V1 , T2-TVs2) ,
_-c (T3-bot , V1 , T2-TVs2 , T-bot) ,
T-bot) : -

add_to_u (TVs2 , T2) ,
add_to_x2 (bot , T3) ,
add_to_z (bot , T) .

Again notice that the compiler determines ex­
actly which type inferences to perform as part
of finding a feature's value. Again, in the next
release of ALE, the add_to_sort(bot , T) goals will
be replaced with instantiated feature structures
of type sort.

We are now in a position to see how descrip­
tions get compiled into Prolog clqauses. To add
a description of the sort found on the left to a
dereferenced structure Tag-TVs , the Prolog code
on the right is generated:

sort

V

f : 0

01 and 02

add_to_sort (TVs , Tag)

deref (V , Tag2 , TVs2) ,
unify (TVs1 , TVs2 , Tag1 ,Tag2)

featval_f (TVs ,Tag , Val) ,
deref (Val , Tag2 , TVs2) ,
[add O to Tag2-TVs2]

[add 01 to Tag-TVs] ,
deref (Tag-TVs ,Tag2 , TVs2) ,

01 or 02

CARPENTER

[add 02 to Tag2-TVs2]

([add 01 to Tag-TVs]
[add 02 to Tag-TVs]

)

Sorts are straightforward, and simply invoke the
appropriate add_to goal. Variables are such that
they get instantiated to the feature structures
which they describe. Thus adding a variable to
a structure involves dereferencing the variable,
which is instantiated to the current value it has,
and unifying it with the structure to which it
is being added. All variables are initialized to
Tag-bot at compile-time for compatibility with
the basic operations over feature structures. The
last three cases are recursive. Adding a descrip­
tion to a feature's value requires finding the fea­
ture's value, dereferencing it , and adding the em­
bedded description. Conjunction and disjunction
in descriptions are translated into the correspond�
ing Prolog control structures. In particular, this
means that we treat disjunction in descriptions
as introducing non-determinism in adding a de­
scription. In this way, Prolog backtracking, and
its attendant efficient implementation of search
and variables, will take care of the disjunction
without any need for explicit copying in the pro­
gram. Of course, it's still there - it's just that
Prolog's doing it . In a non-Prolog implementa­
tion of this method, a programmer would have to
be very clever to implement this kind of control
structure, using some kind of lazy copying along
the lines of Tomabechi (1992) or along the lines of
the WAM itself. Conjunction, on the other hand,
is treated as goal sequencing in Prolog.

4 Compiling Grammars
and Programs

This compilation of descriptions into Prolog code
rather than into feature structures is where ALE
departs most radically from other attribute-value­
based parsers of which we are familiar. The tra­
ditional method, say for chart parsing, involves
taking an inactive edge which has just been cre­
ated and trying to unify it with the feature struc­
tures corresponding to the heads of rules in the
grammar. Instead, our system will execute the
Prolog code compiled from the description of the

COMPILING TYPED ATTRIBUTE-VALUE LOGIC GRAMMARS 45
head of a grammar rule. There are two princi­pal benefits to our approach. These stem from the fact that we reduce the copying and search methods to those of the WAM itself by compiling the Prolog clauses generated. The first benefit is that early failures in matching a description to a goal do not result in any overcopying - in fact there is really no copying done at all - it's all handled in the heap mechanism of the WAM. The second benefit is that if we have deeply embedded disjunctions in our descriptions, we do not need to expand to a disjunctive normal form or invoke one of the many approaches to disjunctive uni­fication. In particular, if we have a description with an embedded disjunction and the first dis­junct fails, then we only backtrack to the second disjunct, not all the way back to the beginning of the structure. Again, this operation is very effi­cient in the WAM . It should be noted that noth­ing here depends on using a chart parser as the control strategy - similar benefits would accrue to any other parsing strategy. In fact, the same benefits could also be gained by using this kind of strategy in generation, say along the lines of van Noord et al. (1992) . The chart parsing strategy used in ALE is not particularly significant qua parser, as it was pri­marily motivated by Prolog considerations. What is significant is the way in which descriptions are compiled and made available to the parser, a strategy which can be maintained using many different parsers. For instance, we are also work­ing on a left-corner parser which will not require any copying or manipulation of the database. The most significant thing to note about ALE's parser is that it employs a dynamic chart, where inactive edges are asserted into the database, 1 and parses according to a bottom-up strategy, from right to left in the chart, and from left to right through individual rules. Active edges are truly active, being represented only by the current position in a Prolog clause compiled from a rule description. Rules are of the form:
DO ===> D1 , . . . , DN .

