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Abstract

The use of a concept lattice for the vi-
sual representation of knowledge has become
very common in the data mining field. In-
deed, the theory of Formal Concept Anal-
ysis (FCA) gives the possibility of organiz-
ing and making reasoning on the knowledge
stored in the lattice. In this context, we pro-
pose FCA Retrieval a fast and efficient algo-
rithm for information retrieval from a binary
concept lattice. This algorithm can respond
to queries containing several types of logical
operators (conjunction, disjunction and nega-
tion). The experimental study proves the good
performance of our algorithm.

1 Introduction

With the evolution of documents quantity in
databases, it has become very difficult to extract the
information corresponding to the exact needs of the
user in a reasonable time without the design of an ef-
fective strategy. Indeed, this strategy must be based,
first, on the right representation of the information
found in the documents or in the query and, sec-
ondly, on the development of an efficient and fast
algorithms for information retrieval (Fkih and Omri,
2012).

In this context, concept lattices are considered
as very powerful tools for the visual presentation
of knowledge (Poelmans et al., 2013). Also, For-
mal Concept Analysis (FCA) is considered a flex-
ible and practical theoretical framework for binary
relations management. The relation between a doc-
ument and the information that presents it is a binary

relation (the information presents the document or
not). Therefore, a concept lattice can easily model
the document/term relation and can be considered
as an semantic index (Fkih and Omri, 2016).

In this paper, we propose an efficient algorithm
(FCA Retrieval) for the retrieval of information in
a concept lattice. This algorithm uses the theory of
formal concept analysis (FCA) to respond to a user
query and retrieve the information in a reasonable
time. The main advantage of this algorithm is that
it can handle multiple logical operators queries (i.e.
conjunctive, disjunctive and negation operators).

The remainder of this paper is structured as fol-
lows. In section 2,we provide an overview on the
works that use the concept lattice for documents in-
dexing. Section 3 presents the basic notions of the
Formal Concept Analysis (FCA) theory. In section
4, we introduce our algorithm, FCA Retrieval, for
information retrieval in a concept lattice. Section 5
is reserved for an experimental comparative study
between the proposed model and other models in the
literature.

2 Related Works

The use of concept lattices for information retrieval
began with the introduction of the Formal Con-
cept Analysis (FCA) theory by (Wille, 1982) in the
1980s. Information retrieval is considered a direct
application of the concept lattice due to the high
correspondence between the theoretical foundations
of this approach and those of information retrieval
(Godin et al., 1995). Indeed, if we replace objects by
documents and attributes by terms, the formal con-
text becomes a simple inverted file (index) used for

PACLIC 32

164 
32nd Pacific Asia Conference on Language, Information and Computation 

Hong Kong, 1-3 December 2018 
Copyright 2018 by the authors



documents indexing.
There are several approaches for information re-

trieval based on concept lattice, we cite: information
retrieval systems for medical documentation (Cole
and Eklund, 1996; Cole and Eklund, 1999), soft-
ware documentation (Linding, 1995; Priss, 2000)
and Bioinformatic Databases (Smal-Tabbone et al.,
2005). We can classify FCA-based models into three
main families: CLR (Concept Lattice-based Rank-
ing) methods, refinement and organization methods
and classification-based reasoning methods.

2.1 Concept Lattice-based Ranking methods

Approaches belonging to the CLR family are based
essentially on the idea of considering the query as a
new entry for the formal context. In this case, the
search for documents satisfying the query turns into
a problem of reconstruction of the lattice. These re-
trieval algorithms use incremental construction tech-
niques to insure the insertion of the new entry in
context. These incremental construction techniques
are more efficient, from the point of view of com-
plexity and efficiency, than those which reconstruct,
from scratch, the lattice. In the literature there are
several models belonging to the CLR family, such
as: BR-Explorer (Messai et al., 2006), BMR (cur-
rent best-match ranking) and HCR (model and hi-
erarchical clustering-based ranking) (Carpineto and
Romano, 2000a).

