
Software R e - U s e and Evo lut ion in Text Generat ion Appl icat ions $

K a r e n K u k i c h * and R e b e c c a P a s s o n n e a u *t and K a t h l e e n M c K e o w n t a n d
D r a g o m i r R a d e v t and V a s i l e i o s H a t z i v a s s i l o g l o u t and H o n g y a n J i n g t

*Bellcore
445 Sou th St reet

Morr i s town, NJ 07960, USA

{kukich, beck}@bellcore, com

t D e p a r t m e n t of C o m p u t e r Science

450 C o m p u t e r Science Bui ld ing

C o l u m b i a Univers i ty
New York, NY 10027, USA

{becky, kathy, radev, vh, hjing}Ocs, columbia, edu

A b s t r a c t 1 I n t r o d u c t i o n

A practical goal for natural language text
generation research is to converge on a sep-
aration of functions into modules that can
be independently re-used. This paper ad-
dresses issues related to software re-use and
evolution in text generation systems. We
describe the benefits we obtained by adapt-
ing and generalizing the generation mod-
ules and techniques we used for the succes-
sive development of three distinct text gen-
eration applications, PLANDoc, FLOW-
Doc, and ZEDDoc. We suggest that de-
sign principles such as the use of a com-
mon, modular pipeline architecture, a con-
sistent and general data representation for-
*nat, and domain-independent algorithms
for generation subtasks, together with com-
ponent re-use and adaptation, facilitate
both application development and research
in the field. In our experience, these princi-
ples led to significant reductions in develop-
ment time for successive applications, from
three years to one year to six months, re-
spectively. They also enabled us to isolate
domain-specific knowledge and devise re-
usable, domain-independent algorithms for
generation tasks such as ontological gener-
alization and discourse structuring.

tThe authors wish to acknowledge Jacques Ftobin,
James Shaw, Jong Lira, and Larry Lefkowitz, who also
played essential roles in the design and development of
PLANDoc and FLOWDOC.

Recent technological advances, such as the wide-
spread use of the World Wide Web and ready access
to a multitude of extensive large-scale databases,
have created novel opportunities for practical text
generation applications. At the same time, to take
full advantage of these opportunities, text genera-
tion systems must be easily adaptable to new do-
mains, changing data formats, and distinct underly-
ing ontologies.

One crucial factor contributing to the generaliza-
tion and subsequent practical and commercial via-
bility of text generation systems is the adaptation
and re-use of text generation modules and the de-
velopment of re-usable tools and techniques. In
this paper, we focus on the lessons learned dur-
ing the successive development of three text gen-
eration systems at Bellcore: PLANDoc (McKeown
et al., 1994) summarizes execution traces of an ex-
pert system for telephone network capacity expan-
sion analysis; FLOwDoc (Passonneau et al., 1996)
provides summaries of the most important events
in flow diagrams constructed during business re-
engineering; and ZEDDoc (Passonnean et al., 1997)
produces summaries of activity for a user-specified
set of advertisements within a user-specified time pe-
riod from logs of WWW page hits.

We built FLowDoc and ZEDDoc by adapting
components of the PLANDoc system. The trans-
fer of the original PLANDoc modules to new do-
mains led to the replacement of some hard-coded
rules and ontological knowledge with more general,
domain-independent components. This encapsula-
tion, or "plug-and-play" feature, enabled the trans-
fer of many of FLowDoc's modules to ZEDDoc

13

with minimal alterations. As a result, development
time was significantly reduced - - from three years
for PLANDoc to one year for FLOwDoc to six
months for ZEDDoc.

In the remainder of the paper, we provide back-
ground information on the three systems and then
present and discuss four design principles that facili-
tate the development of text generation systems and
their portability to new domains and applications:

• A common, stable pipeline architecture that
subdivides generation tasks (e.g., sentence plan-
ning or lexical choice) into separate modules.

• A consistent and general data representation
that allows easy interfacing between generation
modules and between the text generator and
external sources (e.g., relational databases).

