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Abstract

Grammatical error detection (GED) in non-
native writing requires systems to identify a
wide range of errors in text written by lan-
guage learners. Error detection as a purely
supervised task can be challenging, as GED
datasets are limited in size and the label dis-
tributions are highly imbalanced. Contextual-
ized word representations offer a possible so-
lution, as they can efficiently capture composi-
tional information in language and can be opti-
mized on large amounts of unsupervised data.
In this paper, we perform a systematic com-
parison of ELMo, BERT and Flair embeddings
(Peters et al., 2017; Devlin et al., 2018; Akbik
et al., 2018) on a range of public GED datasets,
and propose an approach to effectively inte-
grate such representations in current methods,
achieving a new state of the art on GED. We
further analyze the strengths and weaknesses
of different contextual embeddings for the task
at hand, and present detailed analyses of their
impact on different types of errors.

1 Introduction

Detecting errors in text written by language learn-
ers is a key component of pedagogical applications
for language learning and assessment. Super-
vised learning approaches to the task exploit pub-
lic error-annotated corpora (Yannakoudakis et al.,
2011; Ng et al., 2014; Napoles et al., 2017) that
are, however, limited in size, in addition to hav-
ing a biased distribution of labels: the number of
correct tokens in a text far outweighs the incor-
rect (Leacock et al., 2014). As such, Grammatical
Error Detection (GED) can be considered a low-
/mid-resource task.

The current state of the art explores error de-
tection within a semi-supervised, multi-task learn-
ing framework, using a neural sequence labeler
optimized to detect errors as well as predict their

surrounding context (Rei, 2017). To further im-
prove GED performance, recent work has investi-
gated the use of artificially generated training data
(Rei et al., 2017; Kasewa et al., 2018). On the re-
lated task of grammatical error correction (GEC),
Junczys-Dowmunt et al. (2018) explore transfer
learning approaches to tackle the low-resource
bottleneck of the task and, among others, find sub-
stantially improved performance when incorporat-
ing pre-trained word embeddings (Mikolov et al.,
2013), and importing network weights from a lan-
guage model trained on a large unlabeled corpus.

Herein, we extend the current state of the art for
error detection (Rei, 2017) to effectively incorpo-
rate contextual embeddings: word representations
that are constructed based on the context in which
the words appear. These embeddings are typically
the output of a set of hidden layers of a large lan-
guage modelling network, trained on large vol-
umes of unlabeled and general domain data. As
such, they are able to capture detailed information
regarding language and composition from a wide
range of data sources, and can help overcome re-
source limitations for supervised learning.

We evaluate the use of contextual embed-
dings in the form of Bidirectional Encoder Rep-
resentations from Transformers (BERT) (Devlin
et al., 2018), embeddings from Language Models
(ELMo) (Peters et al., 2018) and Flair embeddings
(Akbik et al., 2018). To the best of our knowledge,
this is the first evaluation of the use of contextual
embeddings for the task of GED. Our contribu-
tions are fourfold:

• We present a systematic comparison of dif-
ferent contextualized word representations
for the task of GED;

• We describe an approach for effectively in-
tegrating contextual representations to error
detection models, achieving a new state of the
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art on a number of public GED datasets, and
make our code and models publicly available
online;

• We demonstrate that our approach has partic-
ular benefits for transferring to out-of-domain
datasets, in addition to overall improvements
in performance;

• We perform a detailed analysis of the
strengths and weaknesses of different contex-
tual representations for the task of GED, pre-
senting detailed results of their impact on dif-
ferent types of errors in order to guide future
work.

2 Related work

In this section, we describe previous work on GED
and on the related task of GEC. While error cor-
rection systems can be used for error detection,
previous work has shown that standalone error
detection models can be complementary to error
correction ones, and can be used to further im-
prove performance on GEC (Yannakoudakis et al.,
2017).

