
Towards Uniform Processing of Constraint-based Categorial
Grammars

G e r t j a n van Noord

L e h r s t u h l f/it C o m p u t e r l i n g u i s t i k

Univers i t~ t des Saa r l andes

Im S t a d t w a l d 15

D-6600 Saarbrf icken 11, F R G
vannoord@col i .un i - sb .de

A b s t r a c t

A class of constraint-based categorial grammars is
proposed in which the construction of both logical
forms and strings is specified completely lexically.
Such grammars allow the construction of a uni-
form algorithm for both parsing and generation.
Termination of the algorithm can be guaranteed
if lexical entries adhere to a constraint, that can
be seen as a computationally motivated version
of GB's projection principle.

1 M o t i v a t i o n s

In constraint-based approaches to grammar the
semantic interpretation of phrases is often de-
fined in the lexical entries. These lexical en-
tries specify their semantic interpretation, taking
into account the semantics of the arguments they
subcategorize for (specified in their subcat list).
The grammar rules simply percolate the seman-
tics upwards; by the selection of the arguments,
this semantic formula then gets further instanti-
ated (Moore, 1989). Hence in such approaches it
can be said that all semantic formulas are 'pro-
jected from the lexicon' (Zeevat et al., 1987).
Such an organization of a grammar is the starting
point of a class of generation algorithms that have
become popular recently (Calder et al., 1989;
Shieber et al., 1989; Shieber el al., 1990). These
semantic-head-driven algorithms are both geared
towards the input semantic representation and
the information contained in lexical entries. If
the above sketched approach to semantic inter-
pretation is followed systematically, it is possible
to show that such a semantic-head-driven gen-

eration algorithm terminates (Dymetman et al.,
1990).

In van Noord (1991) I define a head-driven
parser (based on Kay (1989)) for a class of
constraint-based grammars in which the con-
struction of strings may use more complex op-
erations that simple context-free concatenation.
Again, this algorithm is geared towards the in-
put (string) and the information found in lexi-
cal entries. In this paper I investigate an ap-
proach where the construction of strings is de-
fined lexically. Grammar rules simply percolate
strings upwards. Such an approach seems feasible
if we allow for powerful constraints to be defined.
The head-corner parser knows about strings and
performs operations on them; in the types of
grammars defined here these operations are re-
placed by general constraint-solving techniques
(HShfeld and Smolka, 1988; Tuda et al., 1989;
Damas et al., 1991). Therefore, it becomes pos-
sible to view both the head-driven generator and
the head-driven parser as one and the same algo-
rithm.

For this uniform algorithm to terminate, we
generalize the constraint proposed by Dymetman
et ai. (1990) to both semantic interpretations
and strings. That is, for each lexical entry we
require that its string and its semantics is larger
than the string and the semantics associated with
each of its arguments. The following picture then
emerges. The depth of a derivation tree is de-
termined by the subcat list of the ultimate head
of the tree. Furthermore, the string and the se-
mantic representation of each of the non heads in
the derivation tree is determined by the subcat
list as well. A specific condition on the relation
between elements in the subcat list and their se-

12

L

mantics and string representation ensures termi-
nation. This condition on lexical entries can be
seen as a lexicalized !and computationally moti-
vated version of GB's projection principle.

W o r d - o r d e r d o m a i n s . The string associated
with a linguistic object (sign) is defined in terms
of its word-order domain (Reape, 1989; Reape,
1990a). I take a word=order domain as a sequence
of signs. Each of the§e signs is associated with a
word-order domain recursively, or with a sequence
of words. A word-order domain is thus a tree.
Linear precedence rules are defined that constrain
possible orderings o f signs in such a word-order
domain. Surface strings are a direct function of
word-order domains.' In the lexicon, the word-
order domain of a lexical entry is defined by shar-
ing parts of this domain with the arguments it
subcategorizes for. Word-order domains are per-
colated upward. Hence word-order domains are
constructed in a derivation by gradual instantia-
tions (hence strings are constructued in a deriva-
tion by gradual instantiation as well). Note that
this implies that an unsaturated sign is not asso-
ciated with one string, but merely with a set of
possible strings (this is similar to the semantic in-
terpretat ion of unsaturated signs (Moore, 1989)).
In lexical entries, word order domains are defined
using Reape's sequence union operation (R.eape,
1990a). Hence the grammars are not only based
on context-free string concatenation.

