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S.1 Modeling the Binary Latent Matrix

In Bayesian statistics, the natural modeling choice
for binary latent matrices is an Indian buffet pro-
cess (IBP) (Griffiths and Ghahramani, 2011). In a
preliminary study, we also modeled P (Z | A) us-
ing an IBP. However, we abandoned this approach
for several reasons.

The IBP is a stochastic process that can in-
formally be seen as an extension of the Chinese
restaurant process (CRP). While a CRP represents
each object by a single latent class, an IBP as-
signs a sequence of binary parameters to each ob-
ject. The applications of the IBP include binary
matrix factorization (Meeds et al., 2007), indepen-
dent component analysis (Knowles and Ghahra-
mani, 2007), choice behavior (Görür et al., 2006),
and optimality theory (Doyle et al., 2014).

In our case, each language is represented as a
sequence of binary latent parameters, and Θ̃ =
ZW encodes inter-feature dependencies. A large
number of weights are not easy to optimize
because a naı̈ve Metropolis-Hastings algorithm
suffers from extremely slow convergence (Neal,
2000). This problem can be addressed by the use
of Hamiltonian Monte Carlo because it can effi-
ciently sample a large number of continuous vari-
ables at once. See Section S.4 for details.

The IBP is appealing for its ability to adjust
the number of parameters to data. Parameter k is
called an active parameter if it has one or more
languages with zl,k = 1. The crux of the IBP is
that although there are an unbound number of pa-
rameters, the number of active parameters K+ is
finite. K+ changes during posterior inference. It
is decremented when one parameter becomes in-
active. Similarly, it is incremented when zl,k is
turned from 0 to 1 for inactive parameter k.

The first reason for the disuse of the IBP is the
difficulty of extending the model to incorporate

inter-language dependencies. It appears that we
have no choice but to replace the IBP with the
product of the autologistic models.

Second, the nonparametric model’s adaptability
did not work in our case. In theory, Gibbs sam-
pling converges to a stationary distribution after a
sufficiently large number of iterations. However,
we observed that the number of active parameters
heavily depended on its initial value K0 because it
was very rare for additional parameters to survive
as active parameters. For this reason, the number
of parameters for the present model is given a pri-
ori and is fixed throughout posterior inference.

A possible solution is the split-merge sampling
scheme (Jain and Neal, 2007). This algorithm pro-
poses to split one parameter into two and con-
versely to merge two into one. These large-scale
moves are accompanied by several Gibbs sam-
pling scans to make the proposals more reason-
able. Due to a large number of weights, Gibbs
sampling scans for our model is computationally
expensive, however.

Lastly, the IBP makes the binary matrix Z too
sparse. To see this, let us consider the stick-
breaking representation of the IBP (Teh et al.,
2007). We first obtain a sequence of µ(k)’s by re-
peatedly applying the following procedure:

ν(k) ∼ Beta(α, 1) µ(k) =

k∏
l=1

ν(l). (S.1)

Note that µ(k)’s are arranged in a strictly decreas-
ing ordering: µ(1) > µ(2) > · · · > µ(K). We
permute µ(k)’s to obtain µk’s and then draw zl,k
from Bernoulli(µk). Eq. (S.1) indicates that µ(k)

decays fairly fast, resulting in a small fraction of
Z having value 1.

A workaround we found is to apply simulated
annealing to the sampling of zl,k. The annealing
let the posterior deviate from the prior, and thanks



to slow mixing of Gibbs sampling, Z remained
relatively dense throughout posterior inference.
A more straightforward solution is to introduce
power-law behavior to the IBP (Teh and Görür,
2009), which is analogous to the two-parameter
extension to the CRP (Teh, 2006).

S.2 Comparison with P&P Parameters

We would like to make five remarks on dif-
ferences between the principles and parameters
(P&P) framework and the proposed model. Al-
though our binary latent representations are partly
inspired by P&P, their differences cannot be ig-
nored. We do not intend to present the proposed
method as a computational procedure to induce
P&P parameters.

First, while the primary focus of generative lin-
guists is put on morphosyntactic characteristics of
languages, the dataset we used in the experiments
is not limited to them.

Second, Baker (2002) presented a hierarchi-
cal organization of parameters (see Figure 6.4
of Baker (2002)). However, we assume inde-
pendence between parameters, except for inter-
language dependencies. Introducing some hierar-
chical structure to parameters is an interesting di-
rection to explore, but we leave it for future work.

Third, while P&P hypothesizes deterministic
generation, the proposed model stochastically
generates a language’s features from its parame-
ters. This choice appears to be inevitable because
obtaining exceptionless relations from real data is
virtually impossible.

