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Abstract

Most set expansion algorithms assume to
acquire new instances of different seman-
tic categories independently even when we
have seed instances of multiple semantic cat-
egories. However, in the setting of set ex-
pansion with multiple semantic categories, we
might leverage other types of prior knowl-
edge about semantic categories. In this paper,
we present a method of set expansion when
ontological information related to target se-
mantic categories is available. More specifi-
cally, the proposed method makes use of sib-
ling relations between semantic categories as
an additional type of prior knowledge. We
demonstrate the effectiveness of sibling rela-
tions in set expansion on the dataset in which
instances and sibling relations are extracted
from Wikipedia in a semi-automatic manner.

1 Introduction

Set expansion is the task of expanding a list of
named entities from a few named entities (seed in-
stances). For example, given a few instances of
car vehicles “Prius”, “Lexus” and “Insight”, the
task outputs new car instances such as “Corolla”,
“Civic”, and “Fit”. Set expansion has many ap-
plications in NLP including named entity recogni-
tion (Collins and Singer, 1999), word sense disam-
biguation (Pantel and Lin, 2002), document cate-
gorization (Pantel et al., 2009), and query sugges-
tion (Cao et al., 2008).

Set expansion is often implemented as bootstrap-
ping algorithms (Hearst, 1992; Yarowsky, 1995; Ab-
ney, 2004; Pantel and Ravichandran, 2004; Pantel

and Pennacchiotti, 2006). A bootstrapping algo-
rithm iteratively acquires new instances of the tar-
get category using seed instances. First, a bootstrap-
ping algorithm mines phrasal patterns that co-occur
frequently with seed instances in a corpus. Given
the words “Prius” and “Lexus” as seed instances of
the car category, the algorithm finds patterns such
as “Toyota produce X” and “X is a hybrid car” (X
is a variable filled with a noun phrase). Next, the
bootstrapping algorithm acquires instances that co-
occur with patterns, i.e., noun phrases that appear
frequently in the variable slots in the patterns. For
example, the pattern “Toyota produce X” might re-
trieve vehicles manufactured by Toyota. Bootstrap-
ping algorithms repeat these steps, expanding pat-
terns using newly acquired instances.

However, bootstrapping algorithms often suffer
from patterns that retrieve instances not only of
the target category but also of other categories.
For example, given the seed instances “Prius” and
“Lexus”, a bootstrapping algorithm might choose
the pattern “new type of X”, which might extract un-
related instances such as “iPhone” and “ThinkPad”.
The semantic drift problem (Curran et al., 2007), the
phenomenon by which a bootstrapping algorithm
deviates from the target category, has persisted as
the major impediment of bootstrapping algorithms.

Bootstrapping algorithms assume prior knowl-
edge about a semantic category in the form of seed
instances. Recently, researchers have been more
interested in self-supervised learning of every se-
mantic category in the world from massive text
corpora, as exemplified by the Machine Reading
project (Oren et al., 2006). In the setting of set ex-

525



pansion with multiple semantic categories, we might
leverage prior knowledge of other types that were
unexplored in previous studies. For example, a per-
son cannot belong to both actor and actress cate-
gories simultaneously. Additionally, we know that
two distinct categories of car and motorcycle prod-
ucts share similar properties (e.g., vehicle, gasoline-
powered, overland), but have some crucial differ-
ences (e.g., with two or four wheels, with or without
windows).

In this paper, we present a method of set expan-
sion when ontological information related to target
semantic categories is available. More specifically,
the proposed method makes use of sibling relations
between semantic categories as an additional type of
prior knowledge. We demonstrate the effectiveness
of sibling relations on the dataset (seed and test in-
stances) extracted from Wikipedia.

This paper is organized as follows. Section 2 re-
views the Espresso algorithm as the baseline algo-
rithm of this study. The section also describes the
problem of semantic drift and previous approaches
to the problem. Section 3 presents the proposed
method, which uses sibling relations of semantic
categories as an additional source of prior knowl-
edge. Section 4 demonstrates the effectiveness of
the proposed method and discusses the experimen-
tal results. In section 5, we conclude this paper.