* Domain-independent methods for performing
each generation subtask, that avoid hard-coded
knowledge and rely instead on external, plug-
and-play knowledge bases.

• Component re-use and adaptability from each
application to the next, with the aim of improv-
ing generality and achieving the data indepen-
dence goal described previously.

2 B a c k g r o u n d

PLANDoc (McKeown et al., 1994), the first ma-
jor text generation system developed at Bellcore, is
an enhancement to Bellcore's LEIS-PLAN T M net-
work planning product. Human engineers use LEIS-
PLAN to do network capacity expansion studies,
during which they explore alternative scenarios to
arrive at an optimal configuration of equipment that
meets demands for new services while minimizing
costs. P L A N D o c produces textual summaries of
the scenarios explored by engineers. It transforms
lengthy execution traces into human-readable sum-
maries by making heavy use of conjunction, ellip-
sis, and paraphrasing. It also allows engineers to
intersperse their own comments and justifications
while using the tool. PLA NDoc is currently in
widespread use throughout the Southwestern Bell
Corporation and has been requested by at least two
other regional Bell companies. As an example, Fig-
ure 1 shows a fragment of the input to PLANDoc
for a particular study, PLANDoc ' s representation
of the same information in canonical form, and the
resulting generated sentence.

FLowDoc (Passonneau et al., 1996) takes as in-
put flow diagrams representing the structure and op-
erations of a business unit, either as it is currently

RUNID fiberall FIBER
6119/93 act yes
BFA 1301 2 1995
FA 1201 2 1995
FA 1401 2 1995
FA 1501 2 1995
ANF C0 1103 2 1995 48
ANF 1201 1301 2 1995 24
ANF 1401 1501 2 1995 24
END 856.0 670.2

(a) Fragment of LEIS-PLAN's execution
trace~br a particular plan.

((cat domain_message)
(admin ((msg-num 19)

(runid FIBERALL)
(prev-runid ALLDLC)
(status act)
(saved yes)))

(class refinement)
(ref-type FIBER)
(action ACTIVATION)
(csa-site 1301)
(date ((year 1995) (quarter 2))))

(b) PLANDoc's representation of (a) in
canonical form.

RUN-ID FIBERALL demanded that PLAN
activate fiber for CSAs 1201, 1301,
1401 and 1501 in 1998 Q2.

(c) Sentence generated by PLANDoc
from the data in (b) and three other
similar messages.

Figure h Sample Input, Canonical Representation,
and Output of PLANDoc.

operating or after a proposed re-organization. Like
PLANDoc, it interfaces with another tool devel-
oped at Bellcore, SHowBIz, which maintains the
graphical representation and allows the exploration
of possible alternatives by the re-engineering con-
sultant. The diagrams resulting from re-engineering
analysis are quite complex, with numerous nodes an-
notated with a large number of attributes. FLOW-
DOC identifies the core components, participants,
and actions of each flow diagram and produces a
short textual summary. Figure 2 shows an example
input flow diagram, the representation of a sample
node in that diagram as presented to FLowDoc by
SHOwBIz, FLOWDOC's description of the same in-

14

AM~OdI~ Cora I~ l l r l lnce Ml~ l l l ld

lo~eotAmt

(a) Input flow diagram.

(make-flownode 26 'thought-task

: node-position 32899435

: who ' SME

: does_what "review"

: to_whom_or_what

' dr aft _do cument _in_MS_Wor d_f ormat)

(b) Input representation of a sample node.

((cat domain_msg)

(msg_id 14)

(msg-class salient-task)

(workf low_id 000931)

(activity-class thought_activity)

(does_what review)

(to_whom_or_what ms_word_doc)

(count 3))

(c) FLowDoc ' s canonical representation of
the information in (b), aggregated with
information from two other similar nodes.

The most frequent tasks in this workflow are those of creating,

reviewing aIld saving documents.

(d) Generated sentence from the canonical message in (c) and from similar
messages corresponding to other frequent tasks in the input diagram.

