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Abstract

This paper describes our neural machine trans-
lation (NMT) system. We implemented
an attention-based recurrent neural network
(RNN) encoder–decoder as a baseline. Addi-
tionally, we implemented a generative adver-
sarial network (GAN) and reconstructor mod-
els in our NMT. We experimented with our
NMT system on the shared tasks at the 5th
Workshop on Asian Translation (WAT 2018).
We participated in the scientific paper sub-
tasks of the Japanese–English and English–
Japanese translation tasks. The experimental
results demonstrate that the ensemble of base-
line systems achieved 25.85 and 36.14 points
in Japanese–English and English–Japanese
translations, respectively, in terms of BLEU
scores. Furthermore, we found that GAN
NMT can translate fluently.

1 Introduction

In recent years, neural machine translation (NMT)
has been researched all over the world. Once the
encoder–decoder NMT (Sutskever et al., 2014; Cho
et al., 2014), which combines two recurrent neural
networks (RNNs), was proposed, NMT gained huge
popularity in the machine translation community.

However, the conventional encoder–decoder
NMT works poorly on long sequences. Attention-
based NMT (Bahdanau et al., 2015; Luong et al.,
2015) can provide better prediction of output words
by using the weights of each hidden state of the en-
coder as the context vector. It contributed to im-
provement of translation quality, especially in long
sentences.

Transformer (Vaswani et al., 2017) is an exten-
sion of attention-based NMT; however, it is differ-
ent from previous NMTs. They proposed a self-
attention network and positional encoding. Thereby,
NMT achieved high-quality translation without us-
ing RNN and convolutional neural network (CNN).

Nevertheless, NMT has several problems such
as over-translation, wherein some words are trans-
lated repeatedly or unnecessary words are generated
and under-translation, wherein some words remain
mistakenly untranslated. Furthermore, an objective
function of NMT is optimized by word unit; there-
fore, it cannot be guaranteed that the output of NMT
is optimized as a sentence. This may become the
cause of over- and under-translation.

In this paper, we describe the NMT system that
was tested on the shared tasks at the 5th Workshop
on Asian Translation (WAT 2018) (Nakazawa et al.,
2018). We implemented an attention-based RNN
encoder–decoder as a baseline. Furthermore, we im-
plemented a generative adversarial network (GAN)
and reconstructor models in our NMT.

GAN NMT comprises a generator and a discrimi-
nator. The discriminator should distinguish between
true or generated sentences, whereas the generator
aims to generate a sentence close to its correct trans-
lation, which the discriminator cannot distinguish.
The goal of this adversarial training is to have the
generator predict a target sentence close to its correct
translation from given source sentence. Addition-
ally, the objective function of this approach consid-
ers a term that is optimized by sentence unit. GAN
is reported to improve translation quality (Yang et
al., 2018).
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Reconstructor NMT comprises an encoder–
decoder and reconstructor. The reconstructor back-
translates from hidden states of the decoder into the
source sentence. On training, the NMT considers
both: forward and back-translations. This approach
can reduce over- and under-translation in forward
translation because back-translation fails if there is
a lack of information. The effect of this approach
in English–Japanese translation is reported in (Mat-
sumura et al., 2017).

We experimented with our NMT system for
Japanese–English and English–Japanese scientific
paper translation subtasks. The experimental re-
sults demonstrate that the ensemble of baseline sys-
tems achieved 25.85 and 36.14 points in Japanese–
English and English–Japanese translations, respec-
tively, in terms of BLEU (Papineni et al., 2002)
scores. Furthermore, we found that GAN NMT can
translate fluently in English-Japanese pairwise eval-
uation.

2 Attention-based NMT

In this section, we describe our baseline NMT sys-
tem1. This system is based on the attention-based
NMT (Luong et al., 2015). We adopted a bi-
directional long short-term memory (LSTM) as the
encoder and a unidirectional LSTM as the decoder.

2.1 Encoder
The source sentence is input as a sequence of one-
hot word vectors: (X = [x1, · · · ,x|X|]), where |X|
is the length of the source sentence.

