
A Tabular Interpretation of Bottom-up Automata for TAG

Eric de la Clergerie
INRIA

Domaine de Voluceau
Rocquencourt, B.P. 105

78153 Le Chesnay Cedex
France

Eric.Clergerie©inria.fr

Miguel A. Alonso Pardo
Depto. de Computaci6n

Universidad de La Coruiia
Campus de Elvifia s/n

15071 La Corufia
Spain

alonso©dc.fi.udc.es

David Cabrero Souto
Centro Ram6n Pifieiro para a
Investigaci6n en HumanidaJ..:s
Estrada Santiago-Noia km 3

15896 Santiago de Compostela
Spain

dcabrero©cirp.es

Abstract
We present a tabular interpretation for a cla.ss of
2-Stack Automata that may be used to describe
bottom-up parsing strategies for TAGs. The results
are also useful for· tabulating other existing bottom
up automata models for this kind of languages.

1 Introduction
Several extensions of push-down automata ha.s been
proposed as operational devices for describing pars
ing strategies for TAGs. Embedded Push-Down Au
tomata [EPDA] (Vijay-Shanker, 1988) and 2-Stack
Automata {2-SA] (Becker, 1994) are suitable opera
tional devices for top-down strategies. For bottom
up strategies, Bottom-up EPDA [BEPDA] (Scbabes
and Vijay-Shanker, 1990; Rambow, 1994) and Lin
ear lndexed Automata (LIA] (Nederhof, 1998) have
been proposed.

We cla.ssify parsing strategies for TAGs w.r.t. the
way adjoining is recognized and regardless of how
elementary trees are traversed. In Top-Down strate
gies, the auxiliary tree to be adjoined is predicted
once the adjoining node has been reacbed. Examples
are the Earley-like parsing algorithms whicli pre
serve the correct prefix property (Nederhof, 1997).
Conversely, in Bottom- Up strategies, adjoining is
considered only when a candidate auxiliary tree ha.s
been completely traversed. Examples are the pop
ular CYK-like (Vijay-Shanker and Joshi, 1985) and
Earley-like parsing algorithms without the valid pre
fix property (Scbabes, 1991).

A TAG parser must handle elementary tree
traversing a.s well as adjoining processing and keep
some information about these two kinds of ta.sk.
Then, a 2-stack automata is adequate to implement
parsing algorithms for TAG.

Polynomial time complexity can be lost for a non
deterministic grammar if redundant computations
are not discarded using some kind of dynarnic pro
grarnming (tabular) techniques. For the above men
tioned automata models, systematic tabulation is
only available for LIA.

The automata model proposed in this paper for
bottom-up parsing strategies presents the following

42

cbaracteristics: separation of the tree traversal and
adjunction information by using two stack.s; system
atic tabulation, achieving O(n6) time complexity
and O(n~) space complexity; and results comparable
with existing tabular algorithms for TAGs.

2 {Strongly-driven) bottom-up
2-Stack A utomata

Strongly Driven 2-Stack Automata [SD 2-SA] has
been introduced in (de la Clergerie and Alonso
Pardo, 1998) to describe arbitrary parsing strate
gies for TAGs. They work on 2 stacks with some
restrictions added to make them equivalent, w.r.t.
the recognized languages, to the dass of tree adjoin
ing languages.

A SD 2-SA uses the Master Stack MS to drive
the evaluation and the Auxiliary Stack AS for re
stricted bookkeeping. Actually, AS should be con
sidered as a stack of stacks, each of them represent
ing a Bession. Typically, in TAG parsing, a session
contains a sequence of adjunctions done along the
spines of auxiliary trees. A session starts in mode
w (write) where pop action are forbidden on MS
and switches at some point to mode e·(erase) where
push actions are forbidden on MS. The actions on
AS in mode e should faithfully retrace the actions
done in mode w. Exiting a session is only possible
when reaching back (in e mode) the MS element
that initiated the session and when the session stack
on AS is empty.

The bottom-up "projection" of SD 2-SA, hence
forth BU 2-SA, imposes an additional restriction:
AS must remain empty in mode w. That means
that adjunction can be only recognized when a com
plete auxiliary tree ha.s been constructed. The differ
ent behaviors of SD 2-SA and BU 2-SA are obvious
when comparing the shape cf derivations a.a illus
trated in Fig. 1, where the axis display the stack
sizes.

More formally, a BU 2- SA A is specified by a 6-
tuple (L:, M, X, $0, $1, 0) where :E denotes the finite
set of terminals, M the finite set of master stack
elements and X the finite set of auxiliary stack el
ements. The init symbol $0 and final symbol $1

I
I

I I I I
I I

I I

• il ••. J. ' · N B D 0
Figure 4: Application of Rule 1

Space complexity of the tabular technique for
BU 2-SA is obviously O(n4) as at most 4 indices
are stored in buXCF items.