2 Related Work

2.1 Espresso algorithm

Pantel and Pennacchiotti (2006) proposed the
Espresso algorithm, which fundamentally iterates
two steps: candidate extraction and ranking. In can-
didate extraction, the algorithm collects patterns that
are co-occurring with seed instances and instances
acquired in the previous iteration. The algorithm
also finds candidates of new instances using patterns
extracted in the previous iteration.

In the ranking step, the algorithm finds the top N
candidates of patterns and instances based on their
scores. The espresso algorithm defines score rπ(p)
for candidate pattern p and score rι(i) for the candi-
date instance i as

rπ(p) =
1

|I|
∑

i∈I

pmi(i, p)

max pmi
rι(i), (1)

rι(i) =
1

|P |
∑

p∈P

pmi(i, p)

max pmi
rπ(p), (2)

pmi(i, p) = log2
|i, p|

|i, ∗||∗, p| . (3)

In these equations, P and I are sets of patterns and
instances of each category. |P | and |I| are the num-
bers of patterns and instances in the sets. |i, ∗| and
|∗, p| are the frequencies of instance i and pattern
p in a given corpus. |i, p| presents the frequency by
which instance i co-occurs with pattern p. Also, max
pmi is the maximum of pmi values in all instances
and patterns.

First, the Espresso algorithm extracts patterns that
co-occur with seed instances. Next, the algorithm
ranks the patterns based on their score calculated us-
ing equation (1) and acquires the top N patterns. The
more a pattern co-occurs with reliable instances, the
higher the score the pattern obtains. In this way, the
algorithm acquires patterns that correspond to the
target semantic category.

2.2 Semantic Drift

The major obstacle of bootstrapping algorithms is
semantic drift (Curran et al., 2007). Semantic drift
is the phenomenon by which a bootstrapping algo-
rithm deviates from the target categories. For ex-
ample, one can consider the car category, which in-
cludes “Prius” and “Lexus” as seed instances. The
Espresso algorithm might extract patterns that co-
occur with many categories such as “new type of
X” and “performance of X” after some iterations.
These generic patterns might gather unrelated in-
stances such as “iPhone” and “ThinkPad”. These
instances obscure the characteristics of the target se-
mantic category. Therefore, the patterns extracted in
the next iteration might not represent at the semantic
category of the seed instances.

Semantic drift is also caused by polysemous
words. For example, to expand the set of motor vehi-
cle manufacturers using seed instances “Saturn” and
“Subaru”, a bootstrapping algorithm might find in-
stances representing the star category (e.g., “Jupiter”
and “Uranus”). This is because “Saturn” and “Sub-
aru” are polysemous words, belonging not only to
motor vehicle manufacture but also to astronomical
objects: planets and stars.
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2.3 Approaches to semantic drift

Many researchers have presented various ap-
proaches to reduce the effects of semantic drift.
The approaches range from refinement of the seed
set (Vyas et al., 2009), applying classifier (Bellare et
al., 2007; Sadamitsu et al., 2011; Pennacchiotti and
Pantel, 2011), using human judges (Vyas and Pantel,
2009), to using relationships between semantic cat-
egories (Curran et al., 2007; Carlson et al., 2010).

Vyas et al. (2009) investigated the influence of
seed instances on bootstrapping algorithms. They
reported that seed instances selected by human who
are not specialists sometimes yield worse results
than those selected randomly. They proposed a
method that refines seed sets generated by humans
to improve the set expansion performance.

Bellare et al. (2007) proposed a method using a
classifier instead of scoring functions in the ranking
step of bootstrapping algorithms. The classifier ap-
proach can use multiple features to select instances.
Sadamitsu et al. (2011) extended the method of Bel-
lare et al. (2007) to use topic information estimated
using Latent Dirichlet Allocation (LDA). They use
not only contexts but also topic information as fea-
tures of the classifier. Pennacchiotti and Pantel
(2011) proposed a method for the automatic con-
struction of training data for the classification ap-
proach. However, these researchers did not target
set expansion for multiple semantic categories.