Early approaches to GED and GEC relied upon
handwritten rules and error grammars (e.g. Fos-
ter and Vogel (2004)), while later work focused
on supervised learning from error-annotated cor-
pora using feature engineering approaches and of-
ten utilizing maximum entropy-based classifiers
(e.g. Chodorow et al. (2007); De Felice and Pul-
man (2008)). A large range of work has focused
on the development of systems targeting specific
error types, such as preposition (Tetreault and
Chodorow, 2008; Chodorow et al., 2007), article
usage (Han et al., 2004, 2006), and verb form er-
rors (Lee and Seneff, 2008). Among others, error-
type agnostic approaches have focused on gen-
erating synthetic ungrammatical data to augment
the available training sets, or learning from native
English datasets; for example, Foster and Ander-
sen (2009) investigate rule-based error generation
methods, while Gamon (2010) trains a language
model (LM) on a large, general domain corpus,
from which features (e.g. word likelihoods) are de-
rived for use in error classification.

As a distinct task, GEC has been formulated
as a naı̈ve-bayes classification (Rozovskaya et al.,
2013, 2014; Rozovskaya and Roth, 2016) or a
monolingual (statistical or neural) machine trans-
lation (MT) problem (where uncorrected text is

treated as the source “language” and the corrected
text as its target counterpart) (Felice et al., 2014;
Junczys-Dowmunt and Grundkiewicz, 2014; Ro-
zovskaya and Roth, 2016; Yuan and Briscoe,
2016).

Recently, Rei and Yannakoudakis (2016) pre-
sented the first approach towards neural GED,
training a sequence labeling model based on word
embeddings processed by a bidirectional LSTM
(bi-LSTM), outputting a probability distribution
over labels informed by the entire sentence as
context. This approach achieves strong results
when trained and evaluated on in-domain data, but
shows weaker generalization performance on out-
of-domain data. Rei et al. (2016) extended this
model to include character embeddings in order to
capture morphological similarities such as word
endings. Rei (2017) subsequently added a sec-
ondary LM objective to the neural sequence la-
beling architecture, operating on both word and
character-level embeddings. This was found to
be particularly useful for GED – introducing an
LM objective allows the network to learn more
generic features about language and composition.
At the same time, Rei and Yannakoudakis (2017)
investigated the effectiveness of a number of aux-
iliary (morpho-syntactic) training objectives for
the task of GED, finding that predicting part-of-
speech tags, grammatical relations or error types
as auxiliary tasks yields improvements in perfor-
mance over the single-task GED objective (though
not as high as when utilizing an LM objective).

The current state of the art on GED is based
on augmenting neural approaches with artificially
generated training data. Rei et al. (2017) showed
improved GED performance using the bi-LSTM
sequence labeler, by generating artificial errors in
two different ways: 1) learning frequent error pat-
terns from error-annotated corpora and applying
these to error-free text; 2) using a statistical MT
approach to “translate” correct text to its incor-
rect counterpart using parallel corpora. Recently,
Kasewa et al. (2018) applied the latter approach
using a neural MT system instead, and achieved a
new state of the art on GED using the neural model
of Rei (2017).

3 Data

In this section, we describe the different public
datasets we use to train our models.

The First Certificate in English (FCE) dataset
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(Yannakoudakis et al., 2011) is a publicly-released
set of essays written by non-native learners of En-
glish taking a language assessment exam. Each
essay is annotated by professional annotators with
the spans of language errors committed, the types
of errors, and suggested corrections. In addition,
the CoNLL 2014 shared task on GEC (Ng et al.,
2014) used a dataset of English essays written by
advanced undergraduate students at the National
University of Singapore. Each essay is annotated
by two experienced annotators and has error anno-
tations similarly to the FCE, though using a differ-
ent error taxonomy. The Johns Hopkins University
(JHU) FLuency-Extended GUG Corpus (JFLEG)
dataset (Napoles et al., 2017) contains essays writ-
ten by a range of English learners with different
first languages and proficiency levels. Each essay
is corrected by four annotators with native-level
proficiency and annotated with fluency and gram-
mar edits.

The 2019 Building Educational Applications
(BEA) shared task on GEC (Bryant et al., 2019)
released two new datasets: the Cambridge English
Write & Improve (W&I) corpus, which is a col-
lection of texts written by learners of English of
varying levels of proficiency and submitted for as-
sessment to the Write & Improve system (Yan-
nakoudakis et al., 2018), an automated online tool
for writing feedback; and the LOCNESS corpus
(Granger, 1998), originally compiled at the Centre
for English Corpus Linguistics at the University of
Louvain, and comprising essays written by native
English students. Both datasets are annotated for
corrections by the W&I annotators.