2 Cons tra ln t -based vers ions
of categoria l g r a m m a r

The formalism I assume consists of definite clau-
ses over constraint languages in the manner of
HShfeld and Smolka (1988). The constraint lan-
guage at least consists of the path equations
known from PATR II (Shieber, 1989), augmented
with variables. I write such a definite clause as:

P : - q l . . . q n , ¢ .

where p, qi are atoms and ¢ is a (conjunction of)
constraint(s). The path equations are written as
in PATR II, but each I path starts with a variable:

(Xi i l . . . l ,) =" c

o r

(x, i , . . . t .) = (xj t l . . . i£)

where X t are variables, c is a constant, I, l' are
attributes. I also use some more powerful con-
straints that are written as atoms.

This formalism is used to define what possible
'signs' are, by the definition of the unary predi-
cate s:i.gn/1. There is only one nonunit clause for
this predicate. The idea is tha t unit clauses for
s i g n / 1 are lexical entries, and the one nonunit
clause defines the (binary) application rule. I as-
sume that lexical entries are specified for their
arguments in their 'subcat list' (sc). In the ap-
plication rule a head selects the first (f) element
from its subcat list, and the tail (r) of the subcat
list is the subcat list of the mother; the semantics
(sere) and strings (phon) are shared between the
head and the mother.

sign(Xo) :- s ign(X1), s ign(X2),

(Xo synsem sern) --" (X1 synsem sere),

(Xo phon) ~ (X1 phon),

(Xo synsem sc) ± iX , s ynsem sc r),

(21 synsem sc f) =" (X2).

I write such rules using matr ix notation as fol-
lows; s t r i n g (X) represents the value Y, where
s t r i n g (X , ¥) .

synsem :
Xo :

phon : [~]

synsem :
X1 :

phon : [~]

X2 : [~

The grammar also consists of a number of lex-
ical entries. Each of these lexical entries is speci-
fied for its subcat list, and for each subcat element
the semantics and word-order domain is specified,
such that they satisfy a termination condition to
be defined in the following section. For exam-
ple, this condition is satisfied if the semantics of
each element in the subcat list is a proper sub-
part of the semantics of the entry, and each ele-
ment of the subcat list is a proper subpart of the
word-order domain of the entry. The phonology
of a sign is defined with respect to the word-order
domain with the predicate 'string'. This predi-
cate simply defines a left-to-right depth-first tra-
versel of a word-order domain and picks up all
the strings at the terminals. It should be noted
that the way strings are computed from the word-
order domains implies tha t the string of a node

13

I syn : vp[

synsem : ~ 8c: @ synsem :

sere : schla f e n (~

dom:~(~] , dora: 0)
phon : (schlii ft)

phon : s t r ing(D

8eWR :

Figure 1: The German verb 'schlKft'

not necessarily is the concatenation of the strings
of its daughter nodes. In fact, the relation be-
tween the strings of nodes is defined indirectly
via the word-order domains.

The word-order domains are sequences of signs.
One of these signs is the sign corresponding to the
lexical entry itself. However, the domain of this
sign is empty, but other values can be shared.
Hence the entry for an intransitive German verb
such as 'schl~ft' (sleeps) is defined as in figure 1.