Vyas and Pantel (2009) proposed an algorithm
that finds and removes the causes of semantic drift.
The algorithm employs a human judge to prevent se-
mantic drift in the iterative process of a bootstrap-
ping algorithm. When a human judge detects an in-
correct instance, the algorithm removes the patterns
that acquired the incorrect instance. The algorithm
also removes instances having a similar context vec-
tor to that of the incorrect instance to avoid a similar
error. Although they used human judges, they ig-
nored ontological information such as relations be-
tween categories.

Curran et al. (2007) proposed Mutual Exclu-
sion Bootstrapping, which incorporates exclusive-
ness constraint between categories into the boot-
strapping algorithm. Mutual Exclusion Bootstrap-
ping uses the restriction that an instance and a pat-
tern must belong to only one category. Instances

or patterns appearing in multiple categories are am-
biguous. Therefore, they are likely to cause seman-
tic drift. By removing ambiguous instances and pat-
terns, Curran et al. (2007) achieved high precision.

Carlson et al. (2010) proposed the Coupled Pat-
tern Learner (CPL) algorithm which also uses mu-
tual exclusiveness. The CPL algorithm acquires en-
tity instances (e.g., instances of the car category) and
relation instances (e.g., CEO-of-Company (Larry
Page, Google) and Company-acquired-Company
(Google, Youtube)) simultaneously. To acquire
those instances, the algorithm requires knowledge
about exclusiveness constraint between categories
and links between categories (e.g., an instance of
the CEO category must be CEO of some instance of
the company category). However the algorithm uses
only the exclusiveness constraint as prior knowledge
related to multiple semantic categories.

Curran et al. (2007) and Carlson et al. (2010) use
not only seed instances but also exclusiveness con-
straint between semantic categories as a prior knowl-
edge. However, we have more prior knowledge
about semantic categories at hand. For example, we
can obtain ontological information between seman-
tic categories easily from existing resources such as
Wikipedia. Ontological information provides sib-
ling relations between semantic categories, i.e., cat-
egories that should have common properties. In this
study, we explore the usefulness of sibling relations
between semantic categories in set expansion.

At last, we mention the relationship between
this study and ontology learning. Ontology learn-
ing (Maedche and Staab, 2001; Navigli et al., 2003)
is the task of constructing hierarchical structure of
ontology by extracting terms and ontological rela-
tions between terms. In contrast, this study utilizes
an existing resource as a hierarchical structure of on-
tology, and expands the list of instances of semantic
categories on the hierarchical structure.

3 Proposed method

3.1 Filtering with patterns of sibling categories

In this section, we present the method using sib-
ling relations between semantic categories as a prior
knowledge. We gather categories that are siblings as
a sibling group. For example, car and motorcycle
categories belong to the same sibling group. We ex-
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Figure 2: Set expansion using sibling relations.

Algorithm 1 The proposed method.
Input: C: a set of categories, S1, S2, ..., ST : sibling groups (subset

of C), Ic: seed instances of each c ∈ C, L: the number of itera-
tions

Output: Ic: instances for each c ∈ C
1: for j = 1, 2, ..., T do
2: FSj

← pattern-extraction(Sj )
3: end for
4: for l = 1, 2, 3..., L do
5: for j = 1, 2, ..., T do
6: I = []
7: for all c ∈ Sj do
8: R← ESPRESSO(Ic)
9: R′ ← FILTER(R,FSj

)
10: I += R′

11: end for
12: for (i, c, s) in I in descending order of score do
13: if |Ic| ≤ N ∗ l and i /∈ Ic′ for all c′ ∈ S \ c then
14: insert i into Ic
15: end if
16: end for
17: end for
18: end for
19: function FILTER(R,F )
20: R′ = []
21: for (i, c, s) in R do
22: if i co-occur with ∀f ∈ F then
23: insert (i, c, s) into R′

24: end if
25: end for
26: return R′

27: end function

�
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������������	�������������������������������������������������

Figure 1: Example of syntactic dependencies.

pect that instances including the same sibling group
hold common properties. We assume the common
property to be represented by patterns of the sibling
group. These patterns, which can check the common
property of the sibling group, are denoted as filter
patterns. Our proposed method obtains filter pat-
terns using the sibling group and ascertains whether
an instance co-occurs with the filter patterns.