In this work, we use the FCE training set as
training data, and evaluate our models on the FCE
test set, the CoNLL-2014 test set, the JFLEG test
set, and the BEA 2019 shared task development
and test sets. This setup allows us to investigate
the extent to which our models and the use of
contextualized representations transfer to out-of-
domain data.

We follow Rei and Yannakoudakis (2016)
and convert the span-based annotations in these
datasets to binary error detection labels at the to-
ken level (i.e. is a token correct or incorrect).
Performance is evaluated using precision, recall,
and F0.5 at the token level. F0.5 places twice
the weight on precision than recall: systems that
incorrectly penalize correct language can have a
much more negative impact to language learning

compared to systems that miss to detect some er-
rors (Ng et al., 2014). We note that performance
on the BEA shared task test set is conducted using
the official evaluation tool in CodaLab.

We also perform detailed analyses in order to
evaluate the performance of our models per error
type. As the datasets above either have their own
error type taxonomy or they are not annotated with
error types at all, we follow the 2019 BEA shared
task and induce error types for all datasets au-
tomatically using the ERRor ANnotation Toolkit
(ERRANT) (Bryant et al., 2017). ERRANT auto-
matically annotates parallel uncorrected and cor-
rected sentences with error types using a universal
error taxonomy and hence allowing for compar-
isons across datasets. The system uses distance-
based alignment followed by rule-based error cat-
egorization. An error type is hence assigned to ev-
ery incorrect token in each dataset, with the ex-
ception of the BEA 2019 shared task test set, for
which the corrected versions are not yet publicly
available.

4 Error detection model

In this section, we extend the current state of
the art (neural) architecture for GED (Rei, 2017),
which we use as our baseline system. This model
is a bi-LSTM sequence labeler over token embed-
dings where, for each token, the model is trained
to output a probability distribution over binary cor-
rect/incorrect labels using a softmax layer (i.e. pre-
dicting whether a token is correct or incorrect in
context). The model is additionally trained with
a secondary bidirectional LM objective, predict-
ing the surrounding context of the target token in
the sequence. Specifically, the model uses a for-
ward LM to predict the next token in the sequence,
and a backward LM to predict the previous token.
Rei (2017) also makes use of a character-level bi-
LSTM, as opposed to solely conditioning on to-
kens, in order to benefit from sub-word morpho-
logical units, of particular use in the case of un-
known or incorrectly spelled words. The outputs
of the character-level LSTMs are concatenated to
the word embeddings and given as input to the
word-level bi-LSTM.

The model learns 300-dimensional word em-
beddings, initialized with pre-trained Google
News embeddings (Mikolov et al., 2013),1 and

1https://code.google.com/archive/p/
word2vec/

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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(a)

(b)

Figure 1: Simplified bi-LSTM sequence labeler with: (a) contextual embeddings (context) concatenated to the
input word embeddings (embed), before being passed through the bi-LSTM (h); (b) contextual embeddings
(context) concatenated to the LSTM output (o) before being passed through a softmax layer (s).

100-dimensional character embeddings. The hid-
den states of the word- and character-level LSTMs
are also of 300 and 100 dimensions respectively.
The outputs of each LSTM are passed through
a 50-dimensional hidden layer with a tanh ac-
tivation function. Dropout is applied to the in-
puts and outputs of each LSTM with a probabil-
ity of 0.5. The model is trained with a cross-
entropy loss function for the error detection ob-
jective that minimizes the negative log probabil-
ity of the gold label. As the model is also trained
with a secondary LM objective, a second bipar-
tite cross-entropy loss function is used, minimiz-
ing the negative log probability of the next word
in the sequence for the forward LM, and the pre-
vious word for the backward LM. A hyperparam-
eter γ = 0.1 weights the combination of the two
loss functions, assigning more importance to the
main task of error detection over the auxiliary task
of language modelling. Optimization is performed

with the AdaDelta optimizer (Zeiler, 2012), using
an initial learning rate of 1.0, and batches of 32
sentences. Training is terminated when validation
performance does not improve for 7 epochs.

In this work, we extend the above model by
incorporating contextualized word embeddings,
produced by three different approaches (BERT,
ELMo and Flair; each described in more detail in
Section 5). Specifically, we concatenate the con-
textual embeddings either to the input word em-
beddings before being passed through the word-
level bi-LSTM (Figure 1a), or to the bi-LSTM’s
output (Figure 1b). Peters et al. (2018) find that
the best point to integrate ELMo vectors varies by
task and, as such, we continue that line of analysis
here.

