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A b s t r a c t  

A class of constraint-based categorial grammars is 
proposed in which the construction of both logical 
forms and strings is specified completely lexically. 
Such grammars allow the construction of a uni- 
form algorithm for both parsing and generation. 
Termination of the algorithm can be guaranteed 
if lexical entries adhere to a constraint, that can 
be seen as a computationally motivated version 
of GB's projection principle. 

1 M o t i v a t i o n s  

In constraint-based approaches to grammar the 
semantic interpretation of phrases is often de- 
fined in the lexical entries. These lexical en- 
tries specify their semantic interpretation, taking 
into account the semantics of the arguments they 
subcategorize for (specified in their subcat list). 
The grammar rules simply percolate the seman- 
tics upwards; by the selection of the arguments, 
this semantic formula then gets further instanti- 
ated (Moore, 1989). Hence in such approaches it 
can be said that all semantic formulas are 'pro- 
jected from the lexicon' (Zeevat et al., 1987). 
Such an organization of a grammar is the starting 
point of a class of generation algorithms that have 
become popular recently (Calder et al., 1989; 
Shieber et al., 1989; Shieber el al., 1990). These 
semantic-head-driven algorithms are both geared 
towards the input semantic representation and 
the information contained in lexical entries. If 
the above sketched approach to semantic inter- 
pretation is followed systematically, it is possible 
to show that such a semantic-head-driven gen- 

eration algorithm terminates (Dymetman et al., 
1990). 

In van Noord (1991) I define a head-driven 
parser (based on Kay (1989)) for a class of 
constraint-based grammars in which the con- 
struction of strings may use more complex op- 
erations that simple context-free concatenation. 
Again, this algorithm is geared towards the in- 
put (string) and the information found in lexi- 
cal entries. In this paper I investigate an ap- 
proach where the construction of strings is de- 
fined lexically. Grammar rules simply percolate 
strings upwards. Such an approach seems feasible 
if we allow for powerful constraints to be defined. 
The head-corner parser knows about strings and 
performs operations on them; in the types of 
grammars defined here these operations are re- 
placed by general constraint-solving techniques 
(HShfeld and Smolka, 1988; Tuda et al., 1989; 
Damas et al., 1991). Therefore, it becomes pos- 
sible to view both the head-driven generator and 
the head-driven parser as one and the same algo- 
rithm. 

For this uniform algorithm to terminate, we 
generalize the constraint proposed by Dymetman 
et ai. (1990) to both semantic interpretations 
and strings. That is, for each lexical entry we 
require that its string and its semantics is larger 
than the string and the semantics associated with 
each of its arguments. The following picture then 
emerges. The depth of a derivation tree is de- 
termined by the subcat list of the ultimate head 
of the tree. Furthermore, the string and the se- 
mantic representation of each of the non heads in 
the derivation tree is determined by the subcat 
list as well. A specific condition on the relation 
between elements in the subcat list and their se- 
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mantics and string representation ensures termi- 
nation. This condition on lexical entries can be 
seen as a lexicalized !and computationally moti- 
vated version of GB's projection principle. 

W o r d - o r d e r  d o m a i n s .  The string associated 
with a linguistic object (sign) is defined in terms 
of its word-order domain (Reape, 1989; Reape, 
1990a). I take a word=order domain as a sequence 
of signs. Each of the§e signs is associated with a 
word-order domain recursively, or with a sequence 
of words. A word-order domain is thus a tree. 
Linear precedence rules are defined that  constrain 
possible orderings o f  signs in such a word-order 
domain. Surface strings are a direct function of 
word-order domains.' In the lexicon, the word- 
order domain of a lexical entry is defined by shar- 
ing parts of this domain with the arguments it 
subcategorizes for. Word-order domains are per- 
colated upward. Hence word-order domains are 
constructed in a derivation by gradual instantia- 
tions (hence strings are constructued in a deriva- 
tion by gradual instantiation as well). Note that  
this implies that  an unsaturated sign is not asso- 
ciated with one string, but  merely with a set of 
possible strings (this is similar to the semantic in- 
terpretat ion of unsaturated signs (Moore, 1989)). 
In lexical entries, word order domains are defined 
using Reape's sequence union operation (R.eape, 
1990a). Hence the grammars are not only based 
on context-free string concatenation. 

