2025
pdf
bib
abs
Attention Tracker: Detecting Prompt Injection Attacks in LLMs
Kuo-Han Hung
|
Ching-Yun Ko
|
Ambrish Rawat
|
I-Hsin Chung
|
Winston H. Hsu
|
Pin-Yu Chen
Findings of the Association for Computational Linguistics: NAACL 2025
Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection attacks, where malicious inputs manipulate the model into ignoring original instructions and executing designated action. In this paper, we investigate the underlying mechanisms of these attacks by analyzing the attention patterns within LLMs. We introduce the concept of the distraction effect, where specific attention heads, termed important heads, shift focus from the original instruction to the injected instruction. Building on this discovery, we propose Attention Tracker, a training-free detection method that tracks attention patterns on instruction to detect prompt injection attacks without the need for additional LLM inference. Our method generalizes effectively across diverse models, datasets, and attack types, showing an AUROC improvement of up to 10.0% over existing methods, and performs well even on small LLMs. We demonstrate the robustness of our approach through extensive evaluations and provide insights into safeguarding LLM-integrated systems from prompt injection vulnerabilities.
pdf
bib
abs
Granite Guardian: Comprehensive LLM Safeguarding
Inkit Padhi
|
Manish Nagireddy
|
Giandomenico Cornacchia
|
Subhajit Chaudhury
|
Tejaswini Pedapati
|
Pierre Dognin
|
Keerthiram Murugesan
|
Erik Miehling
|
Martín Santillán Cooper
|
Kieran Fraser
|
Giulio Zizzo
|
Muhammad Zaid Hameed
|
Mark Purcell
|
Michael Desmond
|
Qian Pan
|
Inge Vejsbjerg
|
Elizabeth M. Daly
|
Michael Hind
|
Werner Geyer
|
Ambrish Rawat
|
Kush R. Varshney
|
Prasanna Sattigeri
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)
The deployment of language models in real-world applications exposes users to various risks, including hallucinations and harmful or unethical content. These challenges highlight the urgent need for robust safeguards to ensure safe and responsible AI. To address this, we introduce Granite Guardian, a suite of advanced models designed to detect and mitigate risks associated with prompts and responses, enabling seamless integration with any large language model (LLM). Unlike existing open-source solutions, our Granite Guardian models provide comprehensive coverage across a wide range of risk dimensions, including social bias, profanity, violence, sexual content, unethical behavior, jailbreaking, and hallucination-related issues such as context relevance, groundedness, and answer accuracy in retrieval-augmented generation (RAG) scenarios. Trained on a unique dataset combining diverse human annotations and synthetic data, Granite Guardian excels in identifying risks often overlooked by traditional detection systems, particularly jailbreak attempts and RAG-specific challenges. https://github.com/ibm-granite/granite-guardian
2023
pdf
bib
abs
Matching Pairs: Attributing Fine-Tuned Models to their Pre-Trained Large Language Models
Myles Foley
|
Ambrish Rawat
|
Taesung Lee
|
Yufang Hou
|
Gabriele Picco
|
Giulio Zizzo
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The wide applicability and adaptability of generative large language models (LLMs) has enabled their rapid adoption. While the pre-trained models can perform many tasks, such models are often fine-tuned to improve their performance on various downstream applications. However, this leads to issues over violation of model licenses, model theft, and copyright infringement. Moreover, recent advances show that generative technology is capable of producing harmful content which exacerbates the problems of accountability within model supply chains. Thus, we need a method to investigate how a model was trained or a piece of text was generated and what their pre-trained base model was. In this paper we take the first step to address this open problem by tracing back the origin of a given fine-tuned LLM to its corresponding pre-trained base model. We consider different knowledge levels and attribution strategies, and find that we can correctly trace back 8 out of the 10 fine tuned models with our best method.