Large language models (LLMs) have presented significant opportunities to enhance various machine learning applications, including graph neural networks (GNNs). By leveraging the vast open-world knowledge within LLMs, we can more effectively interpret and utilize textual data to better characterize heterophilic graphs, where neighboring nodes often have different labels. However, existing approaches for heterophilic graphs overlook the rich textual data associated with nodes, which could unlock deeper insights into their heterophilic contexts. In this work, we explore the potential of LLMs for modeling heterophilic graphs and propose a novel two-stage framework: LLM-enhanced edge discriminator and LLM-guided edge reweighting. In the first stage, we fine-tune the LLM to better identify homophilic and heterophilic edges based on the textual content of their nodes. In the second stage, we adaptively manage message propagation in GNNs for different edge types based on node features, structures, and heterophilic or homophilic characteristics. To cope with the computational demands when deploying LLMs in practical scenarios, we further explore model distillation techniques to fine-tune smaller, more efficient models that maintain competitive performance. Extensive experiments validate the effectiveness of our framework, demonstrating the feasibility of using LLMs to enhance node classification on heterophilic graphs.
In this paper, we introduce an innovative pre-training framework TP-Link, which aims to improve context-dependent Text-to-SQL Parsing by leveraging Linking information. This enhancement is achieved through better representation of both natural language utterances and the database schema, ultimately facilitating more effective text-to-SQL conversations. We present two novel pre-training objectives: (i) utterance linking prediction (ULP) task that models intricate syntactic relationships among natural language utterances in context-dependent text-to-SQL scenarios, and (ii) schema linking prediction (SLP) task that focuses on capturing fine-grained schema linking relationships between the utterances and the database schema. Extensive experiments demonstrate that our proposed TP-Link achieves state-of-the-art performance on two leading downstream benchmarks (i.e., SParC and CoSQL).
Data-to-text (D2T) generation aims to transform structured data into natural language text. Data-to-text pre-training has proved to be powerful in enhancing D2T generation and yields impressive performance. However, previous pre-training methods either oversimplified structured data into a sequence without considering input structures or designed training objectives tailored for a specific data structure (e.g., table or knowledge graph). In this paper, we unify different types of structured data (i.e., table, key-value data, knowledge graph) into the graph format and cast different D2T generation tasks as graph-to-text generation. To effectively exploit the structural information of the input graph, we propose a structure-enhanced pre-training method for D2T generation by designing a structure-enhanced Transformer. Concretely, we devise a position matrix for the Transformer, encoding relative positional information of connected nodes in the input graph. In addition, we propose a new attention matrix to incorporate graph structures into the original Transformer by taking the available explicit connectivity structure into account. Extensive experiments on six benchmark datasets show the effectiveness of our model. Our source codes are available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/unid2t.