I introduce some syntactic sugaring to make
such entries readable. Firstly, XPi will stand for

s nsem: sem:[

Furthermore, in lexical entries the s ~ s e m part is
shared with the synsem part of an element of the
word order domain, that is furthermore specified
for the empty domain and some string. I will
write: << string >> in a lexical entry to stand for
the sign whose synsem value is shared with the
synsem of the lexical entry itself; its dora value
is 0 and its phon value is string. The foregoing
entry is abreviated as:

synsern : sere : sehla/en([T])
: ([] N P,)

dora: []([], << s hla/t >>)
phon : s t r ing(D

Note that in this entry we merely stipulate that
the verb preceded by the subject constitutes the
word-order domain of the entire phrase. H o w -
ever, we may also use more complex constraints
to define word-order constraints. In particular,

as already stated above, LP constraints are de-
fined which holds for word-order domains. I use
the sequence-union predicate (abbreviated su)
defined by Reape as a possible constraint as well.
This predicate is motivated by clause union and
scrambling phenomena in German. A linguisti-
cally motivated example of the use of this con-
straint can be found in section 4. The predicate
su(A, B, C) is true in case the elements of the list
C is the multi set union of the elements of the lists
A and B; moreover, a < b in either A or B iff a <
b in C. I also use the notation X U 0 Y to denote
the value Seq, where su(X,Y,$eq). For exam-
ple, su([a, d, e], [b, c, f], [a, b, c, d, e, f]); [a, e] o 0 [b]
stands for [a, c, b],[a, b, c] or [b, a, c]. In fact, I as-
sume that this predicate is also used in the simple
cases, in order to be able to spel out generaliza-
tions in the linear precedence constraints. Hence
the entry for 'schlafen' is defined as follows, where
I write lp(X) to indicate that the lp constraints
should be satisfied for X. I have nothing to say
about the definition of these constraints.

synsem : sere: schla/en(E])
sc : ([~]N Pi)

D °m: (D u0 (<< schla/t >>)
phon: string(tp([[))

In the following I (implicitly) assume that for each
lexical entry the following holds:

dora: []
phon : string(lp(D)]

3 U n i f o r m P r o c e s s i n g

In van Noord (1991) I define a parsing strat-
egy, called 'head-corner parsing' for a class of

14

I

i

grammars allowing more complex constraints on
strings than context-free concatenation. Reape
defines generalizations of the shift-reduce parser
and the CYK parser (Reape, 1990b), for the
same class of grammars. For generation head-
driven generators can be used (van Noord, 1989;
Calder et al., 1989; Shieber et al., 1990). Alter-
natively I propose a generalization of these head-
driven parsing- and generation algorithms. The
generalized algorithm can be used both for pars-
ing and generation. Hence we obtain a uniform
algorithm for both processes. Shieber (1988) ar-
gues for a uniform architecture for parsing in
generation. In his proposal, both processes are
(different) instantiations of a parameterized algo-
rithm. The algoritthm I define is not parameter-
ized in this sense, but really uses the same code in
both directions. Some of the specific properties of
the head-driven generator on the one hand, and
the head-driven parser on the other hand, follow
from general constraint-solving techniques. We
thus obtain a uniform algorithm that is suitable
for linguistic processing. This result should be
compared with other uniform scheme's such as
SLD-resolution or some implementations of type
inference (Zajae, 1991, this volume) which clearly
are also uniform but facessevere problems in the
case of lexicalist grammars, as such scheme's do
not take into account the specific nature of lexi-
calist grammars (Shieber et al., 1990).

A l g o r i t h m . The algorithm is written in the
same formalism as the grammar and thus con-
stitutes a meta-interpreter. The definite clauses
of the object-grammar are represented as

iexical_entry(X) :- qL

for the unit clauses

sign(X) :- q~.

and

rule(H, M, A) :- ~.

for the rule

sign(M) :- sign(H), sign(A), oh.