2.2 Refinement and organization methods

These approaches use a search engine to respond to
a user query and exploit the links of documents as
well as summaries and titles provided by the engine.
Their primary role is to provide the user the abil-
ity to refine his query by browsing the concept lat-
tice and exploring neighbouring concepts. For in-
stance, we cite systems CREDO (Carpineto and Ro-
mano, 2004), FooCA (Koester, 2006) and Search-
Sleuth (Dau et al., 2008; Ducrou, 2007).

2.3 Classification-based reasoning methods

This approach uses the concept lattice as an index
of a documentary database and applies navigation
algorithms to the lattice to respond to a query. The
main aim of this type of method is to maximize the
lattice navigation. In this case, the lattice is seen as
a semantic index for information retrieval since it is

the result of a clustering operation. Among systems
belonging to this family, we cite CLAIR (Codocedo
et al., 2014). This system is based on the insertion
of a query in a classification-based reasoning.

3 Basic notions of Formal Concept
Analysis

Definition 1 (Formal context) A formal context is a
triplet F = (D,T, I) where:

• D : set of documents.

• T : terms set.

• I : binary relation between D and T verifying
that I ⊆ D × T

I is called the incidence relation of F . Let d ∈ D
and t ∈ T , the relation (d, t) ∈ I means that the
document d contains the term t (we also say that the
term t is satisfied by the document d).

Definition 2 (Derivation operator) Also called suf-
ficiency operator as in (Dubois et al., 2007), deriva-
tion operators are considered as the basis of the for-
mal analysis. Given X ⊆ D and Y ⊆ T , we denote
by X∆ (equation 1) the set of terms satisfied by the
set of documents X and Y ∆ (equation 2) the set of
documents satisfying the set of terms Y .

X∆ = {y ∈ T | X ⊆ I(y)} (1)

Y ∆ = {x ∈ D | Y ⊆ I(x)} (2)

Intuitively, X∆ is the set of attributes common to
all the objects of X and Y ∆ is the set of the objects
that share all the attributes of Y .

Definition 3 (Formal concept) A formal concept is
a pair 〈X,Y 〉 such that X∆ = Y and Y ∆ = X .
X and Y are called respectively the extent and the
intent of the concept 〈X,Y 〉. An order relation, de-
noted �, is defined on the set of all concepts. We
have the following equivalence (equation 3):

〈X1, Y1〉 � 〈X2, Y2〉 ⇔ X1 ⊆ X2

⇔ Y2 ⊆ Y1
(3)
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Definition 4 (Lattice Concept) The set of concepts
ordered by � forms a complete lattice denoted
B(D,T, I). We say that B(D,T, I) is the lattice
associated with the formal context F = (D,T, I).
We denote:

• τ : the most general concept belonging to
B(D,T, I), also called the top element.

• β: the most specific concept belonging to
B(D,T, I), also called the bottom element.

4 Proposed algorithms

Our approach is based mainly on the use of the spec-
ification/generalization relation that exists between
the lattice concepts (see figure 1). Indeed, a con-
cept lattice is the result of a clustering operation
which groups the documents sharing the same terms
in common concepts. The lattice top (τ ) is consid-
ered as the most general concept in the lattice; it
groups in its extent all the documents of the collec-
tion. The intent of τ contains common terms be-
tween all documents if they exist, the empty set oth-
erwise. If we move to the lower hierarchy level, we
find the maximum subsets of documents that share
the same terms. In fact, the more we descend in
the lattice more we add terms to the intent of each
concept, i.e., we specify the documents. The most
specific concept is the bottom of the lattice (β), it
contains all the terms in its intent and contains the
documents that share all the terms in its extent (the
empty set, if there are no documents).

For a given query Q, containing a variety of logi-
cal operators, our algorithm treats each operator type
alone. That is, it separates the conjunction operators
from those of disjunction or negation. As it presents
the algorithm 1, it begins with the disjunctive part
of the query and then processes the disjunctive part.
For the negation operator, the algorithm 2 calls al-
gorithm 1 to treat the conjunction and disjunction
operators then it applies the negation to the returned
result.

