
NLP and Industry: Transfer and Reuse of Technologies*

Leo Obrst and Krishna Nanda Jha
Boeing Defense & Space Group
Helicopters Division
Advanced Computing Technologies
P.O. Box 16858, MS P29-99
Philadelphia, PA 19142-0858
{ leo.obrst, krishna.n.jha} @boeing.com

Abstract

This paper describes a useful set of NLP tools
which has been successfully applied to many
different kinds of industrial requirements
spanning multiple domains and applications at
Boeing. The tools can be combined to
constitute a full-spectrum natural language
system and can be customized for new
domains relatively easily. To date, this array
of formal and natural language processing
technologies has been used to perform mass
changes to legacy textual databases and to
facilitate user interfacing to relational
databases and software applications.

1 Introduction

Industry has many uses for NLP technology. Because
the range of possible application is so varied and the
practicality constraints which industry imposes
sometimes quite confining, NLP components must be
reusable and extendible. This paper describes a set of
NLP tools which has been successfully applied to many
different requirements at Boeing. The tools can be
combined to constitute a full-spectrum natural language
system and can be customized for new domains
relatively easily. We describe the tools and a typical
real application which uses them.

2 Example: Mass Change of Text

in that the procedure must search for candidate
structured paraphrase sets (while abstracting away from
surface noise) and then apply generation rules which are
context dependent on the structures. The only
alternative solution to this problem is to inspect and
change the texts manually, a solution which is error-
fraught and expensive. The original problem can be
mitigated, however, by controlling the syntax and
semantics of the text prior to populating the database by
u s i n g a n authoring tool (for example, Boeing's
"simplified English" system [17]).

In the Boeing Company, millions of manufacturing
operations texts exist in legacy databases. These texts
are used by an on-line planning system to stage the
manufacturing of aircraft. Because there are many
manufacturing process threads, with varying degrees of
changeability, and many analysts and other personnel
who contribute to the collection of these texts, the
databases are in constant flux and contain significant
noise.

When a sequence of operations must be modified, as
when high volatile ozone-depleting organic compounds
need to be replaced by those having low volatility, then
all relevant texts must be retrieved, interpreted to
understand whether they match the relevant conditions
of the mass change, and then modified according to
specified rules. Such a textual modification process
requires robust normalization, complex pattern
recognition, syntactic parsing, and semantic
understanding of domain reference. Furthermore,
inference is required to generate new texts based upon
arbitrary change criteria.

2.1 The Problem

On-line legacy databases are used daily by industry.
Some of these databases consist of large amounts of
relatively unconstrained texts constituting manufacturing
plans and procedures, for example. These textual
databases require periodic "mass changes" to correct
errors and update procedures. "Mass change" means
more than a simple "global search and replace" of text,

2.2 The Application

Using formal language and NLP components, we
customized.a procedure to effect the mass change of on-
line textual databases for the circumscribed domain of
chemical treatment, prime, and finish operations. These
operations (represented as texts) are performed on the
shop floor in a precisely determined sequence,
dependent on the aircraft design requirements and the

* This paper has benefited greatly from discussions with Gary Coen of the ACT center at Boeing, Philadelphia.

57

part under construction. The finish and rinse operations
include applications of anodizers, primers, overcoats,
and topcoats of a variety of compounds, thicknesses, and
numbers of coats, to a range of treated or untreated parts
of diverse material composition, and describe the
manner in which the parts must be manipulated. The
texts refer to these materials and processes directly (i.e.,
they name the materials and processes), indirectly (i.e.,
they name documents and standards which refer to the
materials and processes), and in manners which combine
direct and indirect reference. Various types of temporal
and spatial information are present in the texts, including
duration of finish application and drying time, and the
location of areas to be finished or protected. Also
present in the text are references to other documents,
color codes, and miscellanous additional operations.
Though circumscribed, the semantics of this domain is
richly structured.

Examples of some simple plan texts from this
domain are displayed below (excluding database key
information):

(1) PRIME (1) COAT ZOINC CHROMATE PRIMER
PER VFI.1

(2) TOUCH UP REWORK AREA ONLY APPLY (1)
COAT OF BMS10-11 TYPE 1 PRIMER PER BAC5736
(F18.01) REATTACH IDENTIFICATION TAG

These examples exhibit misspellings, irregular
punctuation and nomenclature, and direct, indirect, and
mixed reference, which indicate the prospective
usefulness of an NLP approach.

