Pouya Pezeshkpour


2025

pdf bib
From Single to Multi: How LLMs Hallucinate in Multi-Document Summarization
Catarina G Belém | Pouya Pezeshkpour | Hayate Iso | Seiji Maekawa | Nikita Bhutani | Estevam Hruschka
Findings of the Association for Computational Linguistics: NAACL 2025

Although many studies have investigated and reduced hallucinations in large language models (LLMs) for single-document tasks, research on hallucination in multi-document summarization (MDS) tasks remains largely unexplored. Specifically, it is unclear how the challenges arising from handling multiple documents (e.g., repetition and diversity of information) affect models outputs. In this work, we investigate how hallucinations manifest in LLMs when summarizing topic-specific information from a set of documents. Since no benchmarks exist for investigating hallucinations in MDS, we leverage existing news and conversation datasets, annotated with topic-specific insights, to create two novel multi-document benchmarks. When evaluating 5 LLMs on our benchmarks, we observe that on average, up to 75% of the content in LLM-generated summary is hallucinated, with hallucinations more likely to occur towards the end of the summaries. Moreover, when summarizing non-existent topic-related information, GPT-3.5-turbo and GPT-4o still generate summaries about 79.45% and 44% of the time, raising concerns about their tendency to fabricate content. To better understand the characteristics of these hallucinations, we conduct a human evaluation of 700+ insights and discover that most errors stem from either failing to follow instructions or producing overly generic insights. Motivated by these observations, we investigate the efficacy of simple post-hoc baselines in mitigating hallucinations but find them only moderately effective. Our results underscore the need for more effective approaches that systematically mitigate hallucinations in MDS.

pdf bib
Multi-Conditional Ranking with Large Language Models
Pouya Pezeshkpour | Estevam Hruschka
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Utilizing large language models (LLMs) to rank a set of items has become a common approach in recommendation and retrieval systems. Typically, these systems focus on ordering a substantial number of documents in a monotonic order based on a given query. However, real-world scenarios often present a different challenge: ranking a comparatively smaller set of items, but according to a variety of diverse and occasionally conflicting conditions. In this paper, we define and explore the task of multi-conditional ranking by introducing MCRank, a benchmark tailored for assessing multi-conditional ranking across various item types and conditions. Our analysis of LLMs using MCRank indicates a significant decrease in performance as the number and complexity of items and conditions grow. To overcome this limitation, we propose a novel decomposed reasoning method, consisting of EXtracting and Sorting the conditions, and then Iteratively Ranking the items (EXSIR). Our extensive experiments show that this decomposed reasoning method enhances LLMs’ performance significantly, achieving up to a 14.4% improvement over existing LLMs. We also provide a detailed analysis of LLMs performance across various condition categories, and examine the effectiveness of decomposition step. Furthermore, we compare our method with existing approaches such as Chain-of-Thought and existing ranking models, demonstrating the superiority of our approach and complexity of MCR task. We will make our dataset and code publicly available.

pdf bib
LLMs Are Not Intelligent Thinkers: Introducing Mathematical Topic Tree Benchmark for Comprehensive Evaluation of LLMs
Arash Gholami Davoodi | Seyed Pouyan Mousavi Davoudi | Pouya Pezeshkpour
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large language models (LLMs) demonstrate impressive capabilities in mathematical reasoning. However, despite these achievements, current evaluations are mostly limited to specific mathematical topics, and it remains unclear whether LLMs are genuinely engaging in reasoning. To address these gaps, we present the Mathematical Topics Tree (MaTT) benchmark, a challenging and structured benchmark that offers 1,958 questions across a wide array of mathematical subjects, each paired with a detailed hierarchical chain of topics. Upon assessing different LLMs using the MaTT benchmark, we find that GPT-4 achieved a mere 54% accuracy in a multiple-choice scenario. Interestingly, even when employing Chain-of-Thought prompting, we observe mostly no notable improvement. Moreover, LLMs accuracy dramatically reduced by up to 24.2 percentage point when the questions were presented without providing choices. Further detailed analysis of the LLMs’ performance across a range of topics showed significant discrepancy even for closely related subtopics within the same general mathematical area. In an effort to pinpoint the reasons behind LLMs performances, we conducted a manual evaluation of the completeness and correctness of the explanations generated by GPT-4 when choices were available. Surprisingly, we find that in only 53.3% of the instances where the model provided a correct answer, the accompanying explanations were deemed complete and accurate, i.e., the model engaged in genuine reasoning.