At each time step i, the source word embedding
vector: esi is computed by the following equation.

esi = tanh(Wxxi) (1)

where Wx ∈ Rq×vs is a weight matrix, q is the di-
mension of the word embeddings, and vs is the size
of the source vocabulary.

The hidden state h̄i of the encoder is computed by
the following equation:

h̄i =
−→
hi

(L) +
←−
hi

(L) (2)

where L is the number of layers. Here, the forward
state

−→
hi

(l) and the backward state
←−
hi

(l) are computed
1https://github.com/yukio326/nmt-chainer

by −→
hi

(l) = LSTM(
−→
hi

(l−1),
−−→
hi−1

(l)) (3)

and ←−
hi

(l) = LSTM(
←−
hi

(l−1),
←−−
hi+1

(l)) (4)

where l is the layer number. Note that
−→
hi

(0) and←−
hi

(0) are regarded as esi .

2.2 Decoder
Similar to the source sentence, the target sentence is
input as a sequence of one-hot word vectors: (Y =
[y1, · · · ,y|Y |]), where |Y | is the length of the target
sentence.

At each time step j, the hidden state h
(l)
j of each

layer of the decoder is represented by the following
equation.

h
(l)
j = LSTM(h

(l−1)
j ,h

(l)
j−1) (5)

Note that h(0)
j is regarded as the concatenation of

the target word embedding vector etj−1 and the at-
tentional hidden state h̃j−1 at the previous time step:
[etj−1 : h̃j−1]. In this system, the first hidden state
h1

(l) of each layer is initialized by the hidden state
of the encoder as follows:

h1
(l) =

−−→
h|X|

(l) +
←−
h1

(l). (6)

The target word embedding vector etj is computed
as:

etj = tanh(Wyyj) (7)

where Wy ∈ Rq×vt is a weight matrix and vt is the
target vocabulary size. The attentional hidden state
h̃j is represented as:

h̃j = tanh(Wa[h
(L)
j : cj ] + ba) (8)

where Wa ∈ Rr×2r is a weight matrix, ba ∈ Rr is a
bias vector, and r is the number of hidden units.

The context vector cj is a weighted sum of each
hidden state h̄i of the encoder. It is represented as:

cj =

|X|∑
i=1

αijh̄i. (9)

Its weight αij is a normalized probability distribu-
tion, which is computed using a dot product of hid-
den states as follows:

αij =
exp(h̄T

i h
(L)
j )∑|X|

k=1 exp(h̄
T
k h

(L)
j )

. (10)
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Figure 1: Overview of GAN NMT.

The conditional probability of the output word ŷj

is computed as:

p(ŷj |Y<j ,X) = softmax(Wph̃j + bp) (11)

where Wp ∈ Rvt×r is a weight matrix and bp ∈ Rvt

is a bias vector.

2.3 Training
The objective function of this system is

L(θ) = 1

D

D∑
d=1

|Y |∑
j=1

log p(y
(d)
j |Y

(d)
<j ,X

(d),θ)

(12)

where D denotes the number of data and θ denotes
the model parameters. The model parameters in
word embedding are pretrained using GloVe (Pen-
nington et al., 2014). All other model parameters
are randomly initialized.

2.4 Testing
To achieve better predictions, we adopted beam
search and ensemble decoding. In beam search, the
system retains hypotheses of beam size n at each
time step. During the subsequent time step, for each
hypothesis, it computes n hypotheses; further, it re-
tains n hypotheses out of the total n2 hypotheses.
In ensemble decoding, the conditional probability of
the output word ŷj is the average of each model’s
score p(m). It is computed by

p(ŷj |Y<j ,X) =
1

M

M∑
m=1

p(m)(ŷj |Y<j ,X) (13)

where M denotes the number of models. They re-
duce the risk of predicting wrong words.

3 GAN NMT

Herein, we describe GAN NMT2 based on Yang et
al. (2018). It comprises two networks: a generator

2https://github.com/yukio326/GAN-NMT

which generates a target sentence, and a discrimi-
nator which distinguishes a generated sentence from
its true translation as shown in Figure 1.