2.3 The NLP Solution: a Process View

Because these are production databases and constantly
undergoing change, freezing these databases entails
temporarily removing them from production use, which
can be a very expensive undertaking. Hence, the
automated mass-change process must be able to run
reliably in a very small window of time. By distributing
the processing of the texts across many Unix
workstations, the time required for a typical run (ranging
from 6500 to 130,000 texts) has been reduced to
approximately 1.5 hours, thus minimizing downtime
cost.

Figure 1 schematically represents the mass-change
process. Initially, a subset of the on-line database's
records are extracted and downloaded (1). The records
are divided into key and text portions, made unique, and
normalized (2). The plan set is then partitioned (3)
according to the type of operation and/or finish material,

and these partitioned sets are distributed for subsequent
processing across available workstations.

Then, for each partition, the plans undergo spelling
correction (4), driven by a mutual information model [1]
constructed by prior exposure to and generalization over
large amounts of test corpora. This process, discussed in
more detail in the next section, feeds the NLP system
proper. The NLP system spans the continuum from
lexical tokenization (5), including the use of the two-
level morphology tool PCKIMMO [2, 9, 8] which
allows for a finite-state structured lexicon, through
phrase structure parsing using a hybrid syntactic-
semantic grammar (6), to semantic and discourse
interpretation (8), and finally to the new plan generation
stage (9). The tokenization and grammatical
subprocesses are implemented in the C programming
language. Text strings are tokenized by employing a
subsystem built around lex, a Unix lexical analysis tool
[1]. The grammatical processing is performed by a yacc-
like LR(1) parser [1, 16] extended to include
backtracking, inheritance, token-stream manipulation,
and the use of semantic hierarchies, described in the next
section. The semantic hierarchies (7) are also used by
the later interpretation and generation modules. Most of
the interpretation and generation modules are
implemented in Prolog because robust inference is
required. The semantic representations of those texts
which fit the requirements of the change rules then
undergo generation: working from the input semantic
representation of an individual text and the generation
rule set, a new plan is generated for each appropriate
operation text. Once all texts in every partition have
been fully processed, resulting in multiple sets of plans,
the texts are reattached to their original keys (10) and
formatted (11) to various specifications (a report to be
inspected by analysts, etc.), including a database record
format. The set of new database records are then
uploaded to the mainframe database, and the database is
again placed into production.

3 Components

This section describes in more detail key components of
the NLP tool set. These include spelling correction,
parsing, and semantic interpretation. The discussion of
these three modules will similarly center on the mass-
change application of the previous section, with
additional comments on the interpretation component
provided with respect to another application, that of a
query interface to a project and program scheduling
system. The mass change plan generation process is also
described.

t_,

58

l
Key Processing,
Normalization

Prelexical Analysis,
Lexicon
Morphology

.T
I Spelling

Correction

~__~f P r 1£~'~ ~ Fin al Inte r pretati°n "~~:'~!

I fOcma'.i o"e'. o Iil

.[Formatting

upload

Figure 1. Mass Change Process Flow

3.1 Spelling Correction

The spelling correction process represented by node (4)
in Figure 1 utilizes a statistical mutual information
model [5] to detect and correct spelling errors, based on
the observation that spelling errors are statistically
abnormal patterns. The intent therefore of spelling
correction is to modit3, the word sequence minimally to
make it statistically normal. The approach we have
pursued is to use a bigram mutual information model,
created by pre-processing a huge domain-specific textual
corpus (obtained perhaps, as in our case, by
downloading an entire textual database), to guide
spelling correction over new text within that domain
(Figure 2). A new model is created each time the domain
changes; this is especially important if the domains are
narrowly circumscribed and company-specific. In the
mass change procedure, spelling correction is applied to
the new corpus en masse at node (4). Statistically
unlikely words are corrected to statistically likely
candidates.

In general, there are problems inherent to the
detection of spelling errors. For example, all unknown
words encountered are not necessarily errors; they may
simply not have been seen before. Furthermore, all
known words are not necessarily correct; these are
epitomized by typographic variations and incongruous
word sequences. The mass change corpus exhibited the
following occurrences (with intended word bracketed to
the right):

(3) a. Typographic Variations
APPLY 2 COSTS OF EPOXY <COATS>
MARK BORE AND HOLE <MASK>

b. IncongmousWordSequences
CLEAN ACRYLIC
<CLEAR> FOLLOWED WITH
<FOLLOW>

59

(Off-line Process)

Figure 2. Spelling correction

Other anomalies which a spelling correction routine
must contend with are split words (with one or more
spaces intervening) and run-on words (where no space
separates using bigram model two words). In addition,
there is the possibility that the error-to-correction
mapping is non-invariant.