Figure 2 presents examples of car and motorcycle
categories included in the same sibling group. The
method detects “drive” and “fuel efficiency” as filter
patterns. Note that filter patterns are unconstrained
by the difference of parent–child in the dependency
tree. In the previous studies on bootstrapping, if the
method obtains “new type of X” as the pattern of car
category, then the method does not have a mecha-
nism to reject incorrect instances such as “iPhone”.
In contrast, the proposed method ascertains whether
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each candidate instance co-occurs with the filter pat-
terns before the final decision of acquiring instances.
The method approves instances that co-occur with
the filter patterns (e.g., “Corolla”).

The detail of the method is described in Algo-
rithm 1. The method is given a set of target cat-
egories C, sibling groups (S1, S2, ..., ST ), seed in-
stances Ic of each category c ∈ C and the number of
iterations L. Each sibling group is a subset of C, and
disjoint from each other. The method chooses filter
patterns FSj of each sibling group Sj from lines 1
to 3. In line 8, the method extracts instances of each
category c of the sibling group Sj using the function
ESPRESSO. ESPRESSO requires an instance set Ic
of category c. ESPRESSO returns R, the list of the
tuples each of which consists of instance i, category
c and score s (i.e., (i, c, s)), using the Espresso algo-
rithm described in Section 2.1.

In the experiments, using a Japanese large-scale
corpus, we employ a phrase-like unit (bunsetsu)
having dependency with an instance as a pattern.
Figure 1 shows an example of Japanese sentence
and its English translation1. Consider the instance
“Toyota Motor Corporation” in the sentence shown
in Figure 1. The algorithm extracts the pattern:

• X←−発表した (X←−announced)

In line 9, the method checks whether each can-
didate instance i in R has a common property of a
sibling group using FILTER function (lines 19 to 27).
FILTER examines that each i in R co-occurs with a
filter pattern f in F . The function returns the list
of instances and their scores which co-occur with
the filter patterns. In short, this function filters out
an instance which lacks the common property of the
sibling group captured by the filter patterns F .

The method uses the exclusiveness constraint be-
tween categories of the sibling group to prevent drift
within the group. If a pattern or an instance appears
in multiple categories of the sibling group, then the
method decides a single category that suits the best
to the pattern or the instance. The method makes this
decision based on a ranking. For example, consider
a pattern “muffler of X”, in which a pattern appeared

1The words in the English sentence are ordered as they ap-
pear in the Japanese sentence. For this reason, the word order
and dependency edges in the English sentence look strange, but
these are correct in the Japanese original sentence.
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Figure 3: Two desirable properties for filter patterns.

in car and motorcycle categories. If the pattern is
ranked 13th in the car category and fourth in the mo-
torcycle category, then the pattern belongs only to
the motorcycle category. In algorithm 1, function
Espresso incorporates an exclusiveness constraint
for patterns. The exclusiveness constraint for in-
stances is implemented from lines 12 to 16.

The method acquires top N instances in order of
score s while applying the exclusiveness constraint
from lines 12 to 16. After the method secures new
instances of each category, the method proceeds to
the next iteration.

3.2 Acquisition of filter patterns

As described above, using filter patterns, our pro-
posed method checks whether an instance has a
common property of the sibling group. We describe
how to extract and score the filter patterns.

Acquisition of filter patterns has two phases: can-
didate extraction and ranking. In candidate extrac-
tion, our method collects patterns that co-occur with
seed instances of the sibling group. For example,
given a sibling group consisting of car and mo-
torcycle categories, the method finds patterns co-
occurring with seed instances of car or motorcycle
categories.

Filter patterns do not acquire instances of one sib-
ling group but examine whether the instances have
a common property of the sibling group. It is there-
fore unnecessary that filter patterns are of strict form
to locate entities. For filter patterns, we disregard
the difference of parent–child in the dependency
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tree.Please refer to filter patterns (top 3) column of
Table 2 as an example of filter patterns.