pdf bib
Evaluating Bias in LLMs for Job-Resume Matching: Gender, Race, and Education
Hayate Iso | Pouya Pezeshkpour | Nikita Bhutani | Estevam Hruschka
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)

Large Language Models (LLMs) offer the potential to automate hiring by matching job descriptions with candidate resumes, streamlining recruitment processes, and reducing operational costs. However, biases inherent in these models may lead to unfair hiring practices, reinforcing societal prejudices and undermining workplace diversity. This study examines the performance and fairness of LLMs in job-resume matching tasks within the English language and U.S. context. It evaluates how factors such as gender, race, and educational background influence model decisions, providing critical insights into the fairness and reliability of LLMs in HR applications.Our findings indicate that while recent models have reduced biases related to explicit attributes like gender and race, implicit biases concerning educational background remain significant. These results highlight the need for ongoing evaluation and the development of advanced bias mitigation strategies to ensure equitable hiring practices when using LLMs in industry settings.

2024

pdf bib
Less is More for Long Document Summary Evaluation by LLMs
Yunshu Wu | Hayate Iso | Pouya Pezeshkpour | Nikita Bhutani | Estevam Hruschka
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)

Large Language Models (LLMs) have shown promising performance in summary evaluation tasks, yet they face challenges such as high computational costs and the Lost-in-the-Middle problem where important information in the middle of long documents is often overlooked. To address these issues, this paper introduces a novel approach, Extract-then-Evaluate, which involves extracting key sentences from a long source document and then evaluating the summary by prompting LLMs. The results reveal that the proposed method not only significantly reduces evaluation costs but also exhibits a higher correlation with human evaluations. Furthermore, we provide practical recommendations for optimal document length and sentence extraction methods, contributing to the development of cost-effective yet more accurate methods for LLM-based text generation evaluation.

pdf bib
Large Language Models Sensitivity to The Order of Options in Multiple-Choice Questions
Pouya Pezeshkpour | Estevam Hruschka
Findings of the Association for Computational Linguistics: NAACL 2024

Large Language Models (LLMs) have demonstrated remarkable capabilities in various NLP tasks. However, previous works have shown these models are sensitive towards prompt wording, and few-shot demonstrations and their order, posing challenges to fair assessment of these models. As these models become more powerful, it becomes imperative to understand and address these limitations. In this paper, we focus on LLMs robustness on the task of multiple-choice questions—commonly adopted task to study reasoning and fact-retrieving capability of LLMs. Investigating the sensitivity of LLMs towards the order of options in multiple-choice questions, we demonstrate a considerable performance gap of approximately 13% to 85% in LLMs on different benchmarks, when answer options are reordered, even when using demonstrations in a few-shot setting. Through a detailed analysis, we conjecture that this sensitivity arises when LLMs are uncertain about the prediction between the top-2/3 choices, and specific options placements may favor certain prediction between those top choices depending on the question caused by positional bias. We also identify patterns in top-2 choices that amplify or mitigate the model’s bias toward option placement. We found that for amplifying bias, the optimal strategy involves positioning the top two choices as the first and last options. Conversely, to mitigate bias, we recommend placing these choices among the adjacent options. To validate our conjecture, we conduct various experiments and adopt two approaches to calibrate LLMs’ predictions, leading to up to 8 percentage points improvement across different models and benchmarks.

2022

pdf bib
Combining Feature and Instance Attribution to Detect Artifacts
Pouya Pezeshkpour | Sarthak Jain | Sameer Singh | Byron Wallace
Findings of the Association for Computational Linguistics: ACL 2022

Training the deep neural networks that dominate NLP requires large datasets. These are often collected automatically or via crowdsourcing, and may exhibit systematic biases or annotation artifacts. By the latter we mean spurious correlations between inputs and outputs that do not represent a generally held causal relationship between features and classes; models that exploit such correlations may appear to perform a given task well, but fail on out of sample data. In this paper, we evaluate use of different attribution methods for aiding identification of training data artifacts. We propose new hybrid approaches that combine saliency maps (which highlight important input features) with instance attribution methods (which retrieve training samples influential to a given prediction). We show that this proposed training-feature attribution can be used to efficiently uncover artifacts in training data when a challenging validation set is available. We also carry out a small user study to evaluate whether these methods are useful to NLP researchers in practice, with promising results. We make code for all methods and experiments in this paper available.