5 Related work
Our tabular interpretation may be used to re
interpret other existing tabular algorithms for
TAGs, based on some automata model or not.

Linear Indexed Automata [LIA] (Nederhof, 1998)
is the only other automata model we are aware of
that has an associated tabular algorithm. This al
gorithm considers items ((B, C,i,j), (0, D, D,0,0))
corresponding to buCF items Bc5Cm, a.s well as
items ((B,C,i,j),(c,D,E,p,q)) corresponding to
buXCF items Be>[DE]Öe. Because LIAs work on a
stack of stacks, the empty stack markers we use are
useless, the f= mark being implicit wben the second
part of an item is equal to (0,D,D,0,0).

If we now consider the tabular algorithm of (Vijay
Shanker and Weir, 1994), which is not ba.sed on an
automata model, we find that, using their terminol
ogy, our buXCF items Be>[DE]Öe correspond to a
head BÖ with a terminator pointer [DE] and buCF
items to a head, witbout terminator pointer.

In both cases, marks and modes (w and e) are
absent from the proposed iterns, but one may show
that they are actually implicitly present. They may
be also be discarded from our items when consider
ing specific parsing strategies, but are needed if one
wishes to exploit tbe full potentiality of BU-2SA, for
instance for more complex parsing strategies.

6 Concl usion
Bottom-up 2-SA may be seen as the projection of a
subclass of strongly-driven 2-SA, specialized to de
scribe parsing strategies for TAG where adjunction
is recognized in a bottom-up way_ (i.e. when being
in mode erase). A tabular interpretation of BU 2-
SA is straightforwardly derived by "projecting" the
tabular interpretation for SD 2-SA. So, a buXCF
itern ~C>[~E}Öe is the projection of a XCF item
ABo[DEJCe and a buCF itern Bc5Cm is the pro
jection of a CF item ABc5Cm. For SD 2-SA, A is
needed to handle popping on AS in w rnode, but

43

it may be safely removed for BU 2-SA because of
the extra condition on the emptiness of AS in w
mode. While the worst case time complexity re
mains O(n6), the worst case space complexity de
crea.ses from O(nc') for 2-SA to O(n4) for BU 2-SA.
Of course, the drawback is the violation of the valid
prefix property and it remains to investigate whether
or not this is a good thing for TAG grammars used
in Natural Language Processing.

7 Acknowledgements
This work has been partially supported by the
European Union (1FD97-0047-C04-02), Govern
ment of Spain (HF97-223) and Xunta de Galicia
(XUGA10505B96 and XUGA20402B97).

References
Tilman Becker. 1994. A new automaton model

for TAGs: 2-SA. Computational Intelligence,
10(4):422-430.

Eric de la Clergerie and Miguel A. Alonso Pardo.
1998. A tabular interpretation of a dass of 2-Stack
Automata. In Proc. COLING/ACl'98, Montreal,
Canada, August.

Mark-Jan Nederhof. 1997. Solving the correct
prefix property for TAGs. In T. Becker and H.
V. Krieger, editors, Proc. of the Fifth Meeting on
Mathematics of Language, pages 124-130, Schloss
Dagstuhl, Saarbruecken, Germany, August.

Mark-Jan Nederhof. 1998. Linear indexed automata
and tabulation of TAG parsing. In Proc. of First
Worbhop on Tabulation in Parsing and Deduc
tion (TAPD'98}, pages 1-9, Paris, France, April.

Owen Rambow. 1994. Formal and Computational
Aspects of Natural Languege Syntax. Ph.D. thesis,
University of Pennsylvania.

Yves Schabes and K. Vijay-Shanker. 1990. Deter
ministic left to right parsing of tree adjoining lan
guages. In Proc. of 28th Annual Meeting of the
Association for Computational Linguistics, pages
276-283, Oittsburgh, Pennsylvania, USA, June.

Yves Schabes. 1991. The valid prefix property and
left to right parsing of tree-adjoining grammar.
In Proc. of II International Workshop on Pars

. ing Technologies, IWPT'91, pages 21-30, Canct1n,
Mexico. .

K. Vijay-Shanker and Aravind K. Joshi. 1985. Some
computational properties of tree adjoining gram
mars. In ZSrd Annual Meeting of the Associa
tion for Computational Linquistics, pa~es 82-93,
Chicago, IL, USA, July. - - - -

K. Vijay-Shanker and David J. Weir. 1994. Parsing
some constrained granunar formalisms. Computa
tional Linguistics, 19(4):591-636.

K. Vijay-Shanker. 1988. A Study of 1Tee Adjoining
Grammars. Ph.D. thesis, University of Pennsyl
vania, January.

AS 2-SA BU 2-SA

era~ era~

/ ':rite\ ~
MS

Figure 1: Derivation shapes for SD and BU 2-SA

are distinguished elements of M. e is a finite set of
transitions.