the rule/3 predicate. The goal rule (L , R , C) is called whenever an inactive edge C is added from position L to R in the chart , either by the lexicon or by rule/3 itself. The code produced for the above rule is:
rule (C1 , Left , Mid1) : -[add D 1 to C 1] , edge (Mid1 , Mid2 , C2) , [add D2 to C2] ,

edge (MidN-1 , Right , CN) , [add DN to CN] , [add DO to Tag-bot] , fully_deref (Tag-bot , CO) , assert (edge (Left , Right , CO)) , rule (Left , Right , CO) .
When rule (C1 , Left , Mid1) is called, the first thing that happens is the description D1 being added to the feature structure CL Assuming this fails, no other work is done, and . no copy­ing is performed. Instead, the code generated by the description D1 is simply executed, and failure causes Prolog backtracking either to earlier dis­junctions in the description D1 , or to other clauses for rule/3 generated by other rules. Assuming D1 is successfully added to C1 , rule/3 looks for an inactive edge directly to the right of C1 in the chart . The fact that parsing is done right to left ensures that the chart has been completed to the right of any inactive edge which is being consid­ered. If an inactive edge of category C2 to the right is found, rule/3 attempts to add the de­scription D2 to a copy of C2. The current bot­tleneck in this process is the inordinate amount of copying required, especially when many empty categories are present . A better solution would be to add the descriptions in a more lazy fashion without eagerly copying the whole structure, but Prolog does not provide that kind of fine control of its database. This process continues until the right hand side of the rule is completely matched. At this point , the mother category is constructed by adding the compiled description DO to a fresh where DO is the description of the mother category category, fully dereferencing (path compressing) , and the Di are descriptions of the daughter cate- asserting it into the database of inactive edges, gories. The grammar rules are then compiled into and recursively calling rule/3. As there are no

1 Current versions of the wAM in s1cstus and Quint us index asserted clauses, allowing the edges _beginning at a par­ticular position to be easily retrieved by hashi�g - � 1?�thod with explicit copying would most likely be faster than the one with assert, and we plan to explore this poss1b1hty.

46

base cases to rule, it will eventually fail _and back­
track through all of t'he disjunctive choice points
and alternative rules.

The input string is consumed from right to
left , at each step adding inactive edges until no
more edges can be added. This gives the parser
as a whole a mix of breadth-first and depth-first
search, to best exploit the inherent behavior of
the WAM. The top level control strategy is quite
straightforward:

parse (Words , C) : -
reverse (Words , WordsRev) ,
length (Words , N) ,
build_chart (Words , N) ,
edge (O , N , C) .

build_chart (_ , N) : ­
empty (C) ,
assert (edge (N , N , C)) ,
rule (N , N , C) .

build_chart ([] , _) .
build_chart ([W I Ws] , N) : ­

M is N- 1 ,
(lex (W , C) ,

assert (edge (M , N , C)) ,
rule (M , N , C)
build_chart (Ws , M)

) .
The words are reversed and counted, and the
chart is built from the right to left , taking lex­
ical entries for each word and firing rule/3. Be­
fore considering lexical entries, empty categories
are asserted into the chart and processed us­
ing rule/3. All lexical and empty category al­
ternatives will be considered during backtrack­
ing before proceeding leftward to the next word.
We should also mention that lexical entries and
empty categories are fully expanded as path­
compressed feature structures at compile time.

In addition to allowing categories fo a · rule,
ALE also allows definite clause goals to be invoked,
in a way similar to DCG rules such as:

f (Z) ---> h (Y) , g (X) , {foo (X , Y , Z) } , j (Z) .
. . . .

In this rule, as soon as the h (Y) and g (X) · cate-
gories are found, the goal f oo (X , Y , Z) is invoked
and solved before going on to consider j (Z) . The
change to rule/3 is minimal; the code for solv­
ing foo (X , Y , Z) is simply inserted in between the
code generated by the categories g (X) and j (Z) .