3.1 Generator
The generator attempts to generate a target sen-
tence close to its correct translation from a given
source sentence. We use the attention-based NMT
described in Section 2 as the generator network.

3.2 Discriminator
The discriminator predicts whether the target sen-
tence is true or generated by the given source and
target sentences. At each time step i, the hidden state
f s
i corresponding to the source embedding vector esi

in Equation 1 is represented as:

f s
i =

−→
fs
i
(L) +

←−
fs
i
(L). (14)

Here, the forward state
−→
f s
i
(l) and the backward state

←−
f s
i
(l) are computed by

−→
f s
i
(l) = LSTM(

−→
f s
i
(l−1),

−−→
f s
i−1

(l)) (15)

and ←−
f s
i
(l) = LSTM(

←−
f s
i
(l−1),

←−−
f s
i+1

(l)). (16)

Note that
−→
f s
i
(0) and

←−
f s
i
(0) are regarded as esi . The

sentence vector of source sentence f̄ s is computed
by

f̄ s = average

([
f s
1 ,f

s
2 , · · · ,f s

|X|

])
. (17)

Similarly, at each time step j, the hidden state f s
j

corresponding to the target embedding vector etj in
Equation 7 is represented as

f t
j =
−→
f t
j
(L) +

←−
f t
j
(L). (18)

Here, the forward state
−→
f t
j
(l) and the backward state

←−
f t
j
(l) are computed by

−→
f t
j
(l) = LSTM(

−→
f t
j
(l−1),

−−→
f t
j−1

(l)) (19)
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Figure 2: Overview of reconstructor NMT.

and ←−
f t
j
(l) = LSTM(

←−
f t
j
(l−1),

←−−
f t
j+1

(l)). (20)

Note that
−→
f t
j
(0) and

←−
f t
j
(0) are regarded as etj . The

sentence vector of target sentence f̄ t is computed
by

f̄ t = average

([
f t
1,f

t
2, · · · ,f t

|Y |

])
. (21)

Finally, the probability that the target sentence is
true is predicted by the dot product of the source and
target sentence vectors as follows:

p(X,Y ) = sigmoid(f̄ s · f̄ t). (22)

3.3 Training

GAN must be trained adversarially. The discrimi-
nator should distinguish between true or generated
sentences, whereas the generator aims to generate a
sentence close to its correct translation, which the
discriminator cannot distinguish. Alternatively, the
objective function of the generator differs from that
of the discriminator.

The objective functions of the generator and dis-
criminator networks are defined by the following:

Generator

LG(θ,γ) =
1

D

D∑
d=1

{ |Y |∑
j=1

log p(y
(d)
j |Y

(d)
<j ,X(d),θ)

+ log p(X(d), Ŷ (d)|γ)

}
.

(23)

train 974,198
dev 1,790
test 1,812

Table 1: Number of Japanese–English parallel sen-
tences.

Discriminator

LD(γ) =
1

D

D∑
d=1

{
log p(X(d),Y (d)|γ)

+ log
{
1− p(X(d), Ŷ (d)|γ)

}}
.

(24)

where γ is the model parameters in the discrimina-
tor. In the objective function of generator, the second
term considers the sentence unit information. We
applied pre-training to both generator and discrimi-
nator using the baseline.

4 Reconstructor NMT

Next, we describe reconstructor NMT3 based on
Tu et al. (2017) as shown in Figure 2. It com-
prises two components: encoder–decoder and recon-
structor, which back-translates from hidden states
of the decoder into the source sentence. On train-
ing, the NMT considers both forward and back-
translations. This approach can reduce over- and
under-translation in forward translation because
back-translation fails if there is a lack of informa-
tion.

4.1 Encoder–Decoder

We use the attention-based NMT described in Sec-
tion 2 as the encoder–decoder network. Difference
from Matsumura et al. (2017) is an encoder–decoder
network. Their encoder–decoder network is based
on Bahdanau et al. (2015).