2021

pdf bib
An Empirical Comparison of Instance Attribution Methods for NLP
Pouya Pezeshkpour | Sarthak Jain | Byron Wallace | Sameer Singh
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Widespread adoption of deep models has motivated a pressing need for approaches to interpret network outputs and to facilitate model debugging. Instance attribution methods constitute one means of accomplishing these goals by retrieving training instances that (may have) led to a particular prediction. Influence functions (IF; Koh and Liang 2017) provide machinery for doing this by quantifying the effect that perturbing individual train instances would have on a specific test prediction. However, even approximating the IF is computationally expensive, to the degree that may be prohibitive in many cases. Might simpler approaches (e.g., retrieving train examples most similar to a given test point) perform comparably? In this work, we evaluate the degree to which different potential instance attribution agree with respect to the importance of training samples. We find that simple retrieval methods yield training instances that differ from those identified via gradient-based methods (such as IFs), but that nonetheless exhibit desirable characteristics similar to more complex attribution methods. Code for all methods and experiments in this paper is available at: https://github.com/successar/instance_attributions_NLP.

pdf bib
ParsiNLU: A Suite of Language Understanding Challenges for Persian
Daniel Khashabi | Arman Cohan | Siamak Shakeri | Pedram Hosseini | Pouya Pezeshkpour | Malihe Alikhani | Moin Aminnaseri | Marzieh Bitaab | Faeze Brahman | Sarik Ghazarian | Mozhdeh Gheini | Arman Kabiri | Rabeeh Karimi Mahabagdi | Omid Memarrast | Ahmadreza Mosallanezhad | Erfan Noury | Shahab Raji | Mohammad Sadegh Rasooli | Sepideh Sadeghi | Erfan Sadeqi Azer | Niloofar Safi Samghabadi | Mahsa Shafaei | Saber Sheybani | Ali Tazarv | Yadollah Yaghoobzadeh
Transactions of the Association for Computational Linguistics, Volume 9

Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of the widely spoken languages in the world, and yet there are few NLU datasets available for this language. The availability of high-quality evaluation datasets is a necessity for reliable assessment of the progress on different NLU tasks and domains. We introduce ParsiNLU, the first benchmark in Persian language that includes a range of language understanding tasks—reading comprehension, textual entailment, and so on. These datasets are collected in a multitude of ways, often involving manual annotations by native speakers. This results in over 14.5k new instances across 6 distinct NLU tasks. Additionally, we present the first results on state-of-the-art monolingual and multilingual pre-trained language models on this benchmark and compare them with human performance, which provides valuable insights into our ability to tackle natural language understanding challenges in Persian. We hope ParsiNLU fosters further research and advances in Persian language understanding.1

2019

pdf bib
Investigating Robustness and Interpretability of Link Prediction via Adversarial Modifications
Pouya Pezeshkpour | Yifan Tian | Sameer Singh
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Representing entities and relations in an embedding space is a well-studied approach for machine learning on relational data. Existing approaches, however, primarily focus on improving accuracy and overlook other aspects such as robustness and interpretability. In this paper, we propose adversarial modifications for link prediction models: identifying the fact to add into or remove from the knowledge graph that changes the prediction for a target fact after the model is retrained. Using these single modifications of the graph, we identify the most influential fact for a predicted link and evaluate the sensitivity of the model to the addition of fake facts. We introduce an efficient approach to estimate the effect of such modifications by approximating the change in the embeddings when the knowledge graph changes. To avoid the combinatorial search over all possible facts, we train a network to decode embeddings to their corresponding graph components, allowing the use of gradient-based optimization to identify the adversarial modification. We use these techniques to evaluate the robustness of link prediction models (by measuring sensitivity to additional facts), study interpretability through the facts most responsible for predictions (by identifying the most influential neighbors), and detect incorrect facts in the knowledge base.

2018

pdf bib
Embedding Multimodal Relational Data for Knowledge Base Completion
Pouya Pezeshkpour | Liyan Chen | Sameer Singh
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Representing entities and relations in an embedding space is a well-studied approach for machine learning on relational data. Existing approaches, however, primarily focus on simple link structure between a finite set of entities, ignoring the variety of data types that are often used in knowledge bases, such as text, images, and numerical values. In this paper, we propose multimodal knowledge base embeddings (MKBE) that use different neural encoders for this variety of observed data, and combine them with existing relational models to learn embeddings of the entities and multimodal data. Further, using these learned embedings and different neural decoders, we introduce a novel multimodal imputation model to generate missing multimodal values, like text and images, from information in the knowledge base. We enrich existing relational datasets to create two novel benchmarks that contain additional information such as textual descriptions and images of the original entities. We demonstrate that our models utilize this additional information effectively to provide more accurate link prediction, achieving state-of-the-art results with a considerable gap of 5-7% over existing methods. Further, we evaluate the quality of our generated multimodal values via a user study.