Yueqi Zhang
2025
Make Every Penny Count: Difficulty-Adaptive Self-Consistency for Cost-Efficient Reasoning
Xinglin Wang
|
Shaoxiong Feng
|
Yiwei Li
|
Peiwen Yuan
|
Yueqi Zhang
|
Chuyi Tan
|
Boyuan Pan
|
Yao Hu
|
Kan Li
Findings of the Association for Computational Linguistics: NAACL 2025
Self-consistency (SC), a widely used decoding strategy for chain-of-thought reasoning, shows significant gains across various multi-step reasoning tasks but comes with a high cost due to multiple sampling with the preset size. Its variants, Adaptive self-consistency (ASC) and Early-stopping self-consistency (ESC), dynamically adjust the number of samples based on the posterior distribution of a set of pre-samples, reducing the cost of SC with minimal impact on performance. Both methods, however, do not exploit the prior information about question difficulty. It often results in unnecessary repeated sampling for easy questions that could be accurately answered with just one attempt, wasting resources. To tackle this problem, we propose Difficulty-Adaptive Self-Consistency (DSC), which leverages the difficulty information of batch queries from both prior and posterior perspectives to adaptively allocate inference resources, further reducing the overall cost of SC. To demonstrate the effectiveness of DSC, we conduct extensive experiments on three popular categories of reasoning tasks: arithmetic, commonsense and symbolic reasoning on six benchmarks. The empirical results show that DSC consistently surpasses the strong baseline ASC and ESC in terms of costs by a significant margin, while attaining comparable performances.
2024
Focused Large Language Models are Stable Many-Shot Learners
Peiwen Yuan
|
Shaoxiong Feng
|
Yiwei Li
|
Xinglin Wang
|
Yueqi Zhang
|
Chuyi Tan
|
Boyuan Pan
|
Heda Wang
|
Yao Hu
|
Kan Li
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
In-Context Learning (ICL) enables large language models (LLMs) to achieve rapid task adaptation by learning from demonstrations. With the increase in available context length of LLMs, recent experiments have shown that the performance of ICL does not necessarily scale well in many-shot (demonstration) settings. We hypothesize that the reason lies in more demonstrations dispersing the model attention from the query, hindering its understanding of key content, which we validate both theoretically and experimentally. Inspired by how humans learn from examples, we propose a training-free method FocusICL, which conducts triviality filtering to avoid attention being diverted by unimportant contents at token-level and operates hierarchical attention to further ensure sufficient attention towards current query at demonstration-level. We also design an efficient hyperparameter searching strategy for FocusICL based on model perplexity of demonstrations. Comprehensive experiments validate that FocusICL achieves an average performance improvement of 5.2% over vanilla ICL and scales well with many-shot demonstrations.