CARPENTER

Definite clause programs can be defined in
ALE, where instead of Prolog terms, feature struc-

. ture descriptions are used. For instance, we can
define standard predicates such as:

append (e_list , X , X) if true .

append (hd : X and tl : Xs ,
Ys ,
hd : X and tl : Zs) if

append (Xs , Ys , Zs) .

The logical variables are used as in Prolog, with
the result being an instance of constraint logic
programming over the typed feature structure
logic. This bears a close similarity to the LO­
GIN language of Alt-Kaci - Nasr (1986) , who
point out a number of benefits of using an order­
sorted notion of feature structure for logic pro­
gramming. A general CLP scheme suiting this
application was defined by Hohfeld - Smolka
(1988) and this particular application is det_ailed
in (Carpenter 1992) . The previous two clauses
will translate into the following pieces of code,
following O'Keefe's (1990) meta-interpreters (and
omitting all of the dereferencing) :

solve ([]) .
solve ([G I Gs]) : -

solve (G , Gs) .

solve (append (FS1 , FS2 , FS3) , Goals) : ­
add_to_e_list (TVs 1 , Tag1) ,
unify (FS2 , FS3) ,
solve (Goals) .

solve (append (FS1 , FS2 , FS3) , Goals) : ­
featval_hd (TVs 1 , Tag1 , FS1H) ,
featval_hd (TVs3 , Tag3 , FS3H) ,
unify (FS1H , FS3H) ,
featval_tl (TVs1 , Tag1 , FS1T) ,
featval_tl (TVs3 , Tag3 , FS3T) ,
solve (append (FS1T , FS2 , FS3T) , Goals) .

The coding used, with goals being threaded, is
to ensure that last call optimization takes place.

· While ALE does not perform indexing, it does sup­
port full cuts, disjunctions, negations · by failure
and last call optimization.

Such procedural attachments can be inter­
spersed into rules just as in DCGs. This mech­
anism has been used in ALE grammars for pur­
poses such as quantifier scoping using Cooper

COMPILING TYPED ATTRIBUTE-VALUE LOGIC GRAMMARS 47

Storage , for treating the maximal onset princi­pal in syllabification in attribute-value phonology (Mastroianni 1993), and for implementing princi­ples such as the non-local feature principle (for slashes) and the binding theory of . HPSG (Penn 1993b). Procedures can even be used to postpone some of the unifications in a rule until after all of the categories have been found, thus encoding a form of restriction similar to that used by Shieber (1985). Such procedures will allow general hooks to P rolog in the next release of ALE, and as the definite clause component of a grammar can be arbitrary, can also be used for interleaving on-line semantic processing with syntactic processing as in Pereira - Pollack (1990).
Before concluding, we should also point out that ALE has a number of other useful features. One of the most interesting of these is the use of lexical rules, which are loosely based on those of PATR-11 , in that they map one lexical entry to an­other at compile-time. In ALE, such rules may in­volve procedural attachments just as other rules , and contain a rudimentary morphological com­ponent based on string unification. ALE also fully supports parametric macros which are compiled out statically into the descriptions they abbrevi­ate.
The next release of ALE, scheduled for Summer 1993 , will also include more general constraints on types, following AYt-Kaci (1986) (see also Carpen­ter (1992)), inequations and extensionality (see Carpenter (1992) for theoretical details , and Penn - Carpenter (forthcoming) and Penn (1993a) for implementation details and motivation).

5 Conclusion

We have shown how grammars based on attribute-value logic descriptions can be effi­ciently compiled into low-level Prolog instructions which exploit the inherent efficiency of the WAM . Unfortunately, there are a few inefficiencies stem­ming from this encoding due to Prolog's logi­cal variables and its lack of control over copy­ing structures from the database. The ideal solu­tion will be to build a WAM-like abstract machine language directly for typed feature structures and their associated descriptions . The WAM has proved to be the most efficient architecture yet developed for implementing "unification-based" programs, even though, as we saw , it often re­lies on structure copying and creation rather than unification (the only cases of unification in ALE arise from shared variables in a structure - ev­erything else is structure copying). Current benchmarks, using the standard naive reverse, with just the definite clause component of ALE, place it at roughly 1000 logical inferences per second (LI/s) on a DEC 5100 running s1cstus 2.1 , which is roughly 1.5% of the speed of the s1cstus compiler itself. HPSG grammars where lexical entries run between 100 and 200 words, all of the local principles have been implemented according to Pollard and Sag (in press) , process 15 word sentences, creating 40-50 inactive edges , at times under 2 seconds. ALE Version /3, as described in this paper, is available from the author without charge for re­search purposes. It runs under SICStus and Quin­tus Prologs . It is distributed with roughly 100 pages of documentation and sample grarpmars. Version 1.0 is scheduled for release in August 1993 .