2 Cons tra ln t -based  vers ions  
of  categoria l  g r a m m a r  

The formalism I assume consists of definite clau- 
ses over constraint languages in the manner of 
HShfeld and Smolka (1988). The constraint lan- 
guage at least consists of the path equations 
known from PATR II (Shieber, 1989), augmented 
with variables. I write such a definite clause as: 

P : - q l  . . . q n , ¢ .  

where p, qi are atoms and ¢ is a (conjunction of) 
constraint(s). The  path equations are written as 
in PATR II, but  each I path starts with a variable: 

(Xi i l . . . l , )  =" c 

o r  

(x, i , . . . t . )  = (xj t l . . .  i£) 

where X t  are variables, c is a constant,  I, l' are 
attributes. I also use some more powerful con- 
straints that  are written as atoms. 

This formalism is used to define what possible 
'signs' are, by the definition of the unary predi- 
cate s:i.gn/1. There  is only one nonunit  clause for 
this predicate. The idea is tha t  unit clauses for 
s i g n / 1  are lexical entries, and the one nonunit  
clause defines the (binary) application rule. I as- 
sume that  lexical entries are specified for their 
arguments in their 'subcat list' (sc).  In the ap- 
plication rule a head selects the first ( f )  element 
from its subcat list, and the tail ( r )  of the subcat  
list is the subcat  list of the mother; the semantics 
(sere) and strings (phon) are shared between the 
head and the mother.  

sign(Xo) :-  s ign(X1),  s ign(X2),  

(Xo synsem sern) --" (X1 synsem sere), 

(Xo phon) ~ (X1 phon), 

(Xo synsem sc) ± iX ,  s ynsem sc r), 

(21 synsem sc f )  =" (X2). 

I write such rules using matr ix  notation as fol- 
lows; s t r i n g ( X )  represents the value Y, where 
s t r i n g ( X , ¥ ) .  

synsem : 
Xo : 

phon : [~] 

synsem : 
X1 : 

phon : [~] 

X2 : [ ~  

The grammar also consists of a number of lex- 
ical entries. Each of these lexical entries is speci- 
fied for its subcat list, and for each subcat  element 
the semantics and word-order domain is specified, 
such that  they satisfy a termination condition to 
be defined in the following section. For exam- 
ple, this condition is satisfied if the semantics of 
each element in the subcat  list is a proper sub- 
part of the semantics of the entry, and each ele- 
ment of the subcat list is a proper subpart  of the 
word-order domain of the entry. The phonology 
of a sign is defined with respect to the word-order 
domain with the predicate 'string'. This predi- 
cate simply defines a left-to-right depth-first tra- 
versel of a word-order domain and picks up all 
the strings at the terminals. It should be noted 
that  the way strings are computed from the word- 
order domains implies tha t  the string of a node 
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I syn : vp[ 

synsem : ~ 8c: @ synsem : 

sere : schla f e n ( ~  

dom:~(~] ,  dora: 0 ) 
phon : (schlii ft) 

phon : s t r ing(D 

8eWR : 

Figure 1: The German verb 'schlKft' 

not necessarily is the concatenation of the strings 
of its daughter nodes. In fact, the relation be- 
tween the strings of nodes is defined indirectly 
via the word-order domains. 

The word-order domains are sequences of signs. 
One of these signs is the sign corresponding to the 
lexical entry itself. However, the domain of this 
sign is empty, but other values can be shared. 
Hence the entry for an intransitive German verb 
such as 'schl~ft' (sleeps) is defined as in figure 1. 