Figure 2: Sample Input Flow Diagram, Input Description of a Single Node, Canonical Representation of a
Set of Nodes after Aggregation, and Corresponding Generated Sentence for FLowDoc.

15

select host, count(host)

from zeddoc_view

where (date_time between '01-JAN-95 ' and '31-DEC-96')

(a) Fragment of SQL query automatically generated by ZEDDoc's

database query subsystem.

HOST COUNT(HOST)

santos.doc.ic.ac.uk 12

896ed78a.extern.ucsd.edu 7

thor.dai.ed.ac.uk 7

hvlassar.port.net 6
vip-b.enel.ucalgary.ca 4

baugi.ifi.uio.no 3

pm2-O5.sundial.net 3

194.80.129.254 2

abest206.abest.com 2
...

(b) Par t of the database output for the
query in (a).

((msg-class user-domain)

(santos.doc.ic.ac.uk 12.0)

(896edZ8a.extern.ucsd.edu 7.0)
(thor.dai.ed.ac.uk 7.0)

(hvlassar.port.net 6.0)

(vip-b.enel.ucalgary.ca 4.0)

(baugi.ifi.uio.no 3.0)

(pm2-05.stmdial.net 3.0)

(other 2.0)

(abest206.abest.com 2.0)
...)

(c) ZEDDoc's canonical representation

of the information in (b).

For the ads of interest, the most frequent Internet user domains were European

Internet domains at 28 percent and U.8. network domains at 23 percent.

(d) One of the sentences generated by Z E D D o c from the full information
about network hosts, which is partially shown in (c).

Figure 3: Automatically Generated SQL Query, Partial Database Output , Corresponding Canonical Repre-
sentation, and one of the Corresponding Sentences Produced by Z E D D o c .

formation aggregated over several similar nodes in
the diagram, and the sentence generated to express
this information.

Z E D D o c summarizes the underlying ZED appli-
cation's W W W activity. ZED manages a database
of advertisement images to satisfy Web advertising
contracts. 1 It selects ads to display in predefined
slots in a manner tha t optimizes the satisfaction of
the advertising contracts. Whenever ZED displays
a Web page, it determines what ads to display and
creates database entries for each displayed ad. ZED-
D o c integrates a browser, the summary generator,
and ZED's Oracle T M database of W W W transac-
tions in a client-server architecture. By accessing the
transaction database, Z E D D o c can produce short
summaries of ad activity within a user-specified time
frame for a user-specified set of ads. Summaries con-
tain, for example, demographic generalizations per-

l Zed has evolved into a product, the Adapt/X
Advertiser T M .

raining to potentially large numbers of hits. An ex-
ample of Z E D D o c ' s input, internal representation,
and output is shown in Figure 3.

3 A C o m m o n A r c h i t e c t u r e

While P L A N D o c , FLOwDoc , and Z E D D o C all
share a common foundation, they embody distinctly
different text generation applications. However, we
aimed during the design of both FLOWDOC and
Z E D D o c to utilize as much of P L A N D o c ' s archi-
tecture as possible, often adapting and generalizing
modules that were originally writ ten with only the
P L A N D o c system in mind.

All three systems employ a modular pipeline ar-
chitecture. A pipeline architecture is one that sepa-
rates the functions involved in text generation, such
as content planning, discourse organization, lexical-
ization, and syntactic realization, into distinct mod-
ules that operate in sequence. Modular pipeline ar-
chitectures have a long history of use in text gen-

16

eration systems (Kukich, 1983a; McKeown, 1985;
McDonald and Pustejovsky, 1986; Reiter, 1994), al-
though recent work argues for the need for interac-
tion between modules (Danlos, 1987; Rubinoff, 1992;
McKeown et al., 1993). The most powerful argu-
ment for using pipeline architectures is the poten-
tial benefit of re-using individual modules for subse-
quent applications. However, with the exception of
surface realization modules such as F U F / S U R G E
(Elhadad, 1992; Robin, 1994), actual code re-use has
been minimal due to the lack of agreement about the
order and grouping of subprocesses into modules.