Fourth, a P&P parameter typically controls a
very small set of features. By contrast, if our pa-
rameter is turned on, it more or less modifies all
the feature generation probabilities. However, we
can expect a small number of parameters to dom-
inate the probabilities because weights are drawn
from a heavy-tailed distribution. Alternatively, we
could explicitly impose sparsity by generating an-
other binary matrix ZW and replacing W with
ZW � W , where � denotes element-wise multi-
plication.

Lastly, our parameters are asymmetric in the
sense that parameters do not operate at all if they
are off, but this is not necessarily the case with
P&P. Although asymmetry comes about as a nat-
ural result of matrix decomposition involving bi-
nary variables, it sacrifices transparency between
the two types of parameters. If the two values of a

P&P parameter have a marked-unmarked relation,
the proposed model would need only one parame-
ter for the marked value. Otherwise, two (or more)
parameters would be required to represent a P&P
parameter.

S.3 Approximate Sampling from
Doubly-intractable Distributions

During inference, we want to sample vk (and hk
and uk) from its posterior distribution, P (vk |
−) ∝ P (vk)P (z∗,k | vk, hk, uk). Unfortunately,
we cannot apply the standard Metropolis-Hastings
(MH) sampler to this problem because P (z∗,k |
vk, hk, uk) contains an intractable normalization
term. Such a distribution is called a doubly-
intractable distribution because MCMC itself ap-
proximates the intractable distribution (Møller
et al., 2006; Murray et al., 2006). This problem
remains an active topic in the statistics literature
to date. However, if we give up theoretical rig-
orousness, it is not difficult to draw samples from
the posterior, which are only approximately cor-
rect but work well in practice.

Specifically, we use the double MH sam-
pler (Liang, 2010). The key idea is to use an auxil-
iary variable to cancel out the normalization term.
This sampler is based on the exchange algorithm
of Murray et al. (2006), which samples vk in the
following steps.

1. Propose v′k ∼ q(v′k|vk, z∗,k).

2. Generate an auxiliary variable y∗,k ∼
P (y∗,k | v′k, hk, uk) using an exact sampler.

3. Accept v′k with probability
min{1, r(vk, v′k, y∗,k | z∗,k)}, where

r(vk, v
′
k, y∗,k | z∗,k) =

P (v′k)q(vk | v′k, z∗,k)

P (vk)q(v′k | vk, z∗,k)
×

P (z∗,k | v′k, hk, uk)P (y∗,k | vk, hk, uk)

P (z∗,k | vk, hk, uk)P (y∗,k | v′k, hk, uk)
. (S.2)

A problem lies in the second step. The exact sam-
pling of y∗,k is as difficult as the original prob-
lem. The double MH sampler approximates it
with a Gibbs sampling scan of zl,k’s starting from
the current z∗,k. At each step of the Gibbs sam-
pling scan, zl,k is updated according to P (zl,k |
z−l,k, v

′
k, hk, uk).

We construct the proposal distributions q(v′k |
vk, z∗,k) and q(h′k | hk, z∗,k) using a log-normal



distribution, and q(u′k | uk, z∗,k) using a Gaussian
distribution.

S.4 Hamiltonian Monte Carlo (HMC)

HMC (Neal, 2011) is a Markov chain Monte Carlo
method for drawing samples from a probability
density distribution. Unlike Metropolis-Hastings,
it exploits gradient information to propose a new
state, which can be distant from the current state.
If no numerical error is involved, the new state
proposed by HMC is accepted with probability 1.

HMC has a connection to Hamiltonian dynam-
ics and the physical analogy is useful for gaining
an intuition. In HMC, the variable to be sampled,
q ∈ RM , is seen as a generalized coordinate of a
system and is associated with a potential energy
function U(q) = − logP (q), the negative loga-
rithm of the (unnormalized) density function. The
coordinate q is tied with an auxiliary momentum
variable p ∈ RM and a kinetic function K(p).
The momentum makes the object move. Since
H(q, p) = U(q) + K(p), the sum of the kinetic
and potential energy, is constant with respect to
time, the time evolution of the system is uniquely
defined given an initial state (q0, p0). The trajec-
tory is computed to get a state (q, p) at some time,
and that q is the next sample we want.

Algorithm S.1 shows the pseudo-code, which is
adopted from Neal (2011). The momentum vari-
able is drawn from the Gaussian distribution (Line
2). The time evolution of the system is numeri-
cally simulated using the leapfrog method (Lines
4–11), where ε and S are parameters of the algo-
rithm to be tuned. This is followed by a Metropolis
step to correct for numerical errors (Lines 13–18).