I introduce some syntactic sugaring to make 
such entries readable. Firstly, XPi will stand for 

s nsem: sem:[  

Furthermore, in lexical entries the s ~ s e m  part is 
shared with the synsem part of an element of the 
word order domain, that  is furthermore specified 
for the empty domain and some string. I will 
write: << string >> in a lexical entry to stand for 
the sign whose synsem value is shared with the 
synsem of the lexical entry itself; its dora value 
is 0 and its phon value is string. The foregoing 
entry is abreviated as: 

synsern : sere : sehla/en([T]) 
: ( [ ] N  P, ) 

dora: []([],  << s hla/t >>) 
phon : s t r ing(D 

Note that  in this entry we merely stipulate that  
the verb preceded by the subject constitutes the 
word-order domain of the entire phrase. H o w -  
ever, we may also use more complex constraints 
to define word-order constraints. In particular, 

as already stated above, LP constraints are de- 
fined which holds for word-order domains. I use 
the sequence-union predicate (abbreviated su) 
defined by Reape as a possible constraint as well. 
This predicate is motivated by clause union and 
scrambling phenomena in German. A linguisti- 
cally motivated example of the use of this con- 
straint can be found in section 4. The predicate 
su(A, B, C) is true in case the elements of the list 
C is the multi set union of the elements of the lists 
A and B; moreover, a < b in either A or B iff a < 
b in C. I also use the notation X U 0 Y to denote 
the value Seq, where su(X,Y,$eq).  For exam- 
ple, su([a, d, e], [b, c, f], [a, b, c, d, e, f]); [a, e] o 0 [b] 
stands for [a, c, b],[a, b, c] or [b, a, c]. In fact, I as- 
sume that  this predicate is also used in the simple 
cases, in order to be able to spel out generaliza- 
tions in the linear precedence constraints. Hence 
the entry for 'schlafen' is defined as follows, where 
I write lp(X) to indicate that  the lp constraints 
should be satisfied for X. I have nothing to say 
about the definition of these constraints. 

synsem : sere: schla/en(E]) 
sc : ([~]N Pi) 

D °m: ( D  u0 (<< schla/t >>) 
phon: string(tp([ [)) 

In the following I (implicitly) assume that  for each 
lexical entry the following holds: 

dora: [ ]  
phon : string(lp(D) ] 

3 U n i f o r m  P r o c e s s i n g  

In van Noord (1991) I define a parsing strat- 
egy, called 'head-corner parsing' for a class of 
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grammars allowing more complex constraints on 
strings than context-free concatenation. Reape 
defines generalizations of the shift-reduce parser 
and the CYK parser (Reape, 1990b), for the 
same class of grammars. For generation head- 
driven generators can be used (van Noord, 1989; 
Calder et al., 1989; Shieber et al., 1990). Alter- 
natively I propose a generalization of these head- 
driven parsing- and generation algorithms. The 
generalized algorithm can be used both for pars- 
ing and generation. Hence we obtain a uniform 
algorithm for both processes. Shieber (1988) ar- 
gues for a uniform architecture for parsing in 
generation. In his proposal, both processes are 
(different) instantiations of a parameterized algo- 
rithm. The algoritthm I define is not parameter- 
ized in this sense, but  really uses the same code in 
both directions. Some of the specific properties of 
the head-driven generator on the one hand, and 
the head-driven parser on the other hand, follow 
from general constraint-solving techniques. We 
thus obtain a uniform algorithm that  is suitable 
for linguistic processing. This result should be 
compared with other uniform scheme's such as 
SLD-resolution or some implementations of type 
inference (Zajae, 1991, this volume) which clearly 
are also uniform but facessevere problems in the 
case of lexicalist grammars, as such scheme's do 
not take into account the specific nature of lexi- 
calist grammars (Shieber et al., 1990). 

A l g o r i t h m .  The algorithm is written in the 
same formalism as the grammar and thus con- 
stitutes a meta-interpreter.  The  definite clauses 
of the object-grammar are represented as 

iexical_entry(X) :- qL 

for the unit clauses 

sign(X) :- q~. 

and 

rule(H, M, A) :- ~. 

for the rule 

sign(M) :- sign(H), sign(A), oh. 