A statistical approach to spelling correction has some
advantages and some disadvantages. Among the
advantages are: it corrects the majority of errors, those
classified as nonwords, misspelled words, word-splits,
and run-ons; the automated acquisition of domain-
specific data is easily maintainable; and the use of a
statistical model enforces consistent lexical usage. A
disadvantage is that correlated recall and precision may
not be high, i.e. some errors may be missed and some
may be corrected incorrectly. However, reasonably
good recall (>75%) coupled with very high accuracy
(>95%) can be expected. Other disadvantages are: there
is no clear strategy for multi-error detection and
correction, and the tact that such a large corpus (20
megabytes in our mass change corpus) is required to
create a good statistical model.

3.2 Parsing

For parsing, we use a generalized LR(1) shift/reduce
parser [16, 1, 10]. Like yacc (which, given a grammar,
generates a parser for that grammar), our parser
precompiles the CFG grammar into a state-transition
table. The parser exercises CFG grammar rules
annotated with syntactic and semantic action routines,
thus allowing for synthesized and inherited attributes. In
addition to the rules, other knowledge stores integrated
into the parser's processing are a thematic role hierarchy
and a semantic domain network, both of which are also
used by lexical entries in a morphologically partitioned
lexicon. The parser uses a linked list of structured
tokens (displayed in 4 below), and returns only one
parse. To facilitate robust parsing, the parser also allows
the developer to activate grammar-directed token
dropping, token hypothesizing, and token type coercion.

(4) Token Structure
<id: numerical identifier for token

surface form (i.e. actual string) for the sulfform:
token
rootform:
value:
assertions:
scat:

feature:
nexl:

root form of the token
value (semrep) associated with id
[I
subcategorization requirement for the
token, where the scat format is
(ext arg int_argl int_arg2 ...), and
where each argument must be a
grammar symbol (exception: int argl
may be a string enclosed within # e.g.
#into#contact~with#); ext_arg may be
NULL/nil;
feature associated with token
ptr to next polysemous token>

The parser permits arbitrary backtracking, including that
over polysemous or composed tokens (idioms), over
grammar rules, and over object hierarchies (entity,
property, and predicate types in the hybrid domain
model), though in practice time and node limits are set.
The backtracking facility also includes the developer-
specified cut, an operator to force the termination of a
grammar rule. An example of backtracking over
polysemous tokens is displayed in the following
abbreviated trace from the mass-change process. As
noted, we employ a hybrid syntactic-semantic grammar,
primarily because such a hybrid permits generality (at
higher nonterminals) and specificity (at terminals and
lower nonterminals).

(5) BacktrackingoverPolysemousTokens
Lexicon (abbreviated):
FINISH : FINISH_~RB

: FINISH_NOUN
MATERIAL)

(isa

P~sing:
FINISH 1 COAT OF FINISH
mismatched string SCAT [required:
code] / [found: i[I]]
. ° ° °

Difficulty in parsing: no transition
for token NUMBER[168] from state 83
current stack (in reverse): state-
stack[l]: [FINISH[124]]
backtrack ...
nbar : ENTITY
a_nbar : nbar
a_nbar : a_nbar NUMBER
nphrase : a_nbar
Difficulty in parsing: no transition
for token COMPOSITION[69] from state
75
current stack (in reverse): state-
stack[2]: [COATING[62] nphrase[4109]
]

60

current stack (in
stack[4]:
COMPOSITION[69]
FINISH~TERB[126]]
backtrack ...
fin_n : MATERIAL
fin_np : fin_n
of_np : COMPOSITION

reverse): state-
[FINISH[124]

fin qfr[4126]

fin_np
fin_np : fin_qfr of_np
s_imp : FINISH_VERB fin_np
sentence : s_imp
discourse : sentence
top : discourse EOS

When enabled, the token-dropping option allows a
grammar rule to be matched by dropping a token (from a
pre-specified set of droppable tokens), and is only
applied when a sentence will not parse without dropping
the token. In addition, the parser will also hypothesize a
token when the input sentence will not parse strictly by
using the grammar rules. Similarly, the parser will
coerce the unexpected type of a token to a type which is
acceptable, should the parse otherwise fail.

