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A Standard Fairness Definitions and
Guarded Classifiers

In this work, we focus on creating a representation
which is oblivious to some factor. We measure this
by the term leakage which is defined in Section 2
and say that a classifier is guarded in respect to an
attribute z if z is guarded and hasn’t leaked. In
this section, we show that this definition matches
more common definitions of fairness, under our
setup. Specifically, we show that under the setup
we discuss, if z is guarded than the classifier sat-
isfies Demographic Parity, Equality of Odds and
Equality of Opportunity.1

For completeness, we repeat these definitions
provided and redefined by Hardt et al. (2016),
Beutel et al. (2017) and Zhang et al. (2018):

Demographic Parity. A predictor f satisfies de-
mographic parity if f and z are independent:

P (f = ŷ|z = 0) = P (f = ŷ|z = 1)

Equality of Odds. A predictor f satisfies equal-
ity of odds if f and z are conditionally independent
of the main task label Y :

P (f = ŷ|z = 0, Y = y) =

P (f = ŷ|z = 1, Y = y), y ∈ {0, 1}

Equality of Opportunity. A predictor f satis-
fies equality of opportunity if f and z are condi-
tionally independent on a particular value Y :

P (f = ŷ|z = 0, Y = y) =

P (f = ŷ|z = 1, Y = y), y ∈ {0|1}

Recall that in all our data split setups, there is an
equal appearance of both y and z. We now claim
the following:

1We note however that, as we discussed, achieving 0-
leakage is far from trivial.

Lemma A.1. If a classifier is guarded to z in our
setup, it realizes demographic parity

Proof. The classifier is oblivious to z, meaning
that: P (Z|H) = 0.5, where H is the internal rep-
resentation. As in our setup, P (Z) = 0.5

⇒ P (Z) = P (Z|H)

therefore Z and H are independent.
From graphical models we know that Y and X

(the textual input), are independent given H (sym-
metrically for Z and X), therefore we can over-
look X when conditioning on H . Also, we can
say that given H , Ŷ and Z are independent:

P (Ŷ , Z|H) = P (Ŷ |H)P (Z|H)

using bayes rule on both sides:

P (H|Ŷ , Z)P (Ŷ , Z)

P (H)
=

P (H|Ŷ )P (Ŷ )

P (H)
P (Z|H)

⇒ P (H|Ŷ , Z)P (Ŷ , Z) = P (H|Ŷ )P (Ŷ )P (Z|H)

and from the independency of Z and H , we get
that:

P (Ŷ , Z) = P (Ŷ )P (Z|H)

As Z and H are independent:

P (Ŷ , Z) = P (Ŷ )P (Z)

meaning that Ŷ and Z are independent

Lemma A.2. If a classifier is oblivious to z in our
setup, it realizes equality of odds.

Proof. If a classifier is oblivious to z, this means
that:

P (f = ŷ|z = 0) = P (f = ŷ|z = 1)



(from Lemma A.1), therefore, from the law of total
probability:

P (f = ŷ|z = 0, y = 0) · P (y = 0)+

P (f = ŷ|z = 0, y = 1) · P (y = 1) =

P (f = ŷ|z = 1, y = 0) · P (y = 0)+

P (f = ŷ|z = 1, y = 1) · P (y = 1)

Since P (y = 0) = P (y = 1) = 0.5 in all
setups, we can get rid of P (y), and we get:

P (f = ŷ|z = 0, y = 0)+

P (f = ŷ|z = 0, y = 1) =

P (f = ŷ|z = 1, y = 0)+

P (f = ŷ|z = 1, y = 1)

and due to Lemma A.1 we get

P (f = ŷ|z = 0, y = 1) = P (f = ŷ|z = 1, y = 1)

(and similarly for y = 0).

Lemma A.3. If a classifier is oblivious to z in our
setup, it realizes equality of opportunity.

Proof. As equality of opportunity is a relaxation
of equality of odds and is less strict then it, from
Lemma A.2, it holds automatically.

In conclusion, we showed that an oblivious
classifier on our setup would satisfy the three fair-
ness definitions which were introduced above.

B Implementation Details

Preprocessing We tokenize each tweet using
twokenize, a twitter specific tokenizer (O’Connor
et al., 2010; Owoputi et al., 2013), and discard du-
plicate tweets and tweets with less than three to-
kens.

Neural Network architecture and hyperparam-
eters Unless otherwise noted, both the LSTM
encoder and the MLP hidden layer have 300 hid-
den units with a single layer. We use randomly-
initialized 300-dimensional embeddings, and train
using SGD with Momentum (Qian, 1999) and a
learning rate of 0.01 for 100 epochs. We use
dropout (Hinton et al., 2012) of 0.2 on all hidden
layers, and negative log likelihood as the loss func-
tion with 32 sized mini-batch.

C Emojis Details

Figure 1 contains the different emojis we used for
defining positive and negative tweets. In addition
to those emojis, we also looked for the following
emoticons: :) :-) : ) :D =) as positive and :( :-( : (
:-( =( as negative

Positive Emojis

Negative Emojis

Figure 1: Emojis used as positive and negative
proxies for sentiment
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