In PLANDoc, FLowDoc, and ZEDDoc, we
utilize the following main modules, in the order
listed below:

• Message Genera tor : The message generator
transcribes the raw data from LEIS-PLAN ex-
ecution traces, SHowBIz, or ZED transaction
logs into instances of message classes. We re-
fer to simple collections of (possibly nested)
attribute-value pairs pertaining to a single event
as messages. Message classes are domain-
specific (e.g., there are 30 of them in PLAN-
Doc, 13 in FLowDoc, and 6 in ZEDDoc),
but they all share the same representation as
the basic content unit. In all three systems, gen-
eralization must occur at this level in order to
create semantically concise messages from rela-
tively large amounts of input data.

• Ontologizer: In PLANDoc, a pipelined onto-
iogizer enriches messages with domain-specific
knowledge that is not explicitly present in the
input. [n FLOWDoC and ZEDDoc, semantic
enrichment is done at various stages by consult-
ing external ontologies.

• Discourse Organizer: The discourse orga-
nizer performs all the remaining functions prior
to lexicalization and surface generation 2. Three
sub-modules apply general discourse coherence
constraints at the levels of discourse, sentence,
and sentence constituent. The first module per-
forms aggregation and text linearization opera-
tions using an ontology of rhetorical predicates
derived from Hobbs (1985) and Polanyi (1988).
Linear order and prominence of the subcon-
stituents are then determined, followed by con-
straints on subconstituents that affect lexical
choice (e.g., centering and informational con-
straints, as in (Passonneau, 1996)).

2|n previous work we referred to this module as the
Sentence Planner (Passonneau et al., 1996).

Lexicalizer: The lexicalizer maps message at-
tributes into thematic/case roles, and chooses
appropriate content (open-class) words for tile
values of these attributes.

Surface Genera tor : This module maps the-
matic roles into syntactic roles and builds syn-
tactic constituents, chooses function (closed-
class) words, ensures grammatical agreement,
and linearizes to produce the final surface sen-
tence.

Our message generator modules are largely
domain-specific, and we have made major changes to
them while porting them to new applications. Even
so, their ontological generalization technique, which
produces semantically concise descriptions from fre-
quency data, is domain-independent. Our final
surface generation module is completely domain-
independent; it employs the F U F / S U R G E (E1-
hadad, 1991; Robin, 1994) text generation tools,
and was re-used in all three systems with virtually
no modifications. Modules near the middle of the
pipeline provide the most interesting examples of
code that can be re-used if it is general enough and
relies on plug-and-play knowledge bases rather than
hard-coded data. We return to this issue of code
re-use and of the evolution of our modules to ac-
commodate it in Section 5.

4 A C o m m o n R e p r e s e n t a t i o n

All three systems employ a consistent, standardized
attribute-value data format that persists from each
module to the next. Examples of this internal data
format were shown in Figures 1-3. This fbrmat
is used for representing and processing conceptual-
semantic, lexical-semantic, syntactic, and other lin-
guistic information. Its persistent use facilitates
inter-module communication and module indepen-
dence, hence re-usability. Furthermore, it does not
restrict the kinds of information that can be repre-
sented, and it is common to many non-NLP com-
putational systems and languages (e.g., relational
databases), thus making it easier for text generation
systems to interface with existing applications.

The input to each of our three systems came from
very different sources, some closer than others to
attribute-value message format. PLANDoc ' s input
came from n-tuple records representing program ex-
ecution traces, so it required a filter to transform it
into messages. FLOwDOC'S input came from ASCII
representations of nodes and links in work flow di-
agrams which were already essentially in attribute-
value format. ZEDDoc's input, representing Web

17

activity data, had been stored in an Oracle T M rela-
tional database by its application, so it too required
little transformation.