After extracting candidates, the method selects
the most suitable filter patterns in the candidates.
The method selects filter patterns based on the two
factors: Coverage and Dispersion. Coverage is the
number of instances with which a filter pattern co-
occurs. Dispersion is the degree of scattering cate-
gories in which the pattern appears. Figure 3 shows
example of suitable filter patterns based on these fac-
tors. In Figure 3, a caption in bold font presents a
filter pattern, and a caption in italic font presents an
instance supported by the corresponding filter pat-
tern.

The filter pattern is expected to cover all correct
instances of the sibling group. Therefore, a pattern
co-occurring with many seed instances is desirable.
For example, in Figure 3 (a), the pattern “drive” is
more suitable than “minor change” because “drive”
supports more correct instances. This factor, Cover-
age, is modeled by recall. Recall of the pattern f of
the sibling group Sj is calculated using equation (4).

Recall(Sj , f) =

∑
c∈Sj

∑
i∈Ic cooccur(f, i)∑
c∈Sj
|Ic|

(4)

cooccur(f, i) =

{
1 if i co-occurs with f
0 otherwise

(5)

Ic is the set of seed instances of category c. |Ic|
is the number of seed instances of category c.
cooccur(f, i) indicates whether the seed instance i
co-occurs with the pattern f .

∑
i∈Ic cooccur(f, i) is

the number of seed instances co-occurring with pat-
tern f .

A filter pattern co-occurring with specific in-
stances of the sibling group is inappropriate because
filter patterns must ascertain whether candidate in-
stances have a common property among categories.
Therefore the method applies the restriction that the
patterns must appear in two or more categories of the
sibling group 2. In Figure 3 (b), the pattern “engine”

2We found that the number of candidate patterns was too
small when we adopted the restriction that filter patterns must
appear in all categories of the sibling group. Therefore, we in-
troduced the restriction that filter patterns must appear in two or
more categories of the sibling group. Furthermore, we measure
Coverage to obtain filter patterns that appear many categories
of the sibling group.

co-occurs with seed instances of both car and mo-
torcycle categories but “Toyota” appears only in the
car category. The method removes the latter in this
example. Furthermore, we should respect a pattern
which co-occurs with seed instances in each cate-
gory in a sibling group equally. For example, Fig-
ure 3 (b) shows that the filter pattern “drive” is more
suitable than “engine” because “drive” co-occurs
with seed instances of car and motorcycle categories
equally. This factor, Dispersion, is modeled by en-
tropy. Entropy of the pattern f of the sibling group
Sj is calculated using equation (6).

Entropy(Sj , f) = −
∑

c∈Sj

Pc(f) log|C| Pc(f) (6)

Pc(f) =

∑
i∈Ic cooccur(f, i)∑

c∈Sj

∑
i∈Ic cooccur(f, i)

(7)

|C| is the number of categories in which the
pattern f appears. If the pattern f co-occurs
with seed instances of each category equally, then
Entropy(Sj , f) obtains the highest score.

To prioritize patterns with consideration of Cov-
erage and Dispersion, we score the pattern f :

Score(Sj , f) = Entropy(Sj , f) ∗Recall(Sj , f)
(8)

Calculating Score(Sj , f) for candidate pattern f of
each sibling group Sj , the method acquires the top
15 patterns of each sibling group. We presume that a
sibling group is exclusive to the other sibling groups.
Therefore if a pattern is considered as candidates
in multiple sibling groups, then the method decides
that the pattern belongs to only the sibling group in
which the pattern appears most frequently.

4 Experiments

4.1 Experimental setting
We evaluated the effect of sibling relations as a
prior knowledge for set expansion. We compare
the Espresso algorithm (Pantel and Pennacchiotti,
2006), the Espresso algorithm with exclusiveness
constraint between categories (Espresso + exclusive-
ness constraint), and the Espresso algorithm with ex-
clusiveness constraint and sibling relations (the pro-
posed method). Each method was configured to ex-
tract 15 patterns and instances at every iteration. Be-
cause set expansion is the task to obtain unknown
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Figure 4: Precision of each method in accordance with
the number of acquired instances.

instances, it is difficult to measure recall. Therefore,
we compare the precision of each method when each
method acquires fixed quantities of instances. We
asked three human annotators to judge the correct-
ness of acquired instances. We conducted the ex-
periments in Japanese. The results described herein
have been translated into English for presentation.