48

'Ai:�-Kaci, -H . (1986a). An algebraic semantics ap-
,

1 1 .proach td the effective resolution of type equa-, , tions.' Th�or�tfcal Computer Science , 45.
r 1 1 1 , , , r 1

"- ! 1 1 , u\i:t�Kaci, H¥san - Roger Nasr (1986) LOGIN: : 1 1 i 1 A : logic, ,progr.amming language with built-in •. : , I •inheritance .. . Journal of Logic Programming 3 .
1Ait�

1

K1aci; 'HMsan (1991) Warren's Abstract Ma-
... I r f , , , 1 1 • , , . , . chin'e'.· A Tutorial Reconstruction. MIT Press.
(. I I (. , I I ' " I ! I . : i 0airpente-r; 1 Bob (1992) The Logic of Typed Fea-
1 1 , • t-ure Structures. Cambridge University Press.
� J I ' I • I I ' I ' I ,Q�rp�nt_e�, . 1Bo� (1993) ALE User's Guide -, , , {3 1 ;£;iaboratory for Computational Linguistics , : ! 1 '.fechn�c�l Report, Carnegie Mellon University, Pittsburgh.
Carpenter·, Bob - Gerald Penn (forthcoming)

'iLE User's Guide Version 1.0. Laboratory for · ' Computational Linguistics Technical Report,
I ' · Carnegie Mellon University, Pittsburgh.
Carpenter, Bob - Carl Pollard (1991) Inclusion, disjointness and choice: the logic of linguistic

1 classification. Proceedings of the AGL.
. · H�hf�ld , 1'4. - Gert Smolka (1988) Definite re­/, . lations over constraint languages. LILOG Re­
, I I i i 1/��t' 53 , tsM,' St'uttgart .
1 1 1 1 , r: 1 1 ' I I I . , , J c J I " ' , . • t lK<a!sp�r, iBo4, ·__w 1BHl Rounds · (1990) The logic of
u,1 1 I uttifltla�idn iiil lgramhia'r. ' Linguistics and; Phi-
· (,dfosdph'.y i131 1 1 , i 1 1 i r , . . . · . • . ,

p l i l i < · r l l 1 c • 1 ' . l i 1 1 1 \ . , ; ; I , , Mastroianni , Michael (1993) Attribute-logic ur iFh6nolog.y'. 1 MS: Thesis, Computational Lin­. ug-uistH::s Program, Carnegie Mellon University, Pittsburgh.
I L , I ' I I I I ! l .

CARPENTER

Meseguer , J. - J. Goguen - G. Smolka (1987) Order-sorted unification. CSLI Report 87-86, Stanford.
O'Keefe, Richard (1990) The Craft of Prolog. MIT Press.
Penn, Gerald (1993a) A utility for typed feature structure-based grammatical theories. MS Thesis. Computational Linguistics Program, Carnegie Mellon University, Pittsburgh .
Penn, Gerald (1993b.) A comprehensive HPSG grammar in ALE. Laboratory for Computa­tonal Linguistics Technical Report. Carnegie Mellon University, Pittsburgh.
Pereira , Fernando - David H. D. Warren (1980) Definite clause grammars for language analy­sis. Artificial Intelligence 13.
Pereira, Fernando - Martha Pollock (1991) Incremental interpretation. Artificial Intelli­gence 50.

Pollard, Carl - Ivan Sag (in press) Head-Driven Phrase Structure Grammar. CSU/University of Chicago Press .
Shieber , Stuart (1985) Using restriction to ex­tend parsing algorithms for complex-feature­based formalisms. Proceedings of the ACL. -
Smolka, Gert , (1988), .A feature , logic .with sub:­sorts. LILOG. rReport 55. IBM, · Stuttgart. , ,
Tomabechi,· Hideto (1992) Quasi-Destructive Unification. PhD Thesis , Computational Lin­guistics Program, Carnegie Mellon University, Pittsburgh.