The associated interpreter is a Prolog like top- 
down backtrack interpreter where term unifi- 
cation is replaced by more general constraint- 
solving techniques~, (HShfeld and Smolka, 1988; 
Tuda et aL, 1989; Damas et al., 1991). The 
meta-interpreter  defines a head-driven bot tom-up 

strategy with top-down prediction (figure 2), and 
is a generalization of the head-driven generator 
(van Noord, 1989; Calder et al., 1989; van Noord, 
1990a) and the head-corner parser (Kay, 1989; 
van Noord, 1991). 

prove(T) :- 
lexical_entry( L ), connect(L, T), 
(T phon) ~ (L phon), 
(T synsem sere) =" (L synsem sem). 

connect(T, T). 
connect(S, T) :-  

rule(S, M, A), prove(A), 
connect ( M, T). 

Figure 2: The uniform algorithm 

In the formalism defined in the preceding sec- 
tion there are two possible ways where non- 
termination may come in, in the constraints or 
in the definite relations over these constraints. In 
this paper I am only concerned with the second 
type of non-termination, that  is, I simply assume 
that  the constraint language is decidable (HShfeld 
and Smolka, 1988). 1 For the grammar sketched 
in the foregoing section we can define a very nat- 
ural condition on lexical entries that  guarantees 
us termination of both parsing and generation, 
provided the constraint language we use is decid- 
able. 

The basic idea is that  for a given semantic rep- 
resentation or (string constraining a) word-order 
domain, the derivation tree that  derives these rep- 
resentations has a finite depth. Lexical entries 
are specified for (at least) ae, phon and nero. The 
constraint merely states that  the values of these 
attr ibutes are dependent.  It is not possible for 
one value to 'grow' unless the values of the other 
attributes grow as well. Therefore the constraint 
we propose can be compared with GB's projec- 
tion principle if we regard each of the at tr ibutes 
to define a 'level of description'. Termination can 
then be guaranteed because derivation trees are 
restricted in depth by the value of the se at- 
tribute. 

In order to define a condition to guarantee ter- 
mination we need to be specific about  the inter- 

1This is t h e  c a s e  i f  w e  only have PATH equations; but 
probably not if we use t.J(), string/2smd lp/2 unlimited. 
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pretation of a lexical entry. Following Shieber 
(1989) I assume that the interpretation of a set 
of path equations is defined in terms of directed 
graphs; the interpretation of a lexical entry is a 
set of such graphs. The 'size' of a graph simply is 
defined as the number of nodes the graph consists 
of. We require that for each graph in the interpre- 
tation of a lexical entry, the size of the subgraph 
at sere is strictly larger than each of the sizes of 
the sere part of the (subgraphs corresponding to 
the) elements of the subcat list. I require that 
for each graph in the interpretation of a lexicM 
entry, the size of phon is strictly larger than each 
of the sizes of (subgraphs corresponding to) the 
phon parts of the elements of the subcat lists. 
Summarizing, all lexical entries should satisfy the 
following condition: 

T e r m i n a t i o n  condi t ion .  For each interpreta- 
tion L of a lexical entry, if E is an element of L's 
subcat list (i.e. (L synsem sc r* f )  ~ E), then: 

size[(E phon)] < size[(L phon)] 
size[(E synsem sere)] < size[(L synsem sere)] 

The most straightforward way to satisfy this con- 
dition is for an element of a subcat list to share 
its semantics with a proper part of the semantics 
of the lexical entry, and to include the elements 
of the subcat list in its word-order domain. 

Possible inputs .  In order to prove termination 
of the algorithm we need to make some assump- 
tions about possible inputs. For a discussion cf. 
van Noord (1990b) and also Thompson (1991, 
this volume). The input to parsing and gener- 
ation is specified as the goal 

?-- sign(Xo), ¢. 

where ¢ restricts the variable X0. We re- 
quire that for each interpretation of X0 there 
is a maximum for parsing of size[{Xo phonl] , 
and that there is a maximum for generation of 
size[(Xo synsem sem)]. 