3.3 Semantic Interpretation

The mass-change procedure does not require the
complex referential semantics that NLIs require. The
semantics and the discourse components can be simpler
because the application requirements are simpler. In all
our NLP applications, however, both domain-dependent
and -independent information constitute the semantic
model, which is jointly used by the grammatical module
(written in C) and the interpretation/generation module
(written in Prolog). Each token has a semantic marker
which acts as an index into the semantic domain model.
The morphologically generative lexicon is the primary
knowledge store-associating the input (surface) text
tbrm, its tokenization, and the semantic marker. The
grammatical module uses the lexicon to drive its work,
but also uses the semantic model directly to enable type
inheritance and, in some cases, the type coercion of
semantic markers.

The semantic domain model consists of a set of
assertions of the form

object(Child, [Relation, Parent])

where Relation is either 'isa' or 'ispart', and the three
possible roots of the hierarchies are 'entity', 'predicate',
and 'property'. These are defined by a developer and
entered into a the GraphEd tool [14], a graph editor
which outputs an ascii representation of a network. The
ascii form can be transformed and used by both the
parser and the backend Prolog interpretation processes.

The output of the grammatical module is a combined
syntactic-semantic representation of the input plan text

in the form of a list of binary predicates capturing the
tree structure. Each predicate is of the form:

predicate(skolem-constant, value)

with skolem constants representing the nodes of the tree.
The semantic entity markers are those items which are
the values of "instance' predicates, as

instance(n9, person)

asserts that 'n9' is an 'instance' of semantic class
'person'. The syntactic-semantic representation is then
asserted as the primary knowledge store in the finai
interpretation and generation module.

Additional knowledge sources used in the Prolog
interpretation and generation module are: a database of
finish codes and their associated information, including
the number of coats of application required, color
number, color name, and material type of each relevant
finish Code; a set of material-specific databases which
include the materials and the associated generation
requirements rules; and a task-driven tree-walker that
traverses the semantic representation of a plan to extract
information requested by the generator.

3.4 Plan Generation

The text plan generator directly executes rules
representing the output requirements of the new plans.
Prior to executing these rules, however, the generator
determines whether the original input plan is well-
formed, valid, and consistent. Then, using the domain
model, the finish code and material databases, the
requirements rules, and the semantic tree-walker, the
generator creates new plans.

In other cases, the generator detects that a meta-
constraint such as "Only one operation should exist per
plan text" is violated. It flags the text as anomalous,
indicating the constraint violation, but still tries to
generate a reasonable output text. A post-generation
process diverts constraint violations to a separate stream
which results eventually in the creation of a special
report. Texts which violate constraints are not changed
and uploaded; instead, these are evaluated by a human
domain expert, who adjudicates the suggested changes
individually. For example, in (6) the original plan
consists of multiple run-on sentences with no
punctuation. The NLP system determines that there are
actually three sentences, two of which refer to
application of finishes. With this information, the
generator determines that one of its meta-constraints has
been violated, generates its best guess at an output text,
and then annotates that text with the constraint violation
message.

61

(6) Example of Generated Text
Input:
TOUCH UP REWORK AREA ONLY APPLY (I)
COAT OF BMS10-11 TYPE 1 PRIMER PER
BAC5736 (F18.01) REATrACH IDENTIFICATION
TAG

Generated Text:
<<FOLLOWUP: MULTIPLE OPERATIONS
SPECIFIED.>>
TOUCH-UP FINISH REWORK AREA ONLY AS/IF
REQUIRED PER ENG. DWG. PRIME PER F-18.01.
REATTACH IDENTIFICATION TAG.

3.5 Interpretation and Other
Applications

The mass-change application is fairly simple. More
complicated NLP applications require ellipsis and
pronominal resolution, and more richer referential
semantics. An NLI to a relational database, for example,
requires an explicit recursive semantic composition
process. This is why our deeper semantics in Prolog
closely parallels that which a categorial analysis would
furnish, i.e:, using function application and composition
over lambda forms, per treatments such as [11, 12] and
using a semantic theory such as DRT [7]. Such an
approach allows one to compose a semantics in a
principled manner and to interpret with respect to the
domain model. Nevertheless, to this point, in an
intert:ace to a project and program scheduling system,
we have attempted only to render semantics for scope-
underspecified quantifiers, negation, and numerical and
temporal constraints. Tense and aspect (e.g., [15]),
distinctions among plural readings of noun phrases, and
a deeper lexical semantics, have so t~ not been
elaborated, but are planned. In [3], e.g., a lexical
semantics based on [6] will be developed. Finally, a tool
like [4]'s Prolog-to-SQL compiler can prove useful for
mapping the final referential semantics to a specific
database or domain model.

