
ESTIMATING THE TRUE PERFORMANCE OF
CLASSIFICATION-BASED NLP TECHNOLOGY

James R. Nolan
Siena College

Loudonville, NY 12211
jnolan@siena.edu

Abstract

Many of the tasks associated with natural
language processing (NLP) can be viewed as
classification problems. Examples are the
computer grading of student writing samples
and speech recognition systems. If we accept
this view, then the objective of learning
classifications from sample text is to classify and
predict successfully on new text. While success
in the marketplace can be said to be the ultimate
test of validation for NLP systems, this success
is not likely to be achieved unless appropriate
techniques are used to validate the prototype.
This paper discusses useful validation
techniques for classification-based NLP systems
and how these techniques may be used to
estimate the true performance of the system.

INTRODUCTION

The objective of learning classifications from
sample text is to classify and predict successfidly
on new text. For example, in developing a
system for grading student writing samples, the
objective is to learn how to classify student
writing samples into grade categories so that we
may use the system to predict successfully the
grade categories for new samples of student
writing (Nolan, 1997a).

The most commonly used measure of
success or failure is a classifier's error rate
(Weiss & Kulikowski, 1991). Each .time the
classifier is presented with a case, it makes a
decision about the appropriate class for the case.
Sometimes it is right; sometimes it is wrong.
The true error rate is statistically defined as the
error rate of the classifier on a large number of
new cases that converge in the limit to the actual
population distribution.

I f we were given an unlimited number
of cases, the true error rate could be readily
computed as the number of samples approached
infinity. In the real world, the number of

samples is always finite, and typically relatively
small. The major question is then whether it is
possible to extrapolate from empirical error rates
calculated from small sample results to the true
error rate. It turns out that there are a number of
ways of presenting sample cases to a classifier to
get better estimates of the true error rate. Some
of these techniques are better than others. In
statistical terms, some estimators of the true
error rate are considered biased. They tend to
estimate too low, i.e., on the optimistic side, or
too high, i.e., on the pessimistic side.

In the next section, we will define just
what an error is when using classification
systems for natural language processing. The
apparent error rate will be contrasted with the
true error rate. The effect of classifier
complexity and feature dimensionality on
classification results will be followed by
conclusions.

WHAT IS AN ERROR?

An error is simply a misclassification: the
classifier is presented a case, and it classifies the
case incorrectly. If all errors are of equal
importance, a single error rate, calculated as
follows,

number of errors
error rate --

number of cases

summarizes the overall performance of a
classifier. However, for many applications,
distinctions among different types of errors turn
out to be important. For example, the error
committed in tentatively diagnosing someone as
healthy when one has a life-threatening illness
(known as a false negative decision) is usually
considered far more serious than the opposite
type of error - of diagnosing someone as ill
when one is in fact healthy (known as a false
positive). Further tests and the passage of time
will frequently correct the misdiagnosis of the

23

healthy person without any permanent damage
(except possibly to one's pocket book), whereas
an illness left untreated will probably get worse
and lead to more serious problems, even death.
Although not usually a life and death decision,
classifying a student's writing sample can result
in the same type of false negative and false
positive errors.

Let us suppose the writing sample
evaluation is being made to help determine
whether the student will be placed into a
program designed to help poor writers to
improve their writing skills. In this case, as in
the previous one, there are two errors that can be
made. The evaluation of the writing sample
could indicate that the student should not need
to be placed in the special writing program
when in fact they are deficient in writing skills
(a false negative). Or the evaluation could
indicate that the student shouM be placed in the
special writing program when the student's
writing skills are really at a level indicating he
or she does not need extra help (false positive).

The question is whether the two types
of errors committed in the writing sample
evaluation scenario - false negative and false
positive errors, respectively - are of the same
consequence. If they are not, then we must
extend our definition of error.

Costs and Risks

A natural alternative to an error rate as
previously defined is a misclassification cost
(lVlachina, 1987). Here, instead of designing a
classifier to minimize error rates, the goal would
be to minimize misclassification costs. A
misclassification cost is simply a number that is
assigned as a penalty for making a mistake. For
example, in the two-class situation, a cost of one
might be assigned to a false positive error and a
cost of two to a false negative error. An average
cost of misclassitication can be obtained by
weighing each of the costs by the respective
error rate. Computation,ally, this means that the
errors are converted into costs by multiplying an
error by its misclassification cost. The effect of
having false negatives cost twice what false
positives cost will be to tolerate many more false
positive errors than false negative ones for a
fixed classifier design. If an optimal decision-
making strategy is followed, cost choices have a
direct effect on decision thresholds and resulting
error rates.