Table 2 reports all categories used for the exper-
iments. Each category belongs to only one sibling
group. Each sibling group consists of two or more
categories. We prepared sibling groups by manu-
ally based on Wikipedia. Each category starts with
15 seed instances extracted from Wikipedia in a
semi-automatic manner (Sumida et al., 2008). Be-
cause the automatic method yields incorrect seed in-
stances, we removed errors manually.

We used 110 million Japanese web pages from
which patterns and instances are extracted. We
parsed sentences in the web pages using KNP,
a Japanese dependency parser (Kurohashi et al.,
1994). To reduce the computational time for the
Espresso algorithm, we removed patterns and in-
stances occurring fewer than three times.

4.2 Results

Figure 4 shows the precision of each method in
accordance with the number of acquired instances.
The dotted line depicts the precision curve of the
Espresso algorithm. Espresso + exclusiveness con-
straint (depicted in dash line) improved the precision
of extracted instances by 2.4 percents (with 4305 in-
stances) and 1.3 percents (with 6765 instances). The

proposed method (in solid line) with exclusive and
sibling relations outperformed other baselines. In
particular, the proposed method improved the pre-
cision from Espresso by 4.4 percents (with 4305
instances) and 2.1 percents (with 6765 instances).
This result demonstrates that prior knowledge about
sibling relations improves the performance of set ex-
pansion.

Table 1 shows the top 15 instances with high
scores of Shinto shrine and temple categories, which
belong to the same sibling group, acquired by each
method in the 5th iteration. In Table 1, we divided
instances into correct or incorrect ones. In Table 1,
Espresso and Espresso + exclusiveness constraint
obtained many incorrect instances, but each method
acquired different instances. In Espresso, some
instances (e.g., “Hachiman Shrine” and “Dazaifu
Tenman-gu”) were identified as instances of both
Shinto shrine and temple categories. In contrast,
Espresso + exclusiveness constraint prohibits an in-
stance from belonging to multiple categories and
tries to choose the best category for the instance.
This example suggests that mutual exclusivity mit-
igates semantic drift. However, in the temple cat-
egory, Espresso + exclusiveness constraint obtains
many unrelated instances such as “Fukuroya Soy
Sauce Shop” and “Adashinomayu Village”. The
proposed method removed these incorrect instances
with knowledge about commonality of the sibling
group. These results suggest that sibling relations
are useful additional knowledge for set expansion.

Table 2 describes the precision of acquired in-
stances of each category when each method has fin-
ished the 5th iteration. Table 2 also describes the im-
provement ratio of precision of the proposed method
against Espresso. In Table 2, each line divides cate-
gories into a sibling group. Additionally, Table 2 ex-
hibits the top three filter patterns used in each sibling
group, along with their scores. Table 2 shows that
the proposed method and Espresso + exclusiveness
constraint improved the precision from Espresso in
many categories. This fact indicates that sibling re-
lation and exclusivity between categories improve
the set expansion accuracy. However, in some cate-
gories, knowledge about sibling relations is ineffec-
tual. We classify the possible causes of these failures
into two types.
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Table 1: Top 15 instances of the Shinto shrine and temple categories obtained by each method.

category correct/incorrect Espresso Espresso + exclusiveness constraint The proposed method

correct

Hachiman Shrine, Dazaifu Tenman-
gu, Meiji Shrine, Tenman-gu,
Tsurugaoka Hachiman-gu, Ise Grand
Shrine, Yasaka Shrine, Kasuga Shrine,
Izummo Shrine, Yasukuni Shrine,
Kanda Shrine, Shinto Shrine