4.1 Conjunctive operators of the query

For conjunction operators, the idea is to find (in the
lattice) the most general concept (Cconj

g ) containing
in its intent all the conjunctive terms of the query,
by starting the search with the most specific concept

Figure 1: Specification/Generalization relation in a con-
cept lattice.

(β). The proposition 1 defines the characteristics of
the concept Cconj

g .

Proposition 1 Let TQ
conj The set of conjunctive

terms of the query Q, and let Cconj
g =

〈Intent
Cconj

g
, Extent

Cconj
g
〉 the most general con-

cept in the lattice such that: TQ
conj ⊆ Intent

Cconj
g

then, we say that: the documents set Extent
Cconj

g

satisfy the conjunctive part of the Query Q.

The β concept must include, in its intent, all the
conjunctive terms of the query; otherwise it’s said
that the lattice can’t satisfy the query. If the beta in-
tent contains all the conjunctive terms we pass to the
direct parents of the concept (the highest hierarchi-
cal level). If one of the concepts don’t contain all
the conjunctive terms in its intent then it is useless
to continue the search in its parents (this will sim-
plify the search space and decrease the complexity
of the algorithm). This simplification is justified by
the fact that the intent of the parent is included in the
intent of his son then if the terms don’t exist in the
intent of the son, they don’t also exist in the intent
of the father. Otherwise, if a concept contains all the
conjunctive terms and all of its direct parents don’t
contain them then it’s considered as Cconj

g and the
result will be the documents of its extent. The algo-
rithm stops when it finds Cconj

g or if it finishes the
entire lattice.

4.2 Disjunctive operators of the query

After completing the conjunctive part of the query
Q, the algorithm proceeds to the processing of the
disjunctive part. Our idea is to look for the most
general concept (Cdisj

g ) containing at least one term
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Algorithm 1: FCA Retrieval(): General-
ized algorithm for multiple logical operators
query
Data: F = (D,T, I), B(D,T, I)
Q: multiple logical operators query
TQ = {t1, t2, ..., tn−1, tn}
ψconj : set of concept to explore by
conjunctive operators
ψdisj : set of concept to explore by disjunctive
operators
τ : Lattice Top (most general concept in the
lattice)
β: Lattice Bottom (most specific concept in
the lattice)
Result: Rd: set of documents satisfying the

query Q)
begin

1 Rd ←− {∅}
2 ψconj ←− {β}
3 ψdisj ←− {τ}

for C ∈ ψconj do
4 if TQ ⊆ intent(C) then
5 Clean(Rd)
6 Rd ←− extent(C)
7 ψconj ←− ψconj ∪ Fathers(C)
8 ψconj ←− ψconj \ {C}

else
9 ψconj ←− ψconj \ {C}

10 delete Ancestors(C) from the
lattice

end
end
for C ∈ ψdisj do

11 if TQ ∩ intent(C) = {∅} then
12 ψdisj ←− ψdisj ∪ Sons(C)
13 ψdisj ←− ψdisj \ {C}

else
14 Rd ←− Rd ∪ extent(C)
15 delete Descendants(C) ∪ {C}

from the lattice
16 ψdisj ←− ψdis \ {C}

end
end

17 Return Rd

end

of the disjunctive query, by starting with the most
general concept (τ ). The following proposition 3 de-
scribes the characteristics of Cdisj

g :

Proposition 2 Let TQ
disj The set of disjunctive

terms of the query Q, and let Cdisj
g =

〈Intent
Cdisj

g
, Extent

Cdisj
g
〉 the most general con-

cept in the lattice such that: TQ
conj

⋂
IntentCg 6= ∅

then, we say that: the documents set Extent
Cdisj

g

satisfy the disjunctive part of the Query Q.

The algorithm 1 explores the intent of τ , if it finds
at least one term of the disjunctive part of the query
Q in its intent then it’s said that all documents in the
collection satisfy the query, otherwise the algorithm
passes to its direct sons. If we find a term, at least,
in the intent of one of its sons then we take its extent
and we ignore all its descendants. The research is
continued until all the lattice concepts are checked.