5 A r c h i t e c t u r a l E v o l u t i o n

As discussed earlier, a practical goal for text gen-
eration research is to converge on a separation of
functions into modules that can be independently
re-used. Towards this goal, we have generalized and
refined our architecture with each successive appli-
cation. In fact, we significantly adapted our PLAN-
DOC architecture for use in FLOwDOC, but we were
able to re-use the F L o w D o c architecture and much
of its code in Z E D D o c . Figure 4 contrasts the ar-
chitecture of P L A N D o c with those of FLOwDoc
and Z E D D o c .

(a) Overall architecture for P L A N D o c .

(b) Overall architecture for FLOwDoc and Z E D D o c .

Figure 4: Contrasting the Architecture of the Three
Text Generat ion Systems.

The obvious architectural change from P LA N -
D o c to F L o w D o c (and Z E D D o c) is the extrac-
tion of ontological knowledge from the process-
ing pipeline. Ontological knowledge is necessarily
domain-specific, so this modification allowed us to
implement significantly more general Message Gen-
eration and Discourse Organization modules and
a somewhat more general Lexicalizati6n module.
These more general modules rely on external knowl-
edge bases to supply the domain-specific information
that was previously embedded in the code. Thus, we
can replace the external knowledge base when mov-
ing to a new domain or application without having
to modify the module itself. One of our future re-
search goals is to further extract domain-specific lex-
ical knowledge and further generalize the lexicalizer
module (.ling et al., 1997).

What is not so obvious from Figure 4 are the con-
sistencies and shifts in function among the modules.

In fact, the functions of the Lexicalization and Sur-
face Generation modules remained constant across
all three systems. But the functions of the first
three modules shifted significantly from P L A N D o c
to FLOwDOC. In particular, the function of message
aggregation lay exclusively in the Discourse Organi-
zation module in P L A N D o c (Shaw, 1995), whereas
aggregation functions are executed in both the Mes-
sage Generation and Discourse Organization mod-
ules in FLOWDOC.

Because the development of domain-independent,
plug-and-play ontology modules is one of the major
features that affected these shifts in function, and
because such modules greatly increase the portabil-
ity of the system, we devote the next section to a
more detailed description of the function of ontolog-
ical generalization.

6 Ontological Generalization

Ontological generalization refers to the problem of
composing, with the help of an ontology, a concise
description for a multi-set of concepts. For example,
FLOWDOC's output sentence shown in Figure 2

The most frequent tasks in this
workflow are those of creating,
reviewing and saving documents.

concisely describes a multi-set of ten specific task
nodes in the flow diagram by locating superclass
concepts in the ontology that encompass the specific
predicates and objects of the task nodes. Our aim
is to compose a description that is concise without
sacrificing much in accuracy.

While P L A N D o c made extensive use of conjunc-
tion, ellipsis, and paraphrasing to produce a con-
cise summary, ontological relations were not heavily
used. For F L o w D o c we implemented a more gen-
eral, domain-independent solution. We were able
to re-use this module with minor modifications in
Z E D D o c , after replacing the ontological knowledge
base.

Our ontological generalization algorithm works as
follows. Given a set Co = {01,02,... ,ON} of ob-
jects of a given predicate-class and an associated
list (c l , c2 , . . . ,CN) of their occurrence counts, we
compute an optimal set of concept generalizations
{G1, G2,... ,GM} such that each generalization re-
places a subset of Co while maintaining a reasonable
trade-off between the accuracy, specificity, and ver-
bosity of the resulting description.

We consider as candidate concept generalizations
the actual members of Co and all the concepts in
the domain ontology that subsume one or more of
them. Each such candidate concept generalization

18

is evaluated on its suitability to replace a given sub-
set of C o using a weighted sum formula, trading-off
along two antagonistic dimensions:

• C o v e r a g e , measuring how many of the objects
in the subset (proportionally weighted accord-
ing to their occurrence counts ci) are actually
subsumed by the candidate generalization.

• Spec i f i c i ty , defined as the average semantic
distance between each element of the subset and
the candidate generalization.