If we assign a cost to each type of error
or misclassification, the total cost of
misclassification is most directly computed as
the sum of the costs for each error. If all
misclassifications are assigned a cost of 1, the
total cost is given by the number of errors, and
the average cost per decision is the error rate. By
raising or lowering the cost of misclassification,
we are biasing decisions in different directions,
as if there were more or fewer cases in a given
class. Formally, ff i is the predicted class and j is
the true class, then for n classes, the total cost of
misclassification is

n n

Cost = Z E Eij Cij
i = l j = l

where Eq is the number of errors and Cq is the
cost for that type misclassification. Of course,
the cost of a correct classification (Cq, for i=j) is
0.

For example, using the data in Figure
1, ff the cost of misclassifying a class 1 case is 1,
and the cost of miselassifying a class 2 case is 2,
then the total cost of the classifier is (14 * 1) +
(6 * 2) = 26 and the average cost per decision is
26/106 = .25. This is quite different from the
result if costs had been equal and set to 1, which
would have yielded a total cost of merely 20, and
an average cost per decision of .19 (Weiss &
Kulikowski, 1991).

True Class
Predicted Class 1 2

1 71 6
2 14 15

Figure 1: Sample Classification Results

We have so far considered the costs of
misclassifications, but not the potential for
expected gains arising from correct
classification. In risk armlysis or decision
analysis, both costs (or losses) and benefits
(gains) are used to evaluate the performance of a
classifier. A rational objective of the classifier is
to maximize gains. The expected gain or loss is
the difference between the gains for correct
classifications and losses for incorrect
classifications.

Instead of costs, we can call the
numbers risks. If misclassification costs are

24

assigned as negative numbers, and gains from
correct classification as positive numbers, then
we can express the total risk as

n n

Risk = g g E~jR~
i=l j=l

where Eq is once again the number of errors and
R e is the risk of classifying a case that truly
belongs in class j into class i.

Costs and risks can all be employed in
conjunction with error rate analysis. In some
ways, they can be viewed as modified error
rates. If conventionally agreed upon units, such
as monetary costs, are available to measure the
value of a quantity, then a good case can be
made for the usefulness of basing a decision
system on these alternatives as opposed to one
based directly on error rates. The implication for
classification-based NLP is that attention must
be paid to the context o f the particular
application as regards the costs and risks
associated with the possible errors in
classification.

APPARENT VS. TRUE ERROR RATE

As stated earlier, the true error rate of a
classifier is defined as the error rate of the
classifier ff it was tested on the true distribution
of cases in the population - which can be
empirically approximated by a very large
number of new cases gathered independently
from the cases used to design the classifier.

The apparent error rate of a classifier is
the error rate of the classifier on the sample
cases that were used to design or build the
system. In general, the apparent error rates tend
to be biased optimistically. The true error rate is
almost invariably higher than the apparent error
rate. This happens when the classifier has been
overfitted (or overspecialized) to the particular
characteristics of the sample data (Ripley,
1996).

It is useless to design a classifier that
does well on the design sample, but does poorly
on new cases. And unfortunately, as just
mentioned, using solely the apparent error to
estimate future performance can often lead to
disastrous results on new data. To illustrate this,
we can look at an example from speech
recognition. Any novice could design a classifier
with a zero apparent error rate simply by using a

direct table lookup approach as illustrated in
Figure 2. A sample of one individual's speech
and pronunciation patterns become the
classifier. When trying to interpret a spoken
word from this individual, we would just lookup
the answer (classification) in the table
containing their speech patterns.

If we test on the original speech data,
and no pattern is repeated for different classes,
we never make a mistake. Unfortunately, when
we bring in new speech data (another person's
speech), the odds of finding the individual case
in the aforementioned table are extremely
remote because of the enormous number of
possible combinations of speech features.

~ Decision by [
Table Lookup[~

of Original]~q-"lCases I
Samples I

Figure 2: Classification by Table Lookup

The nature of this problem, which is
illustrated most easily with the table lookup
approach, is caused by overfitting the speech
classifier to the data. Basing our estimate of
performance of this classifier on the apparent
error rate leads to similar problems. While the
table lookup is an extreme example, the extent
to which classification methods arc susceptible
to overfitting varies. Many a learning system
designer has been lulled into a false sense of
security by the mirage of low apparent error
rates.

This problem is of particular concern
when analyzing student writing samples where
the odds of finding a writing sample identical to
one in the test sample are extremely remote
because of the enormous number of possible
combinations of writing features.

Fortunately, there are very effective
techniques for guaranteeing good properties in
the estimates of a true error rate even for a small
sample. While these techniques can measure the
performance of a classifier, they do not
guarantee that the apparent error rate is close to
the true error rate for a given application.