4.3 Negation operators of the query
The idea of negation is very simple: first, ignored
the negation operator, in this case we can apply the
algorithm 1. Then take the complement of the set
of returned documents. Algorithm 2 is based on the
following proposition:

Proposition 3 Let Q = ¬Q′
, and let DQ′ the docu-

ments set that satisfying toQ
′
, then, we say that: the

documents set DQ′ satisfy the Query Q.

Algorithm 2: FCA Retrieval Negative(): an
algorithm for negative query

Data: F = (D,T, I), B(D,T, I)
Q

′
: negative query

TQ′ = {t1, t2, ..., tn−1, tn}
Q

′
= ¬Q

Result: RNeg
d : set of documents satisfying

the query Q
′

begin
1 RNeg

d ←− FCA Retrieval(Q)

2 Return RNeg
d

end

4.4 Demonstrative example
Table 1 presents a formal context I that models a
binary relation between the set of documents D =
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Figure 2: Concept lattice B(D,T, I).

{d1, d2, d3, d4, d5, d6, d7} and the set of terms T =
{t1, t2, t3, t4, t5, t6}. In this case, the formal con-
text is considered as a binary document-term inci-
dence matrix. Practically, if a document contains a
term then we put 1, 0 otherwise.

Table 1: An example of a formal context F = (D,T, I)
modelling the relation document-term

Document-Term t1 t2 t3 t4 t5 t6
d1 1 0 1 0 1 1
d2 1 1 0 0 0 0
d3 0 0 1 1 1 0
d4 0 0 0 0 1 1
d5 0 0 0 1 0 1
d6 1 0 1 0 0 0
d7 0 1 0 1 0 1

Figure 2 shows the Hasse diagram of the concept
lattice B(D,T, I) corresponding to the formal con-
text F = (D,T, I). This diagram is drawn by Con-
Exp1, a free software for building and visualizing
lattices.

For this example, the corresponding concepts
to the top (τ ) and the bottom (β) of the lattice
B(D,T, I) are:

τ = 〈{d1, d2, d3, d4, d5, d6, d7}, {∅}〉 (4)

β = 〈{∅}, {t1, t2, t3, t4, t5, t6}〉 (5)

In this example, we try to apply our algorithm 1 to
the lattice described in the figure 2. This set of docu-

1http://sourceforge.net/projects/conexp/

Figure 3: There are a one concept contains in its intent
the query terms (surrounded by a green circle)

ments (noted Rd) To do this, we look for documents
that satisfy to the query Q = t5 ∧ t6 ∨ t2.

First, we start with the processing of the conjunc-
tive part of the query, i.e, t5 ∧ t6. As the algorithm
specifies, we begin the exploration of the lattice by
the processing of the concept β (the most specific
concept in the lattice). In this level, we find that β
contains all query terms, so Rd = {∅}.

Thereafter,we move on to the exploration of
higher level concepts (direct fathers). We find a
single concept that its intent contains all the query
terms (surrounded by a green circle in the figure 3),
all the fathers of the other concepts (surrounded by
a red circle in the figure 4) will be ignored by the al-
gorithm to simplify the search space. The extent of
this concept contains a single document d1. Then,
we update the set of results Rd = {d1}.

Before stopping the processing of the conjunctive
part of the query, there is one concept to explore
(surrounded by a green circle in the figure 4). We
find that the intent of this concept contains all the
terms of the query, so we assign its extent to Rd.
The set of results becomes Rd = {d1, d4}.

After having finished processing the conjunctive
part of the query, the algorithm begins processing
the disjunctive part, i.e., it looks (in our example)
for the documents containing the term t2. To do this,
our algorithm explores the concept τ (the most gen-
eral concept in the lattice). In our example, the al-
gorithm can’t find the term t2 in the intent of τ , so it
pursues the search in its direct descendants. The al-
gorithm finds t2 in the intent of a direct descendant
of τ (surrounded by a green circle in the figure 5),
then it adds all the documents that are in its extent
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Figure 4: The processing of the conjunctive part of the
query stops when the algorithm processes all the concepts
of the lattice.

Figure 5: The algorithm starts the processing of the dis-
junctive part of the query.