The semantic distance currently used is simply the
number of levels between each object and the gen-
eralization in the domain ontology. It could be eas-
ily changed to an information-based distance, e.g.,
along the lines of the metrics proposed in (Resnik,
1995), who measures semantic distance between two
concepts as a function of the lexical probabilities of
their c.ommon superclasses.

To compute the optimal set of generalizations, the
algorithm starts by generating all possible partitions
of the given set of objects 3, then locates the best
single-term description for each subset in the par-
tition by applying the procedure outlined above to
each candidate generalization, and finally combines
the single-term description scores in one number.
The final score is adjusted by two additional penal-
ties:

• A verbosity penalty, penalizing descriptions
with more than one generalization (exponen-
tially more as the number of terms in the de-
scription increases).

• A heterogeneity penalty, for descriptions that
are locally optimal but significantly lower in the
ontology (more specific) than the global speci-
ficity level.

The global specificity level indicates the appropri-
ate overall level of detail. It is computed by ap-
plying the above ontological generalization proce-
dure to the collection of all the objects appearing
in the input graph, across all actions. It implements
the idea of "basic level" descriptions from (Rosch,
1978) for the application domain modeled by the
work flow. For example, while processing a flow di-
agram which covers documents of many types, our
algorithm will have a bias in favor of the generic term
"Document" ra ther the too-specific term "Draft doc-
ument in SGML format"; a trade-off between the

~With some performance-imposed constraints, since
the number of possible partitions grows exponentially
with the number of objects and the number of subsets
in the partition.

heterogeneity penalty and other components of the
description score occurs if the latter term looks lo-
cally optimal.

The same generalization method for sets of
(concept, occurrence count) pairs was applied in
Z E D D o c , but instead of actions or graph compo-
nents, the concepts were Internet addresses or ZED
page types. ZED requires semantic types to be as-
signed to WWW pages and ads to help determine
which ads from its database can be inserted in pre-
defined ad slots. When a ZED D O c user requests a
summary of activity pertaining to a particular set
of ads for a given time period, the raw da ta con-
sists in par t of frequency lists indicating how many
users from a given Internet node saw the relevant
ads and how many of the displayed pages corre-
sponded to particular semantic types. One minor
change for Z E D D o c was the replacement of prede-
fined absolute frequency thresholds for determining
the salience of items with relative ones.

To summarize the Internet domain or page type
data, Z E D D o c relies on plug-and-play ontologies.
Specialization subtrees rooted at certain concepts,
e.g., the Internet domain, can be replaced so long
as at least one lexicalization is provided for every
concept. Our ontology for the Internet domain com-
bined world knowledge with the implicit hierarchical
structure of domain names. For example, through
hand analysis of W W W logs we created a geograph-
ical categorization of university nodes, on the as-
sumption that such demographic information is im-
portant to advertisers.

7 Component Re-Use Revisited

The major theme throughout this paper has been
how we re-used components from our original Plan-
Doc system to implement the subsequent FLOwDOc
and Z E D D o c systems, significantly cutting devel-
opment time. In this section, we summarize our ex-
periences regarding code re-use.

• The message generator offers limited possibil-
ities for reuse becanse it directly interfaces to
an application-specific external source. Limited
code sharing w ~ possible however, because of
our choice of a common representation format
for all three systems.

• As noted briefly in Section 3, the F L o w D o c
architecture had distinct modules pertaining to
the three levels of discourse, sentence, and sen-
tence constituent. Retaining this more general
architecture in Z E D D o c proved useful with
respect to one additional required functional-
ity, namely the ability to produce plain text or

19

HTML output. The three levels of discourse or-
ganization were exploited in Z E D D o c primar-
ily to distinguish between HTML commands
that pertain to the overall layout (e.g., para-
graph divisions) versus those that pertain to
sentence-internal features (e.g., fonts).

