Feiyun Ouyang
2025
MCQG-SRefine: Multiple Choice Question Generation and Evaluation with Iterative Self-Critique, Correction, and Comparison Feedback
Zonghai Yao
|
Aditya Parashar
|
Huixue Zhou
|
Won Seok Jang
|
Feiyun Ouyang
|
Zhichao Yang
|
Hong Yu
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Automatic question generation (QG) is essential for AI and NLP, particularly in intelligent tutoring, dialogue systems, and fact verification. Generating multiple-choice questions (MCQG) for professional exams, like the United States Medical Licensing Examination (USMLE), is particularly challenging, requiring domain expertise and complex multi-hop reasoning for high-quality questions. However, current large language models (LLMs) like GPT-4 struggle with professional MCQG due to outdated knowledge, hallucination issues, and prompt sensitivity, resulting in unsatisfactory quality and difficulty. To address these challenges, we propose MCQG-SRefine, an LLM self-refine-based (Critique and Correction) framework for converting medical cases into high-quality USMLE-style questions. By integrating expert-driven prompt engineering with iterative self-critique and self-correction feedback, MCQG-SRefine significantly enhances human expert satisfaction regarding both the quality and difficulty of the questions. Furthermore, we introduce an LLM-as-Judge-based automatic metric to replace the complex and costly expert evaluation process, ensuring reliable and expert-aligned assessments.
2024
SYNFAC-EDIT: Synthetic Imitation Edit Feedback for Factual Alignment in Clinical Summarization
Prakamya Mishra
|
Zonghai Yao
|
Parth Vashisht
|
Feiyun Ouyang
|
Beining Wang
|
Vidhi Dhaval Mody
|
Hong Yu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) such as GPT & Llama have demonstrated significant achievements in summarization tasks but struggle with factual inaccuracies, a critical issue in clinical NLP applications where errors could lead to serious consequences. To counter the high costs and limited availability of expert-annotated data for factual alignment, this study introduces an innovative pipeline that utilizes >100B parameter GPT variants like GPT-3.5 & GPT-4 to act as synthetic experts to generate high-quality synthetics feedback aimed at enhancing factual consistency in clinical note summarization. Our research primarily focuses on edit feedback generated by these synthetic feedback experts without additional human annotations, mirroring and optimizing the practical scenario in which medical professionals refine AI system outputs. Although such 100B+ parameter GPT variants have proven to demonstrate expertise in various clinical NLP tasks, such as the Medical Licensing Examination, there is scant research on their capacity to act as synthetic feedback experts and deliver expert-level edit feedback for improving the generation quality of weaker (<10B parameter) LLMs like GPT-2 (1.5B) & Llama 2 (7B) in clinical domain. So in this work, we leverage 100B+ GPT variants to act as synthetic feedback experts offering expert-level edit feedback, that is used to reduce hallucinations and align weaker (<10B parameter) LLMs with medical facts using two distinct alignment algorithms (DPO & SALT), endeavoring to narrow the divide between AI-generated content and factual accuracy. This highlights the substantial potential of LLM-based synthetic edits in enhancing the alignment of clinical factuality.
Search
Fix data
Co-authors
- Zonghai Yao 2
- Hong Yu 2
- Won Seok Jang 1
- Prakamya Mishra 1
- Vidhi Dhaval Mody 1
- show all...