The requirement for any model of true
error estimation is that the sample data are a
random sample. This means that the sample(s)
should not be preselected in any way. The

25

concept of randomness is very important in
obtaining a good estimate of the true error rate.
A computer classifieation-based NLP system is
always at the mercy of the design samples
supplied to it. Without a random sample, the
error rate estimates can be compromised, or
alternatively, they will apply to a different
population than intended.

Train and Test Error Rate Estimation

Many researchers have employed the train-and-
test paradigm for estimating the true error rate
(Nolan, 1997b). This involves splitting the
sample into two groups. One group is called the
training set and the other the testing set. The
training set is used to design the classifier, and
the testing set is used strictly for testing. If we
"hide" or "hold out" the test cases and only look
at them after the classifier design is complete,
then we have a direct procedural correspondence
to the task of determining the error rate on new
cases. The error rate of the classifier on the test
cases is called the test sample error rate.

As usual, the two sets of cases should
be random samples from some population. In
addition, the case.s in the two sample sets should
be independent. By independent, we mean that
there is no relationship among them other than
that they are samples from the same population.
To ensure that they are independent, they might
be gathered at different times or by different
researchers.

A question that arises with the train-
and-test error rate estimation technique can be
stated as: "How many test cases are needed for
the test sample error rate to be essentially the
true error rate?" The answer is: a surprisingly
small number. Moreover, based on the test
sample size, we know how far off the test
sample estimate can be. These estimations can
be derived from basic probability theory.
Specifically, the accuracy of error rate estimates
for a specific classifier on independent and
randomly drawn test samples is governed by the
binomial distribution. While a demonstration of
the use of the binomial distribution is not shown
here, it should be emphasized that the quality of
the test sample estimate is directly dependent on
the number of test cases. When the test sample
size reaches 1000, the estimates are extremely
accurate. At sample size 5000, the test sample
estimate is virtually identical to the true error
rate.

Random Resampling

A single random partition of the data set can be
misleading for small or moderately sized
samples. In such cases, multiple train-and-test
experiments can do better. When multiple train-
and-test experiments are performed, a new
classifier is learned from each training sample.
The estimatod error rate is the average of the
error rates for classifiers derived for the
independently and randomly generated tests
partitions. Random subsampling can produce
better error estimates than a single train-and-test
partition.

A special case of resampling is known
as leaving-one-out (Lachenbruch & Mickey,
1968). For a given method and sample size, n, a
classifier is generated using (n-l) cases and
tested on the remaining case. This is repeated n
times, each time designing a classifier by
leaving-one-out. Thus each ease in the sample is
used as a test case, and each time nearly all
eases are used to design a classifier. The error
rate is the number of errors on the single test
cases divided by n.

Leaving-one-out is an elegant and
straightforward technique for estimating
classifier error rates. The leaving-one-out
estimator is an almost unbiased estimator of the
true error rate of a classifier. This means that
over many different sample sets of size n, the
leaving-one-out estimate will average out to the
true error rate. Suppose you are given 100
sample sets of 50 eases each. The average of the
leaving-one-out estimates for each of the 100
sample sets will be very close to the true error
rate. Because the leaving-one-out estimator is
unbiased, for even modest sample sizes of over
100, the estimate should be accurate.

The great advantage of tlus technique is
that all the cases in the available sample are
used for testing, and almost all the cases are also
used for training the classifier. In addition,
much smaller sample sizes than those required
in the train-test method can lead to very accurate
estimation. There is an increased computational
cost, however.

Bootstrapping

Although the leaving-one-out error rate
estimator is an almost unbiased estimator of the
true error rate of a classifier, there are

26

difficulties with this technique. Both the bias
and variance of an error estimator contribute to
the inaccuracy and imprecision of the error rate
estimate. While leafing-one.out is nearly
unbiased, its variance is high for small samples.

A more recently discovered resampling
method, called bootstrapping, has shown much
promise as an error rate estimator (Efron, 1983).
There are numerous bootstrap estimators. We
will discuss one, called the e0 bootstrap
estimator. For this, a training group consists of
n cases sampled with replacement from a size n
sample. Sampled with replacement means that
the training samples are drawn from the data set
and placed back after they are used, so their
repeated use is allowed. Cases not found in the
training group form the test group. The
estimated error rate is the average of the error
rates over a number of iterations. About 200
iterations for bootstrap estimates are considered
necessary to obtain a good estimate. Thus, this is
computationally considerably more expensive
than leaving-one-out.