The associated interpreter is a Prolog like top-
down backtrack interpreter where term unifi-
cation is replaced by more general constraint-
solving techniques~, (HShfeld and Smolka, 1988;
Tuda et aL, 1989; Damas et al., 1991). The
meta-interpreter defines a head-driven bot tom-up

strategy with top-down prediction (figure 2), and
is a generalization of the head-driven generator
(van Noord, 1989; Calder et al., 1989; van Noord,
1990a) and the head-corner parser (Kay, 1989;
van Noord, 1991).

prove(T) :-
lexical_entry(L), connect(L, T),
(T phon) ~ (L phon),
(T synsem sere) =" (L synsem sem).

connect(T, T).
connect(S, T) :-

rule(S, M, A), prove(A),
connect (M, T).

Figure 2: The uniform algorithm

In the formalism defined in the preceding sec-
tion there are two possible ways where non-
termination may come in, in the constraints or
in the definite relations over these constraints. In
this paper I am only concerned with the second
type of non-termination, that is, I simply assume
that the constraint language is decidable (HShfeld
and Smolka, 1988). 1 For the grammar sketched
in the foregoing section we can define a very nat-
ural condition on lexical entries that guarantees
us termination of both parsing and generation,
provided the constraint language we use is decid-
able.

The basic idea is that for a given semantic rep-
resentation or (string constraining a) word-order
domain, the derivation tree that derives these rep-
resentations has a finite depth. Lexical entries
are specified for (at least) ae, phon and nero. The
constraint merely states that the values of these
attr ibutes are dependent. It is not possible for
one value to 'grow' unless the values of the other
attributes grow as well. Therefore the constraint
we propose can be compared with GB's projec-
tion principle if we regard each of the at tr ibutes
to define a 'level of description'. Termination can
then be guaranteed because derivation trees are
restricted in depth by the value of the se at-
tribute.

In order to define a condition to guarantee ter-
mination we need to be specific about the inter-

1This is t h e c a s e i f w e only have PATH equations; but
probably not if we use t.J(), string/2smd lp/2 unlimited.

15

pretation of a lexical entry. Following Shieber
(1989) I assume that the interpretation of a set
of path equations is defined in terms of directed
graphs; the interpretation of a lexical entry is a
set of such graphs. The 'size' of a graph simply is
defined as the number of nodes the graph consists
of. We require that for each graph in the interpre-
tation of a lexical entry, the size of the subgraph
at sere is strictly larger than each of the sizes of
the sere part of the (subgraphs corresponding to
the) elements of the subcat list. I require that
for each graph in the interpretation of a lexicM
entry, the size of phon is strictly larger than each
of the sizes of (subgraphs corresponding to) the
phon parts of the elements of the subcat lists.
Summarizing, all lexical entries should satisfy the
following condition:

T e r m i n a t i o n condi t ion . For each interpreta-
tion L of a lexical entry, if E is an element of L's
subcat list (i.e. (L synsem sc r* f) ~ E), then:

size[(E phon)] < size[(L phon)]
size[(E synsem sere)] < size[(L synsem sere)]

The most straightforward way to satisfy this con-
dition is for an element of a subcat list to share
its semantics with a proper part of the semantics
of the lexical entry, and to include the elements
of the subcat list in its word-order domain.

Possible inputs . In order to prove termination
of the algorithm we need to make some assump-
tions about possible inputs. For a discussion cf.
van Noord (1990b) and also Thompson (1991,
this volume). The input to parsing and gener-
ation is specified as the goal

?-- sign(Xo), ¢.

where ¢ restricts the variable X0. We re-
quire that for each interpretation of X0 there
is a maximum for parsing of size[{Xo phonl] ,
and that there is a maximum for generation of
size[(Xo synsem sem)].

If the input has a maximum size for either se-
mantics or phonology, then the uniform algorithm
terminates (assuming the constraint language is
decidable), because each recursive call to 'prove'
will necessarily be a 'smaller' problem, and as
the order on semantics and word-order domains
is well-founded, there is a 'smallest' problem. As
a lexical entry specifies the length of its subcat
list, there is only a finite number of embeddings
of the 'connect' clause possible.