• At the lexicalization level, we achieved only
partial generalization of the lexicalizer's code.
Given the state of the art in natural lan-
glmge generation, the lexicon remains neces-
sarily domain-specific. However, we are ex-
ploring ways to remove domain-specific lexical
knowledge from the system pipeline, as we did
with domain-specific ontological and discourse
knowledge.

We are building a large-scale general lexicon for
generation, which provides syntactic arid partial
semantic knowledge and can be used to select
the generated sentence structure and possible
paraphrases (Jing et al., 1997). By using this
general lexicon together with a smaller domain-
specific lexicon or with information extracted
from a corpus from the application domain, we
expect to significantly simplify the development
of the lexicalization module, improving its reli-
ability and portability.

• At the final surface generation level, we took
advantage of prior progress in component stan-
dardization and used FUF (Functional Unifica-
tion Formalism) and its corresponding extensive
English surface grammar SURGE. As a result,
the surface generation module was ported un-
changed to the other systems.

8 C o n c l u s i o n

By teasing apart some of P L A N D o c ' s modules
and partially re-configuring others, we were able to
port our text generation system to two completely
new domains, those of flow chart and WWW ac-
tivity summarization. In the process, ~ve devised
domain-independent message aggregation and dis-
course restructuring modules for FLowDoc that
we re-used intact for ZEDDoc . Indeed, we be-
lieve that our ontological generalization algorithm
(i.e., message aggregation guided by quantitative
formulas over plug-and-play ontologies) is generally
domain-independent. We are exploring ways to in-
troduce probability estimates in our weighting func-
tions for message aggregation, linking the static on-
tology with corpus-observable variations in concept
use and coverage.

Re-usable tools and techniques can provide lever-
age for building practical text generation applica-
tions. They can also facilitate research leading to in-
creasingly more general and more useful tools. This
has been our experience in implementing tile three
text generation systems covered in this paper which
are all based on a common architecture, a com-
mon representation format, and a common, evolving
foundation of text generation tools.

At least three other factors that are critical to
practical and commercial success should be men-
tioned though we cannot discuss them here. Two
of them, i) extensive user-needs analysis and feed-
back and ii) target corpus compilation and analy-
sis, are highly correlated with the relative success
of each of our systems. These two factors are dis-
cussed in more detail in previous papers (Kukich et
al., 1994; Kukich, 1983b). A third, undocumented
factor, the rigorous pre-release testing of the system
under conditions similar to its deployment environ-
ment, played a critical role in P L A N D o c ' s success.

A c k n o w l e d g m e n t

Research on these projects at Columbia University
was supported by grants from Bellcore.

R e f e r e n c e s

Laurence Danlos. 1987. The Linguistic Basis of
Text Gene~ntion. Studies in Natural Language
Processing. Cambridge University Press, Cam-
bridge, England.

Michael Elhadad. 1991. FUF user manual - - ver-
sion 5.0. Technical Report CUCS-038-91, Depart-
ment of Computer Science, Columbia University.

Michael Elhadad. 1992. Using Argumentation to
Control Lexical Choice: A Functional Unification-
Based Approach. Ph.D. thesis, Department of
Computer Science, Columbia University.

Jerry Hobbs. 1985. On the coherence and structure
of discourse. Technical Report CSLI-85-37, Cen-
ter for the Study of Language and Information,
Stanford University.

Hongyan Jing, Kathleen McKeown, and Rebecca
Passonneau. 1997. Building a rich large-scale
lexical base for generation. Technical Report
CUCS-016-97, Department of Computer Science,
Columbia University.

Karen Kukich, Kathleen McKeown, James Shaw,
Jacques Robin, Jong Lim, Neal Morgan, and Jim

20

Phillips. [994. User needs analysis and de-
sign methodology for an automated documenta-
tion generator. In Antonio Zampolli, Nicoletta
Calzolari, and Martha Palmer, editors, Current
Issues in Computational Linguistics: In Honour
of Don Walker, pages 109-115. Kluwer Academic
Press, Boston, Massachussets.

