
Generalized chart constraints for efficient PCFG and TAG parsing:
Supplementary Materials

Stefan Grünewald and Sophie Henning and Alexander Koller
Department of Language Science and Technology

Saarland University, Saarbrücken, Germany
{stefang|shenning|koller}@coli.uni-saarland.de

A Training details

Both neural networks were implemented using Ten-
sorflow 1.1.0.

A.1 Chart constraints

The network has two hidden layers consisting
of Tensorflow LSTM cells with 100 units each.
Weights are initialized by sampling from a uniform
probability distribution with values between −0.1
and 0.1. No dropout is applied between layers.

As input, the network uses 100-dimensional pre-
trained word embeddings and a one-hot encoding
for POS tags. Word embeddings for unknown
words (UNK) and numbers (NUMBER) were ini-
tialized using a random normal distribution with a
standard deviation of 0.5. Input sentences are pro-
cessed one-by-one, i.e. no batching is performed.

We used the RMSProp optimizer for training,
with a starting learning rate of 5 · 10−4. The learn-
ing rate was decreased by 10% after each train-
ing epoch. The training process was stopped after
6 epochs, when accuracy on the development set
stopped increasing. On an AMD Opteron 6380
processor with a clock rate of 2.5 GHz, the training
process took about 4 hours in total. Tagging the
entire test set takes about 10 seconds.

A.2 Supertagging

The network has two hidden layers consisting of
Tensorflow LSTM cells. The first layer consists of
200 units, the second layer of 100 units. Weights
are initialized by sampling from a uniform proba-
bility distribution with values between −0.1 and
0.1. A dropout of 50% is applied between layers
during training.

As input, the network uses 200-dimensional pre-
trained word embeddings. Word embeddings for
unknown words (UNK) and numbers (NUMBER)
were initialized using a random normal distribution

with a standard deviation of 0.5. The network does
not use POS tags as input. Input sentences are pro-
cessed one-by-one, i.e. no batching is performed.

We used the Adam optimizer for training, with a
starting learning rate of 5 · 10−4. The learning rate
was decreased by 10% after each training epoch.
The training process was stopped after 6 epochs,
when accuracy on the development set stopped in-
creasing. On an AMD Opteron 6380 processor
with a clock rate of 2.5 GHz, the training process
took about 11 hours in total. Tagging the entire test
set takes about 10 seconds.

{stefang|shenning|koller}@coli.uni-saarland.de