4.2 Reconstructor

The reconstructor back-translates hidden states of
the decoder into the source sequence. At each time
step i, the hidden state h

′(l)
i of each layer of the re-

constructor is represented as:

h
′(l)
i = LSTM(h

′(l−1)
i ,h

′(l)
i−1) (25)

3https://github.com/yukio326/Reconstructor-NMT
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Model BLEU RIBES AMFM HUMAN
Baseline 24.94 0.757955 0.596590 -
GAN NMT 25.17 0.757413 0.595850 -
Reconstructor NMT 24.98 0.759238 0.599110 -
Ensemble of six baselines 25.85 0.761450 0.600730 -20.000
Ensemble of two models each 25.45 0.759790 0.598770 -

Table 2: Japanese–English translation results.

Model BLEU RIBES AMFM HUMAN
Baseline 35.17 0.827386 0.749190 -
GAN NMT 35.09 0.827650 0.750350 -
Reconstructor NMT 34.89 0.826013 0.752100 -
Ensemble of six baselines 36.14 0.831219 0.753040 -12.000
Ensemble of two models each 35.44 0.829178 0.752420 -

Table 3: English–Japanese translation results.

Note that h′(0)
i is regarded as the concatenation of

the source word embedding vector esi−1 and the at-
tentional hidden state h̃′

i−1 at the previous time step:
[esi−1 : h̃′

i−1]. In this system, the first hidden state
h1

′(l) of each layer is initialized by the hidden state
h
(l)
|Y | of the decoder.

The attentional hidden state h̃′
i is represented as:

h̃′
i = tanh(Wa′ [h

′(L)
i : ci] + ba′) (26)

where Wa′ ∈ Rr×2r is a weight matrix and ba′ ∈ Rr

is a bias vector.
The inverse context vector c′i is a weighted sum

of each hidden state h̃j of the decoder on forward
translation. It is represented as:

c′i =

|Y |∑
j=1

α′
jih̃j . (27)

Its weight αji is a normalized probability distribu-
tion, which is computed using the dot product of
hidden states as follows:

α′
ji =

exp(h̃T
j h

′(l)
i )∑|Y |

k=1 exp(h̃
T
k h

′(l)
i )

. (28)

The conditional probability of the output word x̂i

is computed as:

p(x̂i|X<i, h̃) = softmax(Wp′h̃i + bp′) (29)

where Wp′ ∈ Rvs×r is a weight matrix and bp′ ∈
Rvs is a bias vector.

4.3 Training

The objective function is defined as:

L(θ,λ) = 1

D

D∑
d=1

{ |Y |∑
j=1

log p(y
(d)
j |Y

(d)
<j ,X(d),θ)

+

|X|∑
i=1

log p(x
(d)
i |X

(d)
<i , h̃

(d),λ)

}
(30)

where λ is the model parameters in the reconstruc-
tor. We applied pre-training to the encoder–decoder
using the baseline.

5 Experiments

We experimented with our NMT system on
Japanese–English and English–Japanese scientific
paper translation subtasks at the WAT 2018.

5.1 Datasets

We used the Japanese–English parallel corpus in
the Asian Scientific Paper Excerpt Corpus (ASPEC)
(Nakazawa et al., 2016). Japanese sentences were
segmented by the morphological analyzer: MeCab4

(version 0.996, IPADIC) and English sentences were
tokenized by tokenizer.perl of Moses5. Regarding
the training data, we used only the first million

4https://github.com/taku910/mecab
5http://www.statmt.org/moses/
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Source Blood collection is indispensable for glucose level measurement for the
diabetes mellitus diagnosis at present.