Koran Kukich. 1983a. Design and implementation
of a knowledge-based text generator. In Proceed-
in.qs of the 21st Annual Meeting of the Associ-
ation for Computational Linguistics, pages 145-
150, Cambridge, Massachusetts, June.

Karen Kukich. 1983b. Knowledge-Based Report
Generation: A Knowledge Engineering Approach
to Natural Language Report Generation. Ph.D.
thesis, University of Pittsburgh.

Da~d McDonald and James Pustejovsky. 1986.
Description-directed natural language generation.
In Proceedings of the 9th International Joint Con-
ference on Artifieal Intelligence, pages 799-805,
Los Angeles, California.

Kathleen McKeown, Jacques Robin~ and Michael
Tanenblatt. 1993. Tailoring lexical choice to the
user's vocabulary in multimedia explanation gen-
eration. In Proceedings of the 31st Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 226-234, Columbus, Ohio, June.

Kathleen McKeown, Karen Kukich, and James
Shaw. 1994. Practical issues in automatic docu-
mentation generation. In Proceedings of the 1994
Applied Natural Langua9e Processing Conference,
pages 7-14, Stuttgart, Germany, October.

Kathleen McKeown. 1985. The need for text gen-
eration. Technical Report CUCS-173-85, Depart-
ment of" Computer Science, Columbia University.

Rebecca Passonneau, Karen Kukich, Jacques Robin,
Vasileios Hatzivassiloglou, Larry Lefkowitz, and
Hongyan Jing. 1996. Generating summaries of
work flow diagrams. In Proceedings of the Interna-
tional Conference on Natural Language Processing
and Industrial Applications, pages 204-210, New
Brunswick, Canada, June. University of Moncton.

Rebecca Passonneau, Karen Kukich, Kathleen McK-
eown, Dragomir Radev, and Hongyan Jing. 1997.
Summarizing web traffic: A portability exercise.

Technical Report CUCS-009-97, Department of
Computer Science, Columbia University.

Rebecca Passonneau. 1.996. Using centering to re-
lax Gricean informational constraints on discourse
anaphoric noun phrases. Language and Speech,
39(2-3):229-265, April-September. Special dou-
ble issue on Discourse and Syntax, edited by Judy
Delin and Jon Oberlander.

Livya Polanyi. 1988. A formal model of discourse
structure. Journal of Pragmaties, 12:601-638.

Ehud Reiter. 1994. Has a consensus NL generation
architecture appeared, and is it psycholing,~listi-
caily plausible? In Proceedings of the 1994 Inter-
national Natural Language Generation Workshop,
pages 163-170, Kennebunkport, Maine.

Philip Resnik. 1995. Using information con-
tent to evaluate semantic similarity in a taxon-
omy. In Proceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence
(IJCAI-95), volume 1, pages 448-453, Montr6al,
Quebec, Canada, August. Morgan Kaufmann, San
Mateo, California.

Jacques Robin. 1994. Revision-Based Generation of
Natural Language Summaries Providing Historical
Background: Corpus-Based Analysis, Design, Im-
plementation, and Evaluation. Ph.D. thesis, De-
partment of Computer Science, Columbia Univer-
sity. Also Technical Report CU-CS-034-94.

Eleanor Rosch. 1978. Principles of categorization.
In Eleanor Roschand and Barbara B. Lloyd, edi-
tors, Cognition and Categorization, pages 27-48.
Lawrence Erlbaum Associates, Hillsdale, New Jer-
sey.

Robert Rubinoff. 1992. A cooperative model
of strategy and tactics in generation. In
Robert Dale, Eduard Hovy, Dietmar RSesner, and
Oliviera Stock, editors, Aspects of Automated Nat-
ural Language Generation. Springer Verlag. Pre-
sented at the 6th International Workshop on Nat-
ural Language Generation, Trento, Italy.

James Shaw. 1995. Conciseness through aggrega-
tion in text generation. In Proceedings of the 33rd
Annual Meeting of the Association for Computa-
tional Linguistics (Student Session), pages 329-
331, June.

21

22