If the input has a maximum size for either se- 
mantics or phonology, then the uniform algorithm 
terminates (assuming the constraint language is 
decidable), because each recursive call to 'prove' 
will necessarily be a 'smaller' problem, and as 
the order on semantics and word-order domains 
is well-founded, there is a 'smallest' problem. As 
a lexical entry specifies the length of its subcat 
list, there is only a finite number of embeddings 
of the 'connect' clause possible. 

4 Some  e x a m p l e s  

Verb raising. First I show how Reape's anal- 
ysis of Dutch and German verb raising construc- 
tions can be incorporated in the current grammar 
(Reape, 1989; Reape, 1990a). For a linguistic dis- 
cussion of verb-raising constructions the reader is 
referred to Reape's papers. A verb raiser such as 
the German verb 'versprechen' (promise) selects 
three arguments, a vp, an object np and a subject 
np. The word-order domain of the vp is unioned 
into the word order domain of versprechen. This 
is necessary because in German the arguments of 
the embedded vp can in fact occur left from the 
other arguments of versprechen, as in: 

esi ihmj jemandk zu leseni versprochenj hatk 
(it him someone to read promised had 
i.e. someome had promised him to read it. 

Hence, the lexical entry for the raising verb 'ver- 
sprechen' is defined as in figure 3. The word-order 
domain of 'versprechen' simply is the sequence 
union of the word-order domain of its vp object, 
with the np object, the subject, and ver~prechen 
itself. This allows any of the permuations (al- 
lowed by the LP constraints) of the np object, 
versprechen, the subject, and the elements of 
the domain of the vp object (which may contain 
signs that have been unioned in recursively). 

Seperable prefixes. The current framework 
offers an interesting account of seperable prefix 
verbs in German and Dutch. For an overview of 
alternative accounts of such verbs, see Uszkoreit 
(1987)[chapter 4]. At first sight, such verbs may 
seem problematic for the current approach be- 
cause their prefixes seem not to have any seman- 
tic content. However, in my analysis a seperable 
prefix is lexically specified as part of the word- 
order domain of the verb. Hence a particle is not 
identified as an element of the subcat list. Fig- 
ure 4 might be the encoding of the German verb 
'anrufen' (call up). Note that this analysis con- 
forms to the condition of the foregoing section, 
because the particle is not on the subcat list. The 
advantages of this analysis can be summarized as 
follows. 

Firstly, there is no need for a feature system 
to link verbs with the correct prefixes, as eg. 
in Uszkoreit's proposal. Instead, the correspon- 
dence is directly stated in the lexical entry of the 
particle verb which seems to me a very desirable 
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s y n s e m  : sc : (I sc : (NP4)  

dora : E ]  

do : (<< >>)uO E]uo (DUo 0 

Figure 3: The German verb 'versprechen' 

result. 5 H P S G  M a r k e r s  

Secondly, the analysis predicts that  particles 
can 'move away' from the verb in case the verb 
is sequence-unioned into a larger word-order do- 
main. This prediction is correct. The clearest 
examples are possibly from Dutch. In Dutch, the 
particle of a verb can be placed (nearly) anywhere 
in the verb cluster, as long as it precedes its ma- 
trix verb: 

*dat jan marie piet heefft willen zien bellen op 
dat jan marie piet heeft willen zien op bellen 
dat jan marie pier heeft willen op zien bellen 
dat jan marie piet heeft op willen zien bellen 
dat jan marie piet op heeft willen zien bellen 

that  john mary pete up has want see call 
(i.e. john wanted to see mary call up pete) 

The fact that  the particle is not allowed to follow 
its head word is easily explained by the (indepen- 
dently motivated) LP constraint that  arguments 
of a verb precede the verb. Hence these curious 
facts follow immediately in our analysis (the anal- 
ysis makes the same prediction for German, but 
because of the different order of German verbs, 
this prediction can not be tested). 