Baseline 糖尿病診断のためには血糖値測定には採血が不可欠である。
GAN NMT 現在糖尿病診断のための血糖値測定には採血が必須である。

Reconstructor NMT 糖尿病診断のための血糖値測定には採血が必須である。
Ensemble of six baselines 糖尿病診断のための血糖値測定には採血が必須である。

Ensemble of two models each 糖尿病診断のための血糖値測定には採血が必須である。
Reference 糖尿病診断のための血糖値測定は，現在，採血が不可欠である。

Table 4: Example of outputs of English–Japanese translation.

adequacy fluency
GAN NMT > Baseline 16 23
GAN NMT = Baseline 72 72
GAN NMT < Baseline 12 5

total 100 100

Table 5: Pairwise evaluation between baseline and
GAN NMT.

sentences sorted by sentence-alignment confidence;
sentences with more than 60 words were excluded.
Table 1 shows the number of sentences in the paral-
lel corpus.

5.2 Network Settings

We conducted the experiment using the following
configuration:

• Number of layers: 3

• Number of hidden units: 512

• Word embedding dimensionality: 512

• Source vocabulary size: 100,000

• Target vocabulary size: 30,000

• Minibatch size: 128

• Optimizer: Adam, SGD

• Initial learning rate: 0.01

• Dropout rate: 0.2

• Beam size: 20

Regarding the optimizer, after we train our model us-
ing Adam for 20 epochs, we switch to SGD.

5.3 Results
Tables 2 and 3 show the translation accuracy in BLEU
(Papineni et al., 2002), RIBES (Isozaki et al., 2010),
AMFM (Banchs and Li, 2011), and HUMAN evaluation
scores, which are the result of pairwise crowdsourcing
evaluation by five different workers at the WAT 2018. In
the “Model” column, “Ensemble of two models each” in-
dicates the ensemble of two baselines, two GAN NMTs,
and two reconstructor NMTs (ensemble of six models in
total).

Regarding Japanese–English translation, the results
show that GAN NMT and reconstructor NMT slightly
improved BLEU score compared with the baseline. How-
ever, in English–Japanese translation, BLEU score of
the baseline is higher than the GAN and reconstructor
NMTs. In terms of AMFM score, both methods have
higher scores than the baseline.

Matsumura et al. (2017) reported that the reconstruc-
tor NMT significantly improves BLEU score in English–
Japanese translation. This differs from the results in this
study. We consider that only by applying the optimization
method in this study, the baseline becomes considerably
stronger; therefore, the difference of translation accuracy
between baseline and reconstructor NMT becomes less.

In both translation subtasks, the ensemble of six base-
lines achieved the best score in all metrics. The ensemble
of two models each is inferior compared with the ensem-
ble of six baselines. The reason for this could be that the
ensemble of six baselines considers perfectly indepen-
dent six models in terms of parameter initialization; how-
ever, the ensemble of two models each considers depen-
dent models, i.e., GAN and reconstructor NMTs are pre-
trained using the baseline. Furthermore, the training of
GAN is unstable; therefore, the model that is not trained
well may affect the ensemble model adversely.

Table 4 shows an example of outputs of English–
Japanese translations. In the baseline, “for the diabetes
mellitus diagnosis at present” is translated to “糖尿病診
断のためには”, but it should be translated to “糖尿病診
断のための” when this phrase modify the noun phrase.
Other models except GAN NMT slightly under-translate;
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“現在 (at present)” is disappeared. However, GAN NMT
perfectly translates.

We examine the effect of GAN NMT by the pairwise
evaluation between the baseline and GAN NMT. We eval-
uated 100 sentences extracted randomly in terms of ade-
quacy and fluency. Table 5 shows the numbers of sen-
tence in each case. Regarding adequacy, GAN NMT per-
formed as same as the baseline, but regarding fluency,
GAN NMT outperformed the baseline.

6 Conclusion
In this paper, we described our NMT system, which is
based on the attention-based NMT. Furthermore, we im-
plemented GAN and reconstructor models in our NMT.
We evaluated our NMT system on Japanese–English and
English–Japanese translation subtasks at the WAT 2018.
The experimental results demonstrates that the ensemble
of baseline systems achieved 25.85 and 36.14 points in
Japanese–English and English–Japanese translations, re-
spectively, in terms of BLEU scores. Furthermore, we
found that GAN NMT can translate fluently.
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