MS is a word in ('DM)* where 'D denotes the set
{t>, F} of action marks, projection of the !arger ac
tion mark set {/,-t, \i, i=} used for SD-2SA. Push
ing an element on MS is either marked with F if a
"new session" starts at the same time, or by C> oth
erwise.

AS is a word of (X:.:t'*)* where symbols in X: =
{i= w, i= e} are used to delimit session stacks and
remember the mode of the previous session.

Given some input string x1 ..• Xn E r:•, a con
figuration of A is a tuple (m, i, 2, e) where m e
{ w, e} denotes the current mode, i the current string
position in [O, n], s the master Stack and e the
auxiliary stack. The initial configuration of A is
(w,0,i=$o,i=w) and the final one (e,n,i=$1,i=w).

A transition r is represented by a pair
(m,S,e) ~ (m',6,8) where m,m' E {w,e}, z
in !::", 3 and 0 are suffixes of master stacks in
M('DM)*, and e,e Suffixes of auxiliary Stacks in
(XuX)*. We denote (m,i, iliS,,Pe)I- (m',j, ~0,,PO)
a valid derivation step using r with z = Xi+i .•• Xi,

and by !i the reflexive and transitive closure
of f- . A string ai ... Xn is accepted by A if

(w,0, i=So, t=w)!i (e,n, i=S1, i= w).
For BU 2-SA, we consider the following kinds of

transitions (which enforce that the AS topmost ses
sion remains empty in w mode), namely SWAP
to change the top element of the MS; i=-WRITE
and i=-ERASE to start and end sessions; and
C>-WRlTE and o-ERASE (o E {/,-t,\i}) to
push to and pop from MS while acting on AS:

SWAPl (p,A,e) ~ (p,B,e)

SWAP2 (w,A,i= 0
) ~ (e,B,i= 0

)

i=-WRITE (m,A,e) ~ (w,At=B,i=m)

i=-ERASE (e,Ai=B,i=m) ~ (m,C,e)

C>-WRITE (w,A,e) ~ (w, AC>B,E)

o-ERASE (e,AC>B,c) ~ (e,C,d) with
(o = -t and c = d = e) or (o = / and c = e)
or (o = \i and d = e).

44

3 TAG parsing with BU 2-SA
We present a BU 2-SA that simulates a Earley
like parsing algorithm without the valid-prefix prop
erty (Schabes, 1991). The automata performs full
prediction on the context-free backbone but no pre
diction on the adjunctions during the descent phase.

Each elementary tree is represented by a set
of context free productions of the form 11>:,o -t
ll>:,1 ... 11>:,n•, where 11>:,o denotes some non-leaf node
k and 11>:,i the ith son of k, and a set of terminal pro
ductions 11>:,o -t a>:, where 11>:,o denotes some leaf
node k with terminal label ak.

The 6-tuple (VT, M, X, 110,0, vo,o', 0) defines the
automata A, with M = {\7k,J u {11k,J u {11k,/}
and X= {\7k,,}, where symbols \7>:,i denote dotted
productions and 11k,i (resp. vk/) denote the predic
tion (resp. successful recognition) of a node. The
transitions are given by the following rules:

• Call / Return for a node not on a spine. The
call starts a new session, exited at return.

CALL: (m, \7>:,i, E) ~ (w, \7>:,iFllA:,i+li i=m)
RET: (e, \7A:,iFV>:,i+1',i=m) ~ (m, \7A:,1+i,e)

• Call / Return for an adjunction on node 11>:,o·
The computation is diverted to parse some ac
ceptable auxiliary tree ß with root node rß. At
return we check if the subtree attached to tlie
foot node of ß corresponds to the subtree rooted
by llk,O·

ACALL: (w,vA:,o,e) ~ (w,11A:,ol>rß,E)
AR.ET: (e,11A:,0C>r/, \7A:,n~) ~ (e,llA:,o',e)

• Call/ Return for a node 11>:,i+l on a spine. The
adjunction stack is propagated bottom-up along
the spine,

SCALL: (w, \7A:,,,e) .-.+ (w, \7A:,il>ll>:,s+iiE)
SRET: (e, \7>:,il>llA:,i+1',e) ~ (e, \7A:,i+liE)

• Call / Return for a foot node fß· A candidate
adjunction node for ß is predicted. At retum
we remember what node was considered.