Going back to the sampling of wk,∗, we need
U(wk,∗) = − logP (wk,∗ | −) and its gradi-
ent ∇U(wk,∗) to run HMC. The unnormalized
density function P (wk,∗ | −) is the product of
(1) the probability of generating wk,m’s from the
t-distribution and (2) the probability of generating
xl,i’s for each language with zl,k = 1. Note that
U(wk,∗) is differentiable.

S.5 Details of Surface-DIA

A variant of the autologistic model, called
Surface-DIA in the experiments, is based on the
one proposed by Yamauchi and Murawaki (2016)
and is also closely related to P (Z | A) of SYN-
DIA. However, there are several differences.

Algorithm S.1 HMC(U,∇U, q0).
1: q ← q0

2: p0 ∼ N (µ = 0, Σ = I)
3: p← p0

4: p← p− ε∇U(q)/2
5: for s← 1, S do
6: q ← q + εp
7: if s < S then
8: p← p− ε∇U(q)
9: end if

10: end for
11: p← p− ε∇U(q)/2
12: p← −p
13: r ∼ Uniform[0, 1]
14: if min[1, exp(−U(q) + U(q0) − K(p) +

K(p0))] > r then
15: return q . accept
16: else
17: return q0 . reject
18: end if

S.5.1 Autologistic Model for Categorical Data
While the autologistic models within SYNDIA

work on binary data, surface features are categor-
ical. Recall that x∗,i = (x1,i, · · · , xL,i) is a se-
quence of feature values, where xl,i is the value of
the l-th language for feature type i. xl,i takes one
of Fi categorical values, and Fi differs according
to feature types.

The counting functions for the vertical and hor-
izontal factors, V (x∗,i) and H(x∗,i), are the same
as those of the binary model. They return the num-
ber of pairs sharing the same value in the corre-
sponding neighbor graph. However, we need to
modify the counting function for the universal fac-
tor. In Surface-DIA, Uj(x∗,i) returns the number
of languages that take the value of j. Accord-
ingly, the autologistic model has the following pa-
rameters for each surface feature i: vertical sta-
bility vi, horizontal diffusibility hi, and universal-
ity ui = (ui,1, · · · , ui,Fi). The probability of x∗,i,
conditioned on vi, hi and ui, can be expressed as:

P (x∗,i|vi, hi,ui) ∝

exp

(
viV (x∗,i) + hiH(x∗,i) +

∑
j

ui,jUj(x∗,i)

)
.

(S.3)

SYNDIA uses prior distributions to constrain vk
and hk to always be positive. Since Surface-DIA

is based on Yamauchi and Murawaki (2016) and
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Figure S.1: Softplus function. The dashed line is
f(ṽi) = ṽi.

does not use priors, we implement the constraints
differently. Specifically, we reparameterize vi and
hi with the softplus function:

vi = softplus(ṽi) = log(1 + exp(ṽi)). (S.4)

Figure S.1, which plots the softplus function, indi-
cates a positive range.

S.5.2 Maximum Likelihood Estimation

While we perform posterior inference for SYN-
DIA, Surface-DIA employs maximum likelihood
estimation as it was done by Yamauchi and Mu-
rawaki (2016).

Let x∗,i be decomposed into an observed por-
tion xobs

∗,i and the remaining missing portion be
xmis
∗,i . Marginalizing out xmis

∗,i , we obtain the log-
likelihood to be maximized:

Lmis(vi, hi, ui; xobs
∗,i ) =

log
∑
xmis′
∗,i

P (xobs
∗,i ∪ xmis′

∗,i | vi, hi,ui).

To maximize the objective, we perform
gradient-based training. A simple gradient ascent
algorithm would iteratively update vi as follows:

vi ← vi + ηt
∂Lmis(vi, hi,ui; xobs

∗,i )

∂vi
,

where ηt is a learning rate that decays in relation
to time t. hi and ui are updated in similar ways.

The derivative of the log-likelihood function

with respect to vi is:

∂Lmis(vi, hi, ui; xobs
∗,i )

∂vi

= E
xmis′
∗,i ∼P (xmis′

∗,i |xobs
∗,i ,vi,hi,ui)

[
V (xobs

∗,i ∪ xmis′
∗,i )

]
− Ex′∗,i∼P (x′∗,i|vi,hi,ui)

[
V (x′∗,i)

]
.

Following Yamauchi and Murawaki (2016), we
approximate the expectations using Gibbs sam-
pling.

