2025
pdf
bib
abs
RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement
Jinhao Jiang
|
Jiayi Chen
|
Junyi Li
|
Ruiyang Ren
|
Shijie Wang
|
Xin Zhao
|
Yang Song
|
Tao Zhang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks. Despite the successes of chain-of-thought and tree-based search methods, they mainly depend on the internal knowledge of LLMs to search over intermediate reasoning steps, limited to dealing with simple tasks involving fewer reasoning steps. In this paper, we propose RAG-Star, a novel RAG approach that integrates the retrieved information to guide the tree-based deliberative reasoning process that relies on the inherent knowledge of LLMs. By leveraging Monte Carlo Tree Search, RAG-Star iteratively plans intermediate sub-queries and answers for reasoning based on the LLM itself. To consolidate internal and external knowledge, we propose a retrieval-augmented verification that utilizes query- and answer-aware reward modeling to provide feedback for the inherent reasoning of LLMs. Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods. Our codes and data are publicly available at https://github.com/RUCAIBox/RAG-Star.
2023
pdf
bib
abs
DocumentNet: Bridging the Data Gap in Document Pre-training
Lijun Yu
|
Jin Miao
|
Xiaoyu Sun
|
Jiayi Chen
|
Alexander Hauptmann
|
Hanjun Dai
|
Wei Wei
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track
Document understanding tasks, in particular, Visually-rich Document Entity Retrieval (VDER), have gained significant attention in recent years thanks to their broad applications in enterprise AI. However, publicly available data have been scarce for these tasks due to strict privacy constraints and high annotation costs. To make things worse, the non-overlapping entity spaces from different datasets hinder the knowledge transfer between document types. In this paper, we propose a method to collect massive-scale and weakly labeled data from the web to benefit the training of VDER models. The collected dataset, named DocumentNet, does not depend on specific document types or entity sets, making it universally applicable to all VDER tasks. The current DocumentNet consists of 30M documents spanning nearly 400 document types organized in a four-level ontology. Experiments on a set of broadly adopted VDER tasks show significant improvements when DocumentNet is incorporated into the pre-training for both classic and few-shot learning settings. With the recent emergence of large language models (LLMs), DocumentNet provides a large data source to extend their multimodal capabilities for VDER.
pdf
bib
abs
On Task-personalized Multimodal Few-shot Learning for Visually-rich Document Entity Retrieval
Jiayi Chen
|
Hanjun Dai
|
Bo Dai
|
Aidong Zhang
|
Wei Wei
Findings of the Association for Computational Linguistics: EMNLP 2023
Visually-rich document entity retrieval (VDER), which extracts key information (e.g. date, address) from document images like invoices and receipts, has become an important topic in industrial NLP applications. The emergence of new document types at a constant pace, each with its unique entity types, presents a unique challenge: many documents contain unseen entity types that occur only a couple of times. Addressing this challenge requires models to have the ability of learning entities in a few-shot manner. However, prior works for Few-shot VDER mainly address the problem at the document level with a predefined global entity space, which doesn’t account for the entity-level few-shot scenario: target entity types are locally personalized by each task and entity occurrences vary significantly among documents. To address this unexplored scenario, this paper studies a novel entity-level few-shot VDER task. The challenges lie in the uniqueness of the label space for each task and the increased complexity of out-of-distribution (OOD) contents. To tackle this novel task, we present a task-aware meta-learning based framework, with a central focus on achieving effective task personalization that distinguishes between in-task and out-of-task distribution. Specifically, we adopt a hierarchical decoder (HC) and employ contrastive learning (ContrastProtoNet) to achieve this goal. Furthermore, we introduce a new dataset, FewVEX, to boost future research in the field of entity-level few-shot VDER. Experimental results demonstrate our approaches significantly improve the robustness of popular meta-learning baselines.
2022
pdf
bib
abs
Teaching Neural Module Networks to Do Arithmetic
Jiayi Chen
|
Xiao-Yu Guo
|
Yuan-Fang Li
|
Gholamreza Haffari
Proceedings of the 29th International Conference on Computational Linguistics
Answering complex questions that require multi-step multi-type reasoning over raw text is challenging, especially when conducting numerical reasoning. Neural Module Networks (NMNs), follow the programmer-interpreter framework and design trainable modules to learn different reasoning skills. However, NMNs only have limited reasoning abilities, and lack numerical reasoning capability. We upgrade NMNs by: (a) bridging the gap between its interpreter and the complex questions; (b) introducing addition and subtraction modules that perform numerical reasoning over numbers. On a subset of DROP, experimental results show that our proposed methods enhance NMNs’ numerical reasoning skills by 17.7% improvement of F1 score and significantly outperform previous state-of-the-art models.