Peter Schneider-Kamp


2025

pdf bib
Encoder vs Decoder: Comparative Analysis of Encoder and Decoder Language Models on Multilingual NLU Tasks
Dan Saattrup Nielsen | Kenneth Enevoldsen | Peter Schneider-Kamp
Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies (NoDaLiDa/Baltic-HLT 2025)

This paper explores the performance of encoder and decoder language models on multilingual Natural Language Understanding (NLU) tasks, with a broad focus on Germanic languages. Building upon the ScandEval benchmark, initially restricted to evaluating encoder models, we extend the evaluation framework to include decoder models. We introduce a method for evaluating decoder models on NLU tasks and apply it to the languages Danish, Swedish, Norwegian, Icelandic, Faroese, German, Dutch, and English. Through a series of experiments and analyses, we also address research questions regarding the comparative performance of encoder and decoder models, the impact of NLU task types, and the variation across language resources. Our findings reveal that encoder models can achieve significantly better NLU performance than decoder models despite having orders of magnitude fewer parameters. Additionally, we investigate the correlation between decoders and task performance via a UMAP analysis, shedding light on the unique capabilities of decoder and encoder models. This study contributes to a deeper understanding of language model paradigms in NLU tasks and provides valuable insights for model selection and evaluation in multilingual settings.

2022

pdf bib
Multi-sense Language Modelling
Andrea Lekkas | Peter Schneider-Kamp | Isabelle Augenstein
Proceedings of the Workshop on Dimensions of Meaning: Distributional and Curated Semantics (DistCurate 2022)

The effectiveness of a language model is influenced by its token representations, which must encode contextual information and handle the same word form having a plurality of meanings (polysemy). Currently, none of the common language modelling architectures explicitly model polysemy. We propose a language model which not only predicts the next word, but also its sense in context. We argue that this higher prediction granularity may be useful for end tasks such as assistive writing, and allow for more a precise linking of language models with knowledge bases. We find that multi-sense language modelling requires architectures that go beyond standard language models, and here propose a localized prediction framework that decomposes the task into a word followed by a sense prediction task. To aid sense prediction, we utilise a Graph Attention Network, which encodes definitions and example uses of word senses. Overall, we find that multi-sense language modelling is a highly challenging task, and suggest that future work focus on the creation of more annotated training datasets.