Yiran Wei


2025

pdf bib
Stephanie: Step-by-Step Dialogues for Mimicking Human Interactions in Social Conversations
Hao Yang | Hongyuan Lu | Xinhua Zeng | Yang Liu | Xiang Zhang | Haoran Yang | Yumeng Zhang | Shan Huang | Yiran Wei | Wai Lam
Findings of the Association for Computational Linguistics: NAACL 2025

In the rapidly evolving field of natural language processing, dialogue systems primarily employ a single-step dialogue paradigm. Although this paradigm is commonly adopted, it lacks the depth and fluidity of human interactions and does not appear natural. We introduce a novel **Step**-by-Step Dialogue Paradigm (Stephanie), designed to mimic the ongoing dynamic nature of human conversations. By employing a dual learning strategy and a further-split post-editing method, we generated and utilized a high-quality step-by-step dialogue dataset to fine-tune existing large language models, enabling them to perform step-by-step dialogues. We thoroughly present Stephanie. Tailored automatic and human evaluations are conducted to assess its effectiveness compared to the traditional single-step dialogue paradigm. We will release code, Stephanie datasets, and Stephanie LLMs to facilitate the future of chatbot eras.

2024

pdf bib
CLEANEVAL: Clean Evaluation on Contaminated Large Language Models
Wenhong Zhu | Hongkun Hao | Zhiwei He | Yun-Ze Song | Jiao Yueyang | Yumeng Zhang | Hanxu Hu | Yiran Wei | Rui Wang | Hongyuan Lu
Findings of the Association for Computational Linguistics: NAACL 2024

We are currently in an era of fierce competition among various large language models (LLMs), continuously pushing the boundaries of benchmark performance. However, genuinely assessing the capabilities of these LLMs has become a challenging and critical issue due to potential data contamination. In this paper, we propose a novel and valuable method, Clean-Eval, which mitigates the issue of data contamination and evaluates the LLMs more cleanly. Clean-Eval employs a neural-based model to paraphrase and back-translate the contaminated data into a candidate set, generating expressions with the same meaning but in different surface forms. A semantic detector is then used to filter those generated low-quality samples to narrow down this candidate set. Candidates with moderate BLEURT scores against the original samples are selected as the final evaluation set. According to human assessment, this set is almost semantically equivalent to the original contamination set but expressed differently. We conduct experiments on 20 existing benchmarks across diverse tasks, and results demonstrate that Clean-Eval substantially restores the actual evaluation results on contaminated LLMs under both few-shot learning and fine-tuning scenarios.