Dazaifu Tenman-gu, Meiji Shrine,
Hachiman Shrine, Ise Grand Shrine,
Tenman-gu, Izumo Shrine, Tsurugaoka
Hachiman-gu, Kasuga Shrine, Yasaka
Shrine, Yasukuni Shrine, Kanda Shrine,
Atago Shrine, Shinto Shrine

Meiji Shrine, Ise Grand Shrine, Dazaifu
Tenman-gu, Hachiman-gu, Tsurugaoka
Hachiman-gu, Izumo Shrine, Yasaka
Shrine, Kasuga Shrine, Tenman-gu,
Yasukuni Shrine, Itsukushima Shrine,
Kanda Shrine, Atago Shrine, Shinto
Shrine

incorrect Senso-ji, Narita Mountain, Temple Narita Mountain, Senso-ji Narita Mountain

correct Senso-ji, Zenko-ji, Narita Mountain,
Temple Jio-ji, Tokurin-an

Nanzen-ji, Daitoku-ji, Chion-in,
Myoshin-ji, Rokuharamitsu-ji, Shokoku-
ji, Jojako-ji, Sekizanzen-in, Raige-in,
Konzo-ji, Temple, Temple

incorrect

Shinto Shrine, Hachiman Shrine,
Dazaifu Tenman-gu, Tenman-gu,
Tsurugaoka Hachiman-gu, Meiji
shrine, Yasaka Shrine, Kasuga Shrine,
Ise Grand Shrine, Izumo Shrine,
Yasukuni Shrine

Konoshimanimasu Amaterumitama
Shrine, Kohata Shrine, Kyoto Prefectural
Insho-Domoto Museum of Fine Arts,
Adashinomayu Village, Uji-Kanbayashi
Musium, Fukuroya Soy Sauce Shop,
Kyoto Orthodox Church,
Konjyakunishimura, Ichiharaheibei
Shop, Kungyokudo, Catholic Miyazu
Parish, Ise Bay Tour Boat, Lake Biwa
Canal Memorial

Shimogamo Shrine, Imamiya Shrine,
Hirano Shrine

Top 15 instances of each method

Shinto shrine

temple

1. Low score of filter patterns

2. High precision in the baseline

In cause 1, precision drops in categories (e.g.,
motor vehicle manufacture, medical supplies man-
ufacture, art museum, and theater categories) of
some sibling groups. For example, in motor vehicle
manufacture and medical supplies manufacture cat-
egories, improvement ratios are -14.44 percent and
-2.22 percent, respectively. In this sibling group, the
highest score of filter patterns is as low as 0.1837.
Recall that scores of filter patterns are computed for
a small number of seed instances in a sibling group.
Low scores of filter patterns imply that the proposed
method could not find patterns with of Coverage and
Dispersion. We suspect that the lack of common-
ality of categories in the sibling group (e.g., motor
vehicle manufacture and medical supplies manufac-
ture) does not fit well to the assumption of using fil-
ter patterns. Therefore, investigating the impact of
choosing sibling groups would be an interesting fu-
ture direction of this research.

The film director and the comedian categories are
affected by cause 2. In cause 2, although seman-
tic drift does not occur in Espresso, the proposed
method filtered out some positive instances. In other
words, the proposed method removed correct in-
stances more than incorrect ones. The proposed
method forces instances to co-occur with filter pat-
terns but the constraint may be too strong. More-

over, because filter patterns are determined only by
seed instances, filter patterns may not cover the com-
mon property of newly-acquired instances as the
method iterates the bootstrapping process. In order
to remedy this effect, it might be necessary to update
filter patterns in the middle of iterations.

5 Conclusion

In this paper, we demonstrated that sibling relations
between semantic categories provide useful knowl-
edge for set expansion. We proposed the method
that uses sibling relations as prior knowledge. In the
experiments, we reported that the proposed method
gained 4.4 percent improvements (with 4305 in-
stances) from the baseline Espresso algorithm.