4 Some e x a m p l e s

Verb raising. First I show how Reape's anal-
ysis of Dutch and German verb raising construc-
tions can be incorporated in the current grammar
(Reape, 1989; Reape, 1990a). For a linguistic dis-
cussion of verb-raising constructions the reader is
referred to Reape's papers. A verb raiser such as
the German verb 'versprechen' (promise) selects
three arguments, a vp, an object np and a subject
np. The word-order domain of the vp is unioned
into the word order domain of versprechen. This
is necessary because in German the arguments of
the embedded vp can in fact occur left from the
other arguments of versprechen, as in:

esi ihmj jemandk zu leseni versprochenj hatk
(it him someone to read promised had
i.e. someome had promised him to read it.

Hence, the lexical entry for the raising verb 'ver-
sprechen' is defined as in figure 3. The word-order
domain of 'versprechen' simply is the sequence
union of the word-order domain of its vp object,
with the np object, the subject, and ver~prechen
itself. This allows any of the permuations (al-
lowed by the LP constraints) of the np object,
versprechen, the subject, and the elements of
the domain of the vp object (which may contain
signs that have been unioned in recursively).

Seperable prefixes. The current framework
offers an interesting account of seperable prefix
verbs in German and Dutch. For an overview of
alternative accounts of such verbs, see Uszkoreit
(1987)[chapter 4]. At first sight, such verbs may
seem problematic for the current approach be-
cause their prefixes seem not to have any seman-
tic content. However, in my analysis a seperable
prefix is lexically specified as part of the word-
order domain of the verb. Hence a particle is not
identified as an element of the subcat list. Fig-
ure 4 might be the encoding of the German verb
'anrufen' (call up). Note that this analysis con-
forms to the condition of the foregoing section,
because the particle is not on the subcat list. The
advantages of this analysis can be summarized as
follows.

Firstly, there is no need for a feature system
to link verbs with the correct prefixes, as eg.
in Uszkoreit's proposal. Instead, the correspon-
dence is directly stated in the lexical entry of the
particle verb which seems to me a very desirable

:1.6

:

s y n s e m : sc : (I sc : (NP4)

dora : E]

do : (<< >>)uO E]uo (DUo 0

Figure 3: The German verb 'versprechen'

result. 5 H P S G M a r k e r s

Secondly, the analysis predicts that particles
can 'move away' from the verb in case the verb
is sequence-unioned into a larger word-order do-
main. This prediction is correct. The clearest
examples are possibly from Dutch. In Dutch, the
particle of a verb can be placed (nearly) anywhere
in the verb cluster, as long as it precedes its ma-
trix verb:

*dat jan marie piet heefft willen zien bellen op
dat jan marie piet heeft willen zien op bellen
dat jan marie pier heeft willen op zien bellen
dat jan marie piet heeft op willen zien bellen
dat jan marie piet op heeft willen zien bellen

that john mary pete up has want see call
(i.e. john wanted to see mary call up pete)

The fact that the particle is not allowed to follow
its head word is easily explained by the (indepen-
dently motivated) LP constraint that arguments
of a verb precede the verb. Hence these curious
facts follow immediately in our analysis (the anal-
ysis makes the same prediction for German, but
because of the different order of German verbs,
this prediction can not be tested).

Thirdly, Uszkoreit argues that a theory of
seperable prefixes should also account for the
'systematic orthog!aphic insecurity felt by native
speakers' i.e. whether or not they should write
the prefix and the verb as one word. The current
approach can be seen as one such explanation: in
the lexical entry for a seperable prefix verb the
verb and prefix are already there, on the other
hand each of the words is in a different part of
the word-order domain.