Thirdly, Uszkoreit argues that  a theory of 
seperable prefixes should also account for the 
'systematic orthog!aphic insecurity felt by native 
speakers' i.e. whether or not they should write 
the prefix and the verb as one word. The current 
approach can be seen as one such explanation: in 
the lexical entry for a seperable prefix verb the 
verb and prefix are already there, on the other 
hand each of the words is in a different part of 
the word-order domain. 

In newer versions of HPSG (Pollard and Sag, 
1991) a special 'marker'  category is assumed for 
which our projection principle does not seem to 
work. For example, complementizers are ana- 
lyzed as markers. They are not taken to be the 
head of a phrase, but merely 'mark'  a sentence 
for some features. On the other hand, a spe- 
cial principle is assumed such that  markers do in 
fact select for certain type of constituents. In the 
present framework a simple approach would be to 
analyze such markers as functors, i.e. heads, that  
have one element in their subcat list: 

s y n s e T T t  : $ e T n  . .  

se : (L~] V P _ F I N 1 )  

dora : (<< dass >>, [~]) 

However, the termination condition defined in 
the third section can not always be satisfied be- 
cause these markers usually do not have much 
semantic content (as in the preceding example). 
Furthermore these markers may also be phoneti- 
cally empty, for example in the HPSG-2 analysis 
of infinite vp's that  occur independently such an 
empty marker is assumed. Such an entry would 
look presumably as follows, where it is assumed 
that  the empty marker constitutes no element of 
its own domain: 

8 y n s e T n  : $ e T n  . .  

sc : (L~J V P_I N F1) 

dom: Q 

It seems, then, that  analyses that  rely on such 
marker categories can not be defined in the cur- 
rent framework. On the other hand, however, 
such markers have a very restricted distribution, 
and are never recursive. Therefore, a slight mod- 

17 



syn : vp ] 
synsem: sere :anrufen([T]  

,c:  ]gPl) 
r 

>>) uo u(i ( [ dora: (<< r u f f  
[ 

synsem : syn : part 1 
dora: 0 ]) 
phon : (an) 

Figure 4: Tile verb 'anrufen' 

ification of the termination condition can be de- 
fined that take into account such marker cate- 
gories. To make this feasible we need a constraint 
that markers can not apply arbitrarily. In HPSG- 
2 the distribution of the English complementizer 
' that '  is limited by the introduction of a special 
binary feature whose single purpose is to disallow 
sentences such as 'john said that that that mary 
loves pete'. It is possible to generalize this to dis- 
allow any marker to be repeatedly applied in some 
domain. The 'seed' of a lexical entry is this entry 
itself; the seed of a rule is the seed of the head of 
this rule unless this head is a marker in which case 
the seed is defined as the seed of the argument. 
In a derivation tree, no marker may be applied 
more than once to the same seed. This 'don't 
stutter'  principle then subsumes the feature ma- 
chinery introduced in HPSG-2, and parsing and 
generation terminates for the resulting system. 

Given such a system for marker categories, 
we need to adapt our algorithm. I assume lex- 
ical entries are divided (eg. using some user- 
defined predicate) into markers and not mark- 
ers; markers are defined with the predicate 
marker(Sign,Name) where Name is a unique 
identifier. Other lexical entries are encoded as 
before, marktypes(L) is the list of all marker 
identifiers. The idea simply is that markers are 
applied top-down, keeping track of the markers 
that have already been used. The revised algo- 
rithm is given in figure 5. 

A c k n o w l e d g e m e n t s  

I am supported by SFB 314, Project N3 BiLD. 

prove(T): -  
marktypes( M), prove(T, M). 

prove(T, M) : - 
marker(L, Name), del(Name, M, M2), 

rule(L, T, A), prove(A, M2). 

prove(T, M) : - 
lezical_entry( L ), connect( L, T), 
(T phon) =" (L phon), 
(T synsem sere) ~ (L synsem sere). 

connect(T, T). 
connect(S, T) :- 

rule(S, M, A), prove(A), 
connect(M, T). 

Figure 5: The algorithm including markers 
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