With softplus reparameterization, we need to
compute the derivative of the log-likelihood func-
tion with respect to ṽi. Applying the chain rule of
differentiation, we obtain

∂Lmis(vi, hi,ui; xobs
∗,i )

∂ṽi

=
∂Lmis(vi, hi,ui; xobs

∗,i )

∂vi

∂vi
∂ṽi

=
∂Lmis(vi, hi,ui; xobs

∗,i )

∂vi

1

1 + exp(−ṽi)
.

Once we have estimated ṽi (and h̃i), we can use
Eq. (S.4) to compute vi (and hi) as the final output.
ui,j is initialized with the log-probability of as-

suming the value j in xobs
∗,i . We also add L2 reg-

ularization to impose a penalty on ui that is very
different from its initial value u

(0)
i :

Lmis−L2(vi, hi, ui; xobs
∗,i )

= Lmis(vi, hi, ui; xobs
∗,i )− λ

2
‖ui − u

(0)
i ‖

2
2,

where λ > 0 controls the strength of the penalty.
The derivative of the log-likelihood function with
respect to ui,j is:

∂Lmis−L2(vi, hi, ui; xobs
∗,i )

∂ui,j

=
∂Lmis(vi, hi, ui; xobs

∗,i )

∂ui,j
− λ(ui,j − u(0)

i,j ).

S.5.3 Experimental Settings
For each surface feature i, we ran 200 iterations
for estimating vi, hi and ui. After that, we fixed
the parameters and sampled xmis

∗,i as follows. Af-
ter 100 burn-in iterations, we ran 2,495 iterations
and collected samples with the interval of 5 itera-
tions. For each language, we chose the most fre-
quent feature value among the collected samples
as the final output.



We initialized ṽi and h̃i with −5, which corre-
sponded to vi = hi ' 0.0067. For L2 regulariza-
tion, we set λ = 50. Instead of the simple stochas-
tic gradient ascent algorithm, Adam (Kingma and
Ba, 2015) was used with the following hyperpa-
rameters: β1 = 0.9, β2 = 0.999, and ε = 10−8.

Note that while Yamauchi and Murawaki
(2016) partitioned each xobs

∗,i into 10 equal sized
subsets, we performed the 10-fold cross-validation
at the level of Xobs = xobs

∗,1 ∪ · · ·∪xobs
∗,N in order to

allow comparison with other models. The slight
unevenness did not seem to have made a notable
impact on the overall performance.

S.6 Details of SYN

The baseline model SYN is a simplified version
of SYNDIA. It is created by removing vk and hk
from SYNDIA. With this modification, P (zl,k |
z−l,k, vk, hk, ak) is reduced to

P (zl,k = 1 | uk) =
exp(uk)

exp(uk) + 1
,

where uk ∼ N (0, σ2) as before. Note that if uk =
0, then P (zl,k = 1 | uk) = P (zl,k = 0 | uk) =
0.5.

The experimental settings for SYN were basi-
cally the same as those of SYNDIA. The differ-
ence was that since SYN lacked vk and hk, we had
to estimate them for each induced parameter k af-
ter the posterior inference.

S.6.1 Comparison with the IBP

SYN is comparable to the IBP-based P (Z|A),
which we discussed in Section S.1. In both mod-
els, zl,k’s are conditionally independent given µk
for the IBP and uk for SYN.

In the preliminary experiments, SYN slightly
outperformed the IBP in terms of missing value
imputation. We conjecture that even with simu-
lated annealing, the IBP’s preference to sparse Z
remained somewhat harmful.

S.6.2 Autologistic Model in the Pipeline

To estimate vk and hk for the parameters of SYN,
we first collect samples of zl,k. We then construct
P (z∗,k; Φ), the empirical probability according to
the collected samples. It reflects the model’s un-
certainty about zl,k.

The autologistic model we use is the one intro-
duced in Section S.5.1. All we have to do is to
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Figure S.2: Weight matrix W of SYNDIA (K =
50). Each row represents a parameter. Parameters
are sorted by uk in decreasing order.

substitute x∗,i, vi, hi and ui with z∗,k, vk, hk and
uk, respectively.

However, we have to devise a new objec-
tive function because the data can no longer
be decomposed into observed and missing por-
tions. Instead, zl,k’s are distributed according to
P (z∗,k; Φ). Now, the objective function for pa-
rameter k is

LP(vk, hk,uk; Φ) =

EP (z∗,k;Φ)[logP (z∗,k|vk, hk,uk)].

As before, we perform gradient-based training to
maximize the objective and use Gibbs sampling
to approximate expectations. Parameter settings
were the same as those described in Section S.5.3.
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