(in this case, d2 and d7) to the set of results, which
becomes: Rd = {d1, d4, d2, d7}. In this stage, the
algorithm ignores all the descendants of the concept
containing the term t2. In addition, it ignores the
neighbours of this concept, because, it’s useless to
look for t2 in concepts of the same hierarchical level
(all concepts surrounded by red circles in figure 6).
Thus, the algorithm stops the processing of the query
Q and returns the set of documents Rd.

To simulate the behaviour of our algorithm vis--
vis the logical negation operator, we try to process
the query Q

′
= ¬Q. As indicated in algorithm 2,

we first call algorithm 1 and then we look for the
complement of the returned set, i.e., if Rd is the set
of documents returned by algorithm 1, then the set
of documents returned by algorithm 2 can be defined
by: RNeg

d = Rd = {d1, d4, d2, d7} = {d3, d5, d6}.

Figure 6: If the algorithm finds the term t2 in a concept,
then it ignores its descendants and neighbors and stops
processing.

5 Experimental study

To show that our algorithm is faster and simpler
than other algorithms in the literature, we con-
duct a comparative study between FCA Retrieval,
CLR (Carpineto and Romano, 2000b), BR-Explorer
(Messai et al., 2006) and CLAIR (Codocedo et al.,
2014). In order to achieve this, we implement all
these algorithms in Java programming language on
a Windows 7 platform. To evaluate the performance
in execution time, the experimental tests were con-
ducted on a Intel Core i5-6200U machine having a
clock frequency of 2.8Ghz and 8GB of main mem-
ory.

5.1 Test Data description

The different models were evaluated using Connect-
42, a standard dataset. This test data is seen as a
multi-valued formal context (each attribute can take
one of three values of the set {x, o, b}). To make
it more compatible with our application, we have
transformed this multi-valued formal context to a bi-
nary formal context. Indeed, each attribute of the
formal context takes 0 if its value is b, 1 otherwise.

In this stage, our goal is to study the behaviour of
the different models (taking the execution time as an
indicator) if we vary the size of the data set (num-
ber of objects). To achieve this, we have prepared
15 formal contexts (extracted from Connect-4) each
one contains 42 attributes and a number of instances
ranging from 1 to 10000 (see table 5.1).

2http://archive.ics.uci.edu/ml/datasets/Connect-4
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Table 2: Test Data description
Connect-4

Data sets Objects number Concepts number
S1 1000 575
S2 2000 685
S3 3000 1314
S4 4000 1387
S5 5000 1564
S6 6000 1620
S7 7000 1620
S8 8000 1620
S9 9000 2203
S10 10000 2564

Figure 7: Comparative study between our algorithm and
other algorithms of the literature.

5.2 Results and discussion

Each model is tested on the 10 concept lattices us-
ing 10 different queries. In practice, we calculate
for each model the response time to a given query.
Subsequently, we calculate the average time for all
queries. Table 5.2 summarizes the results obtained
for all models. Figure 7 shows the variation of the
execution speed of each algorithm according to the
number of objects in the lattice.

The experimental study shows that our algorithm
is faster than the other algorithms. In fact,the gap
between the performance of our algorithm and other
algorithms increases with the number of objects. By
way of example, the difference between the exe-
cution times of FCA Retreival and CLR can reach
12.22 for a trellis of 10000 objects.

The experimental result can be justified by a the-
oretical study. Therefore, if we compare the com-
plexity of our algorithm with the complexity of other

algorithms, we find that FCA Retrieval is the least
complex. The table shows the temporal complexity
of each model. The complexity of FCA Retrieval
is O(n) (worst case, where n is the number of con-
cepts in the lattice) while the complexity of the oth-
ers is O(n2) which justifies the superiority of our
algorithm in execution time.

6 Conclusion

In this paper, we have presented a novel algorithm
for information retrieval from a binary concept lat-
tice. This algorithm is based on the theory of formal
concept analysis and can handle a query containing
a variety of logical operators (conjunction, disjunc-
tion and negation). The experimental study shows
that our model is efficient and provides the most op-
timal execution time.

As future work, we try to integrate semantic re-
sources into our model to deal with the semantic am-
biguity that exists in user queries.
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