In newer versions of HPSG (Pollard and Sag,
1991) a special 'marker' category is assumed for
which our projection principle does not seem to
work. For example, complementizers are ana-
lyzed as markers. They are not taken to be the
head of a phrase, but merely 'mark' a sentence
for some features. On the other hand, a spe-
cial principle is assumed such that markers do in
fact select for certain type of constituents. In the
present framework a simple approach would be to
analyze such markers as functors, i.e. heads, that
have one element in their subcat list:

s y n s e T T t : $ e T n . .

se : (L~] V P _ F I N 1)

dora : (<< dass >>, [~])

However, the termination condition defined in
the third section can not always be satisfied be-
cause these markers usually do not have much
semantic content (as in the preceding example).
Furthermore these markers may also be phoneti-
cally empty, for example in the HPSG-2 analysis
of infinite vp's that occur independently such an
empty marker is assumed. Such an entry would
look presumably as follows, where it is assumed
that the empty marker constitutes no element of
its own domain:

8 y n s e T n : $ e T n . .

sc : (L~J V P_I N F1)

dom: Q

It seems, then, that analyses that rely on such
marker categories can not be defined in the cur-
rent framework. On the other hand, however,
such markers have a very restricted distribution,
and are never recursive. Therefore, a slight mod-

17

syn : vp]
synsem: sere :anrufen([T]

,c:]gPl)
r

>>) uo u(i ([dora: (<< r u f f
[

synsem : syn : part 1
dora: 0])
phon : (an)

Figure 4: Tile verb 'anrufen'

ification of the termination condition can be de-
fined that take into account such marker cate-
gories. To make this feasible we need a constraint
that markers can not apply arbitrarily. In HPSG-
2 the distribution of the English complementizer
' that ' is limited by the introduction of a special
binary feature whose single purpose is to disallow
sentences such as 'john said that that that mary
loves pete'. It is possible to generalize this to dis-
allow any marker to be repeatedly applied in some
domain. The 'seed' of a lexical entry is this entry
itself; the seed of a rule is the seed of the head of
this rule unless this head is a marker in which case
the seed is defined as the seed of the argument.
In a derivation tree, no marker may be applied
more than once to the same seed. This 'don't
stutter' principle then subsumes the feature ma-
chinery introduced in HPSG-2, and parsing and
generation terminates for the resulting system.

Given such a system for marker categories,
we need to adapt our algorithm. I assume lex-
ical entries are divided (eg. using some user-
defined predicate) into markers and not mark-
ers; markers are defined with the predicate
marker(Sign,Name) where Name is a unique
identifier. Other lexical entries are encoded as
before, marktypes(L) is the list of all marker
identifiers. The idea simply is that markers are
applied top-down, keeping track of the markers
that have already been used. The revised algo-
rithm is given in figure 5.

A c k n o w l e d g e m e n t s

I am supported by SFB 314, Project N3 BiLD.

prove(T): -
marktypes(M), prove(T, M).

prove(T, M) : -
marker(L, Name), del(Name, M, M2),

rule(L, T, A), prove(A, M2).

prove(T, M) : -
lezical_entry(L), connect(L, T),
(T phon) =" (L phon),
(T synsem sere) ~ (L synsem sere).

connect(T, T).
connect(S, T) :-

rule(S, M, A), prove(A),
connect(M, T).

Figure 5: The algorithm including markers

R e f e r e n c e s

Jonathan Calder, Mike Reape, and Henk Zeevat.
An algorithm for generation in unification cat-
egorial grammar. In Fourth Conference of the
European Chapter of the Association for Com-
putational Linguistics, pages 233-240, Manch-
ester, 1989.

Luis Damas, Nelma Moreira, and Giovanni B.
Varile. The formal and processing models of
CLG. In Fifth Conference of the European
Chapter of the Association for Computational
Linguistics, Berlin, 1991.

Marc Dymetman, Pierre Isabelle, and Francois
Perrault. A symmetrical approach to parsing
and generation. In Proceedings of the 13th In-

18

i

ternational Conference on Computational Lin-
guistics (COLING), Helsinki, 1990.

Markus HShfeld and Gert Smolka. Definite rela-
tions over constraint languages. Technical re-
port, 1988. LILOG Report 53; to appear in
Journal of Logic Programming.