CLASSIFIER COMPLEXITY AND
FEATURE DIMENSIONALITY

Intuitively, one expects that the more
information that is available, the better one
should do. The more knowledge we have, the
better we can make decisions. Similarly, one
might expect that a theoretically more powerful
classification method should work better in
practice. Surprisingly, in practice, both of these
expectations are wrong (Wallace & Freeman,
1987).

Most classification methods involve
compromises. They make some assumptions
about the population distribution and about the
decision process fitting a specific type of
representation. The samples, however, are often
treated as a somewhat mysterious collection.
The features thought to differentiate the object
classes have been preselected (hopefully by an
experienced person), but initiaily it is not known
whether they are high quality features or
whether they arc highly noisy or redundant. If
the features all have good predictive capabilities,
any one of many classification methods should
do well. Otherwise, the situation is much less
predictable.

Suppose one is trying to make an
evaluation about the level of reading

comprehension understanding exhibited in a
sample piece of student writing based on five
features. Later two new features are added and
samples collected. Although no data has been
deleted, and new information has been added,
some methods may actually yield worse results
on the new, more complete set of data than on
the original, smaller set. These results can be
reflected in poorer apparent error rates, but more
often in worse (estimated) true error rates. What
causes this phenomenon of performance
degradation with additional information? Some
methods perform particularly well with good,
highly predictive features, but fail apart with
noisy data. Other methods may overweight
redundant features that measure the same thing
by, in effect, counting them more than once.

In practice, many features used in NLP
applications are often poor, noisy, and
redundant. Adding new information in the form
of weak features can actually degrade
performance of the system. This is particularly
true of methods that are applied directly to the
data without any estimate of complexity fit to
the data. For these methods, the primary
approach to minimize the effects of feature noise
and redundancy is feature selection. Given some
initial set of features, a feature selection
procedure will throw out some of the features
that are deemed to be noncontributory to
classification.

Our goal is to fit a classification model
to the data without overspecializing the learning
system to the data. Thus, we must determine just
how complex a classifier the data supports. In
general, we do not know the answer to this
question until we estimate the true error rate for
different classifiers and classifier fits. In
practice, though, simpler classifiers often do
better than more complex or theoretically
advantageous classifiers. For some classifiers,
the underlying assumptions of the more complex
classifier may be violated. For most classifiers,
the data are not strong enough to generalize
beyond an indicated level of complexity fit. As a
rule of thumb, one is looking for the simplest
solution that yields good results.

CONCLUSIONS AND
RECOMMENDATIONS

The success of a specific classification-based
NLP application depends on several factors,
including the power of the training method and

27

the size of the training sample. Irrespective of
the classification method, the performance of a
classification-based NLP system should be
evaluated by estimating the accuracy of future
predictions, technically known as estimating the
true error rate on future cases. This is of
fundamental importance for comparing
classifiers on the same samples and also for
selecting key characteristics of many of the
newer classifiers, e.g., neural networks.

It has been shown that, with limited
samples, the best techniques for measuring the
performance of classification-based NLP
systems are resampling methods that simulate
the presentation of new cases by repeatedly
hiding some test cases. Additionally, attention
must be paid to the context of the particular
NLP application as regards the costs and risks
associated with the possible errors in
classification.

Although statistically valid estimates of
the true error rate will not guarantee success in
the marketplace for NLP systems, they will give
one a measure of confidence in the true
performance of the system.

References

Effron, B. (1983). Estimating the Error Rate of a
Prediction Rule. Journal of the American
Statistical Association, 78:316-333.

Lachenbruch, P. and Mickey, M. (1968).
Estimation of Error Rates in Discriminant
Analysis. Technometrics, 10:1-11.

Nolan, James R. (1997a). The Architecture of a
Hybrid Knowledge-Based System for
Evaluating Writing Samples. In A Niku-Lari
(Ed.), Expert Systems Applications and
Artificial Intelligence Technology Transj~r
Series, EXPERSYS-97. Gournay s/M,
France: IITr International, in press.

Nolan, James R. (1997b). DISXPERT: A Rule-
Based Vocational Rehabilitation Risk
Assessment System. Expert Systems With
Applications, in press.

Machina, M. (1987). Decision-Making in the
Presence of Risk. Science, 236: 537-543.

Riplcy, Brian D. (1996). Pattern Recognition
and Neural Networks. Cambridge:
Cambridge University Press.

Wallace, C. & Freeman, P. (1987). Estimation
and Inference by Compact Encoding. Journal
of the Royal Statistical Society B.,
49B(3):240-265.

Weiss, Sholom M. and Kulikowski, Casimar A.
(1991). Computer Systems That Learn San
Meteo, CA: Morgan Kaufmann.

28