4 Conclusion

The NLP tools described in this paper have been used a
number of times to effect the mass-change of on-line
textual databases. The cost savings over other methods
has been significant (we estimate, for example, that in
four years, 20,000 man-hours have been saved over
manual methods). By representing core semantic
components in Prolog, we expect to minimize the work
needed to accommodate radical domain changes in the
future, though application-specific manual work must
s011 be performed to update the lexicon, modify the
grammar, and elaborate new referential semantics.

These same NLP tools, modified to accommodate
primarily lexical difl'erences, a more complicated
semantic domain model, and deeper interpretation, have
been employed in building NLIs to legacy databases and
applications, in a resource-conserving manner.

References

[1] Aho, A.; Sethi, R.; and Ullman, J. (1986).
Compilers: Principles, Techniques and Tools.
Reading, MA: Addison-Wesley

[2] Antworth, Evan L. 1990. PCKIMMO: A Two-Level
Processor for Morphological Analysis. Dallas, TX:
Summer Institute of Linguistics.

[3] Barrett, Tom; Coen, Gary; Hirsh, Joel; Obrst, Leo;
Spering, Judith; Trainer, Asa. 1997. MADEsmart:
An Integrated Design Environment. Submitted to
1997 ASME Design for Manufacturing Symposium.

[4] Draxler, Christoph. 1993. A Powerful Prolog to
SQL Compiler. CIS Centre for Information and
Language Processing. Ludwig-Maximilians-
Universit~it, Mtinchen, Germany. August 16, 1993.

[5] Dunning, Ted (1993). Accurate Methods for the
Statistics of Surprise and Coincidence.
Computational Linguistics 19: I, pp. 61-74.

[6] Jackendoff, R.S. 1990. Semantic Structures.
Cambridge, MA: MIT Press.

[7] Kamp, Hans; Reyle, Uwe. 1993. From Discourse to
Logic: Introduction to Modeltheoretic Semantics of
Natural Language, Formal Logic, and Discourse
Representation Theory. Dordrecht: Kluwer
Academic.

[8] Kartunnen, Lauri. 1983. KIMMO: A General
Morphological Processor. Texas Linguistic Forum
22: 163-186. University of Texas, Austin, TX.

[9] Koskeniemi, Kimmo. 1983. Two-Level
Morphology: A General Computational Model for
Word-Form Recognition and Production.
Publication No. 11. Helsinki: University of
Helsinki Department of General Linguistics.

[lO] Marcus, Mitchell. 1980. A Theory of Syntactic
Recognition for Natural Language. New York:
McGraw-Hill.

[11] Moortgat, Michael. 1988. Categorial
Investigations: Logical and Linguistic Aspects of

62

the Lambek Calculus. Foris Publications,
Dordrecht, Holland.

[12] Morrill, Glyn. 1994. Type Logical Grammar.
Dordrecht: Kluwer Academic.

[13] Obrst, Leo; Nanda Jha, Krishna; Coen, Gary. 1996.
Mass Change of On-line Textual Databases Using
Natural Language Processing. Industrial
Applications of Prolog Conference and Symposium
(INAP-96), Tokyo, Japan.

[14] Paulisch, Francis Newbery. 1993. The Design of
an Extendible Graph Editor. Lecture Notes in

Computer Science 704. Berlin, Heidelberg, New
York: Springer-Verlag.

[15] Verkuyl, Henk J. 1996. A Theory of Aspectuality:
The Interaction Between Temporal and Atemporal
Structure. Cambridge: Cambridge University Press.

[16] Tomita, Masaru (1985). Efficient Parsing for
Natural Language. Dordrecht: Kluwer Academic
Publishers.

[17] Wojcik, Richard; Harrison, Philip; Bremer, John.
1993. Using Bracketed Parses to Evaluate a
Grammar Checking Application. Proceedings of the
1993 ACL Conference.

63

64

