Guanchen Li


2025

pdf bib
Enhancing One-Shot Pruned Pre-trained Language Models through Sparse-Dense-Sparse Mechanism
Guanchen Li | Xiandong Zhao | Lian Liu | Zeping Li | Yixing Xu | Dong Li | Lu Tian | Jie He | Ashish Sirasao | Emad Barsoum
Proceedings of the 31st International Conference on Computational Linguistics

Pre-trained language models (PLMs) are engineered to be robust in contextual understanding and exhibit outstanding performance in various natural language processing tasks. However, their considerable size incurs significant computational and storage costs. Modern pruning strategies employ retraining-free one-shot techniques to compress PLMs; however, these approaches often lead to an indispensable reduction in performance. In this paper, we propose SDS, a Sparse-Dense-Sparse pruning framework to enhance the performance of the pruned PLMs from a weight distribution optimization perspective. We outline the pruning process in three steps. Initially, we prune less critical connections in the model using conventional one-shot pruning methods. Next, we reconstruct a dense model featuring a pruning-friendly weight distribution by reactivating pruned connections with sparse regularization. Finally, we perform a second pruning round, yielding a superior pruned model compared to the initial pruning. Experiments demonstrate that SDS outperforms the state-of-the-art pruning techniques SparseGPT and Wanda under an identical sparsity configuration. For instance, SDS reduces perplexity by 5.16 on Raw-Wikitext2 and improves average accuracy by 3.86% across multiple zero-shot benchmarks for LLaMA-3-8B compared to Wanda with 2:4 sparsity.

pdf bib
Amphista: Bi-directional Multi-head Decoding for Accelerating LLM Inference
Zeping Li | Xinlong Yang | Ziheng Gao | Ji Liu | Guanchen Li | Zhuang Liu | Dong Li | Jinzhang Peng | Lu Tian | Emad Barsoum
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs) inherently use autoregressive decoding, which lacks parallelism in inference and results in significantly slow inference speed. While methods such as Medusa constructs parallelized heads, they lack adequate information interaction across different prediction positions. To overcome this limitation, we introduce Amphista, an enhanced speculative decoding framework that builds upon Medusa. Specifically, Amphista models an *Auto-embedding Block* capable of parallel inference, incorporating bi-directional attention to enable interaction between different drafting heads. Additionally, Amphista integrates *Staged Adaptation Layers*, which ensure a seamless transition of semantic information from the target model’s autoregressive inference to the drafting heads’ non-autoregressive inference, effectively achieving paradigm shift and feature fusion. Experimental results on Vicuna models using MT-Bench and Spec-Bench demonstrate that Amphista achieves substantial acceleration while maintaining generation quality. On MT-Bench, Amphista delivers up to **2.75×** speedup over vanilla autoregressive decoding and **1.40×** over Medusa on Vicuna 33B in wall-clock time.