However, as explained in Section 4.2, the pro-
posed method suffers from some side effects. We
suspect that the causes of the side effects derive from
the design of sibling groups and the constant use of
filter patterns. Addressing these issues is left for fu-
ture work. We also plan to extend this approach for
extracting relation instances where each relation has
semantic constraints on arguments (entity instances)
and where pairwise relations (e.g., is-president-of
and is-citizen-of) also have hierarchy (e.g., entail-
ment and causality relations).
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Table 2: Precision for each category and each method after five iterations.

category Espresso
(%)

Espresso +
exclusiveness
constraint(%)

The proposed
method(%)

improvement
ratio(%) filter patterns (top 3) pattern

score

Shinto shrine 72.22 73.33 75.56 3.33

temple 14.44 37.78 63.33 48.89
Japanese city 97.78 97.78 100.00 2.22
American city 28.89 34.44 36.67 7.78
Chinese city 37.78 58.89 60.00 22.22
infection 26.67 47.78 47.78 21.11

mental illness 34.44 46.67 46.67 12.22

film director 97.78 97.78 74.44 -23.33
cartoonist 87.78 86.67 91.11 3.33
novelist 95.56 93.33 94.44 -1.11

car 95.56 95.56 95.56 0.00

motorcycle 83.33 83.33 93.33 10.00

board game 24.44 23.33 22.22 -2.22

computer game 98.89 98.89 98.89 0.00

card game 63.33 61.11 61.11 -2.22

motor vehicle manufacture 62.22 62.22 47.78 -14.44

medical supplies manufacture 5.56 5.56 3.33 -2.22

Asian country 34.44 33.33 33.33 -1.11

African country 44.44 45.56 45.56 1.11

European country 44.44 48.89 48.89 4.44

art museum 35.56 37.78 17.78 -17.78

theater 50.00 50.00 24.44 -25.56
island 66.67 66.67 61.11 -5.56
mountain 96.67 96.67 92.22 -4.44
river 95.56 95.56 95.56 0.00
radio station 20.00 61.11 61.11 41.11

TV station 68.89 67.78 67.78 -1.11

station 98.89 100.00 100.00 1.11

airport 37.78 37.78 44.44 6.67

chemical element 20.00 20.00 20.00 0.00

chemical combination 41.11 41.11 41.11 0.00

lake 31.11 21.11 21.11 -10.00

pool 2.22 0.00 0.00 -2.22

actor 95.56 94.44 94.44 -1.11

comedian 98.89 98.89 97.78 -1.11

bacterium 37.78 45.56 40.00 2.22

virus 32.22 28.89 14.44 -17.78

news paper 48.89 48.89 53.33 4.44

magazine 44.44 44.44 96.67 52.22

publisher 32.22 23.33 97.78 65.56

record company 38.89 47.78 48.89 10.00

precicnct 
plum 
hatsumode�
live 
go 
leave 
illness 
treatment 
symptom�

original work 
masterpiece 
best work 

drive 
own car 
you�

play 
game 
enjoy 

stock quote 
Takeda Pharmaceutical 
meeting 

Japan 
nation 
speak 

0.9658 
0.5946 
0.5266 
1.0000 
1.0000 
0.9319 
1.0000 
0.9658 
0.9658 

0.6235 
0.5832 
0.3167 

0.7572 
0.5510 
0.5409 

0.9092 
0.8651 
0.4434 

0.1837 
0.1333 
0.1333 

1.0000 
1.0000 
1.0000 

beside 
command 
cape�

flow 
fish 
sea 
program 
broadcasting 
announcer�
get off 
near 
Haneda Airpoat 

contain 
quantity 
component�

outward appearance 
front yard 
close 

picture 
movie 
perform�

bacterium 
bacillus 
microbe 
publish 
article 
print�

0.8518 
0.7146 
0.6618 

0.5757 
0.4412 
0.3749 
0.9658 
0.8630 
0.8630 
0.6989 
0.6042 
0.5090 
1.0000 
0.9299 
0.8518 

0.1618 
0.1203 
0.1082 

0.8920 
0.8518 
0.8324 
0.4585 
0.4460 
0.4183 
0.8920 
0.7635 
0.5698 
0.6473 
0.2014 
0.1656 

publisher 
familiar 
manufacture 
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