FCALL: (w,/ß,e) ~ (w,fßC>\7>:o,e)
FRET: (e,/ßC>\7A:,na 1 E) ~ (e,J/, \7A:,na)

• Production Selection
SEL: (w,vA:,o,E) .-.+ (w, \7A:,o 1 E)

• Production Publishing
PUB: (m, \7A:,n„,E) .-.+ (e,vA:,o',E)

• Scanning

SCAN: (w,vk,OiFm)A(e,vk,O',i=m)

4 Tabulation
In a tabular framework, items store essential in
formation about characteristics "points" of elemen
tary derivations. Tabulation of SD 2-SA (de la
Clergerie and Alonso Pardo, 1998), that achieves

O(n6) time and O(n6) space complexity, needs two
kinds of items, namely 3-point Context-Free [CF]
items and 5-point escaped Context-free [XCF] items.
Each point is either a mini configuration (i, A, a) or
a micro configurotion (i, A) that stores some rel
evant information about a configuration, namely
the position i in the input string, the top MS
element A, and optionally the top AS element
a. The uppermost curve of Fig. 2 illustrates a 3-
point CF it~m {(h,A,-),(i,B,-),ö,(.i,C,c)], also
denoted BöCw where A and B are micro config
wations and G is a mini configuration. The upper
most curve of Fig. 3 illustrates a 5-point XCF item
[(h, A, -), (i, B, -}, ö1 {p, .f>, d}, (q, E, -}, (j, C,c}),
also denoted ABö[DE]Ce where A, B, E (resp.
fJ, C) are micro (resp. mini) configurations.

BU 2-SA restrictions imply that AS remains
empty in w mode, so the points A, B and G of
a CF item and the points A, B and fJ of a XCF
item are "projected" w.r.t. the top element of the
AS . Furthermore1 it may be shown that point Ais
actually redundant and can be discarded. The bot
tom cwve of Fig. 2 illustrates a BU 2-SA CF item
[(i, B, -}, 1> 1 (.i, C, c}), also denoted as Bt>Gw The
bottom curve of Fig. 3 illustrates a BU 2-SA XCF
item [(i, B, -}, I>, {p, f:?,)=0

}, (q, E, -}, (.i, C, c}), also
denoted a.s Bt>[DE}Ce. In both figures, the pro
jection is materialized by the da.shed arrows.

Formally, we identify two kinds of items for BU 2-
SA, a.ssociated to two different kinds of derivations:

Bottom-up CF [buCF]
items correspond to context-free derivations that
depend only on the topmost element of MS

(w,i,3B, {)=0)!i. (m,j,3Bt>C,{)=0
)

or (o,i,3B,{)r (w,j,EB)=C,~)=0)

and are denoted by BöCm, where B = (i,B), C =
(.i,C,)=0

}, and Ö E 1J. ·

Bottom-up Escaped CF [buXCF] items corre
spond to escaped context-free derivations of the
form:

(w,i,3B,{)=0
) r

r
r

(w,p,E~D,{)=0)

(e, q, E~Dt>E,{)=04')

(e,j,SBt>C, {)=0 q'lc)

and are denoted by Bt>[D_E)Ce, where B = {i, B},
D = (p, D}, E = (q,E), C = (j,_ C,c) .

A set of rules combines items and transitions in
order to retrieve all possible derivations. Due to
space limitations, we only describe the most com
plex rule {see Fig. 4), used to apply a transition
r = (e ,Bt>C,c) ~ (e, F,e) , omitting the scanning
constraint z on the input string:

45

<h.A,·>

············ <V···„···; .„.
·- ~ : , ; ~' :

' : 0 ~ ~ .. „ :- ~· -·· · · ·~„ „.„„ .. „ „„
' : ' : : ; il 0 ·········„ ... „.„ ... ,„ •.... „ .J .. ; .. „ „.„.„ „

I ' : t :
' \: , !
1 \. '. „ ·~ [> \:
• .--~ .. „.„.„„„„.„„.„.„„„

<-,·,·> jcl,8,·> ; <J,C,):">

Figure 2: CF items for SD 2-SA and BU 2-SA

<D ,. .
/l l <J,C,e> : :
/ j .. ·~~„ ... „p·······t„„.„„
: ; l • : : <q,E,·>

0 • • • • 00H • • •• """'''''" '; , •• „ . „ ;., .„ , • . ,.„ ,„(,,, ""'"
I f : : 1

1
: : '°-.,

,' ~ : : ' : : '"
! ', ~ ; ~ ~ ; '~\
1 l : : ' : ' \ : I> : \ : t

'(~-~ ,: : __ ,
~ ·----:----<t,8,·> ; :<p,D, 1:-b> <·.·.·>

Figure 3: XCF items for SD 2-SA and BU 2-SA

.B
0

1>IDE
0

}Ce}
Nö.äw _ 4> Nö!OP]Fe
Dt>[OP)Ee

(1)

where C = (j,C,c), B = (i,B,t=0
}, F = (k,F,b},

and .8° = (i, B} the projection of .ä to a micro
configuration.

The time complexity of thls rule is O(n7) but may
be reduced to O(n6) by partially applying the rule on
the first two items to build an intermediary structure
where B is discarded.

