Mohammad Saleh


2025

pdf bib
LiPO: Listwise Preference Optimization through Learning-to-Rank
Tianqi Liu | Zhen Qin | Junru Wu | Jiaming Shen | Misha Khalman | Rishabh Joshi | Yao Zhao | Mohammad Saleh | Simon Baumgartner | Jialu Liu | Peter J Liu | Xuanhui Wang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Aligning language models (LMs) with curated human feedback is critical to control their behaviors in real-world applications. Several recent policy optimization methods, such as DPO and SLiC, serve as promising alternatives to the traditional Reinforcement Learning from Human Feedback (RLHF) approach.In practice, human feedback often comes in a format of a ranked list over multiple responses to amortize the cost of reading prompt. Multiple responses can also be ranked by reward models or AI feedback. There lacks such a thorough study on directly fitting upon a list of responses. In this work, we formulate the LM alignment as a listwise ranking problem and describe the LiPO framework, where the policy can potentially learn more effectively from a ranked list of plausible responses given the prompt. This view draws an explicit connection to Learning-to-Rank (LTR), where most existing preference optimization work can be mapped to existing ranking objectives. Following this connection, we provide an examination of ranking objectives that are not well studied for LM alignment, with DPO and SLiC as special cases when list size is two. In particular, we highlight a specific method, LiPO-𝜆, which leverages a state-of-the-art listwise ranking objective and weights each preference pair in a more advanced manner. We show that LiPO-𝜆 can outperform DPO variants and SLiC by a clear margin on several preference alignment tasks with both curated and real rankwise preference data.

2023

pdf bib
Improving the Robustness of Summarization Models by Detecting and Removing Input Noise
Kundan Krishna | Yao Zhao | Jie Ren | Balaji Lakshminarayanan | Jiaming Luo | Mohammad Saleh | Peter Liu
Findings of the Association for Computational Linguistics: EMNLP 2023

The evaluation of abstractive summarization models typically uses test data that is identically distributed as training data. In real-world practice, documents to be summarized may contain input noise caused by text extraction artifacts or data pipeline bugs. The robustness of model performance under distribution shift caused by such noise is relatively under studied. We present a large empirical study quantifying the sometimes severe loss in performance – up to 12 ROUGE-1 points – from different types of input noise for a range of datasets and model sizes. We then propose a light-weight method for detecting and removing such noise in the input during model inference without requiring any extra training, auxiliary models, or even prior knowledge of the type of noise. Our proposed approach effectively mitigates the loss in performance, recovering a large fraction of the performance drop, sometimes as large as 11 ROUGE-1 points.

2021

pdf bib
ForumSum: A Multi-Speaker Conversation Summarization Dataset
Misha Khalman | Yao Zhao | Mohammad Saleh
Findings of the Association for Computational Linguistics: EMNLP 2021

Abstractive summarization quality had large improvements since recent language pretraining techniques. However, currently there is a lack of datasets for the growing needs of conversation summarization applications. Thus we collected ForumSum, a diverse and high-quality conversation summarization dataset with human written summaries. The conversations in ForumSum dataset are collected from a wide variety of internet forums. To make the dataset easily expandable, we also release the process of dataset creation. Our experiments show that models trained on ForumSum have better zero-shot and few-shot transferability to other datasets than the existing large chat summarization dataset SAMSum. We also show that using a conversational corpus for pre-training improves the quality of the chat summarization model.