Martin Kay. Head driven parsing. In Proceedings
of Workshop on Parsing Technologies, Pitts-
burgh, 1989.

Robert C. Moore. Unification-based semantic
interpretat ion. In 27th Annual Meeting of
the Associationi for Computational Linguistics,
Vancouver, 1989.

Carl Pollard and ilvan Sag. Information Based
Syntax and Semantics, Volume 2. Center for
the Study of Language and Information Stan-
ford, 1991. to appear.

Mike Reape. A ilogical treatment of semi-free
word order and bounded discontinuous con-
stituency. In Fourth Conference of the Euro-
pean Chapter o[the Association for Computa-
tional Linguistics, UMIST Manchester, 1989.

Mike Reape. Getting things in order. In Proceed-
ings of the Symposium on Discontinuous Con-
stituency, ITK Tilburg, 1990.

Mike Reape. Parsing bounded discontinous con-
stituents: Generalisations of the shift-reduce
and CKY algorithms, 1990. Paper presented
at the first CLIN meeting, October 26, OTS
Utrecht.

Stuart M. Shieber, Gertjan van Noord, Robert C.
Moore, and Fernando C.N. Pereira. A
semantic-head-driven generation algorithm for
unification based formalisms. In 27th Annual
Meeting of the Association for Computational
Linguistics, Vancouver, 1989.

b

Stuart M. Shieber, Gertjan van Noord, Robert C.
Moore, and Fernando C.N. Pereira. Semantic-
head-driven gefieration. Computational Lin-
guistics, 16(1), 1990.

Stuart M. Shieber. A uniform architecture for I

parsing and generation. In Proceedings of the
12th International Conference on Computa-
tional Linguistics (COLING), Budapest, 1988.

Stuart M. Shieber. Parsing and Type Inference
for Natural and Computer Languages. PhD
thesis, Menlo Park, 1989. Technical note 460.

Henry S. Thompson. Generation and transla-
tion - towards a formalism-independent char-
acterization. In Proceedings of ACL workshop
Reversible Grammar in Natural Language Pro-
cessing, Berkeley, 1991.

Hirosi Tuda, K6iti Hasida, and Hidetosi Sirai.
JPSG parser on constraint logic programming.
In Fourth Conference of the European Chapter
of the Association for Computational Linguis-
tics, Manchester, 1989.

Hans Uszkoreit. Word Order and Constituent
Structure in German. CSLI Stanford, 1987.

Gertjan van Noord. BUG: A directed bottom-
up generator for unification based formalisms.
Working Papers in Natural Language Process-
ing, Katholieke Universiteit Leuven, Stichting
Taaitechnologie Utrecht, 4, 1989.

Gertjan van Noord. An overview of head-
driven bottom-up generation. In Robert Dale,
Chris Mellish, and Michael Zock, editors, Cur-
rent Research in Natural Language Generation.
Academic Press, 1990.

Gertjan van Noord. Reversible unification-based
machine translation. In Proceedings of the
13th International Conference on Computa-
tional Linguistics (COLING), Helsinki, 1990.

Gertjan van Noord. Head corner parsing for dis-
continuous constituency. In 29th Annual Meet-
ing of the Association for Computational Lin-
guistics, Berkeley, 1991.

R~!mi Zajac. A uniform architecture for parsing,
generation and transfer. In Proceedings of ACL
workshop Reversible Grammar in Natural Lan-
guage Processing, Berkeley, 1991.

Ilenk Zeevat, Ewan Klein, and Jo Calder. Unifi-
cation categorial grammar. In Nicholas Had-
dock, Ewan Klein, and Glyn Morrill, edi-
tors, Categorial Grammar, Unification Gram-
mar and Parsing. Centre for Cognitive Science,
University of Edinburgh, 1987. Volume 1 of
Working Papers in Cognitive Science.

3.9

