Gus Xia


2025

pdf bib
Music for All: Representational Bias and Cross-Cultural Adaptability of Music Generation Models
Atharva Mehta | Shivam Chauhan | Amirbek Djanibekov | Atharva Kulkarni | Gus Xia | Monojit Choudhury
Findings of the Association for Computational Linguistics: NAACL 2025

The advent of Music-Language Models has greatly enhanced the automatic music generation capability of AI systems, but they are also limited in their coverage of the musical genres and cultures of the world. We present a study of the datasets and research papers for music generation and quantify the bias and under-representation of genres. We find that only 5.7% of the total hours of existing music datasets come from non-Western genres, which naturally leads to disparate performance of the models across genres.We then investigate the efficacy of Parameter-Efficient Fine-Tuning (PEFT) techniques in mitigating this bias. Our experiments with two popular models – MusicGen and Mustango, for two underrepresented non-Western music traditions – Hindustani Classical and Turkish Makam music, highlight the promises as well as the non-triviality of cross-genre adaptation of music through small datasets, implying the need for more equitable baseline music-language models that are designed for cross-cultural transfer learning.

2024

pdf bib
ChatMusician: Understanding and Generating Music Intrinsically with LLM
Ruibin Yuan | Hanfeng Lin | Yi Wang | Zeyue Tian | Shangda Wu | Tianhao Shen | Ge Zhang | Yuhang Wu | Cong Liu | Ziya Zhou | Liumeng Xue | Ziyang Ma | Qin Liu | Tianyu Zheng | Yizhi Li | Yinghao Ma | Yiming Liang | Xiaowei Chi | Ruibo Liu | Zili Wang | Chenghua Lin | Qifeng Liu | Tao Jiang | Wenhao Huang | Wenhu Chen | Jie Fu | Emmanouil Benetos | Gus Xia | Roger Dannenberg | Wei Xue | Shiyin Kang | Yike Guo
Findings of the Association for Computational Linguistics: ACL 2024

While LLMs demonstrate impressive capabilities in musical knowledge, we find that music reasoning is still an unsolved task.We introduce ChatMusician, an open-source large language model (LLM) that integrates intrinsic musical abilities. It is based on continual pre-training and finetuning LLaMA2 on a text-compatible music representation, ABC notation, and the music is treated as a second language.ChatMusician can understand and generate music with a pure text tokenizer without external multi-modal neural structures or tokenizers. Interestingly, endowing musical abilities does not harm language abilities, even achieving a slightly higher MMLU score.ChatMusician is capable of composing well-structured, full-length music, condition on texts, chords, melodies, motifs, musical forms, etc.On our meticulously curated college-level music understanding benchmark, MusicTheoryBench, ChatMusician surpasses LLaMA2 and GPT-3.5 by a noticeable margin. We show that ChatMusician preserves or even surpasses the original LLaMA2 7B’s language abilities by evaluating on MMLU benchmark.Our work reveals that LLMs can be an excellent compressor for music, which can be seen as humanity’s creative language, but there remains significant territory to be conquered.We release our 5B token music-language corpora MusicPiles, the collected MusicTheoryBench, code, model and demo.

2020

pdf bib
Discovering Music Relations with Sequential Attention
Junyan Jiang | Gus Xia | Taylor Berg-Kirkpatrick
Proceedings of the 1st Workshop on NLP for Music and Audio (NLP4MusA)

pdf bib
BUTTER: A Representation Learning Framework for Bi-directional Music-Sentence Retrieval and Generation
Yixiao Zhang | Ziyu Wang | Dingsu Wang | Gus Xia
Proceedings of the 1st Workshop on NLP for Music and Audio (NLP4MusA)