We make a TensorFlow (Abadi et al., 2016)
implementation of our code and models publicly



107

available online.2

5 Contextualized embeddings

Three types of contextual embeddings are consid-
ered in this work: BERT, ELMo and Flair embed-
dings (Peters et al., 2017; Devlin et al., 2018; Ak-
bik et al., 2018). In each case, we use the publicly-
available pre-trained models released by the au-
thors.

BERT embeddings are extracted from the high-
est layers of a transformer architecture trained
with a masked LM objective: rather than predict-
ing the next or previous word in a sequence, a
percentage of input tokens are masked and then
the network learns to predict the masked tokens.
BERT is also trained with a second objective pre-
dicting whether one sentence directly follows an-
other, given two input sentences. BERT pre-
trained embeddings are available in two variants:
base embeddings, which are the concatenation
of the four highest 768-dimension hidden layers,
yielding a 3, 072-dimension embedding; large em-
beddings, which are the concatenation of the four
highest 1024-dimension hidden layers, yielding a
4, 096-dimension embedding (Devlin et al., 2018).
BERT embeddings are trained on the BooksCor-
pus (0.8 billion words) of books written by un-
published authors (Zhu et al., 2015) and English
Wikipedia (2.5 billion words).

ELMo embeddings are a weighted element-
wise sum of the outputs of three-layered stacked
bi-LSTM LMs, trained to predict both the next
and previous token in the sequence. Using a task-
specific scalar per layer, the outputs of the three
LSTMs are reduced to a single 1, 024-dimension
embedding (Peters et al., 2018). This task-specific
weighting is learned by our sequence labeler dur-
ing training. ELMo is trained on the One Billion
Word Benchmark corpus (0.8 billion words), com-
posed primarily of online news articles (Chelba
et al., 2014a).

Flair embeddings are the concatenated output of
a single (i.e. unstacked) character-level bi-LSTM.
We use the concatenation of both the 2, 048-
dimension “news-forward” and “news-backward”
embeddings, each produced by a forward and
backward bi-LSTM respectively, and both trained
on the One Billion Word Benchmark (Chelba
et al., 2014b). This yields a 4, 096-dimensional

2https://github.com/samueljamesbell/
sequence-labeler

embedding (Akbik et al., 2018).

6 Results

Table 1 and Table 2 present the results of inte-
grating different contextual embeddings with the
current state-of-the-art model described by Rei
(2017).3 The experiments in this section are based
on models with contextual representations con-
catenated to the word embeddings; Section 6.1 in-
cludes a more detailed investigation of different
integration points. For comparison, we also re-
port the results of Rei et al. (2017) and Kasewa
et al. (2018), who improve error detection perfor-
mance by additionally augmenting Rei (2017)’s
model with artificial training data.

The experiments demonstrate a substantial im-
provement in precision, recall and F0.5 for ev-
ery model incorporating contextual embeddings,
across every dataset considered. On the FCE
test set, even our lowest performing model (Flair,
F0.5 = 49.97) outperforms the baseline (F0.5 =
42.15), with a relative improvement of 18.55%.
Our best performing model (BERT base, F0.5 =
57.28) outperforms the baseline by a relative
35.9%. This is also the new state-of-the-art re-
sult on the FCE test set, without using additional
manually-annotated training data.

The best performance on the CoNLL-2014 test
set is achieved by BERT large (F0.5 = 36.94)
and BERT base (F0.5 = 46.29) for the first and
second annotator respectively. These scores show
more than 30% relative improvement over the pre-
vious best results by Kasewa et al. (2018), even
without using additional artificial training data,
for both annotators. On the JFLEG test set (Ta-
ble 2), and both the BEA 2019 GEC Shared Task
development and test sets, BERT base yields the
highest performance. The improvement on the
BEA shared task datasets is particularly large,
with BERT base achieving 69.70% relative im-
provement on the development set and 63.30% rel-
ative improvement on the test set, compared to the
baseline model.

These experiments demonstrate that contextual
embeddings provide a very beneficial addition for
GED systems, achieving a new state of the art
across all datasets. Learning to compose language

3We include the results reported by Rei (2017) along with
our re-trained baseline. We note that the differences in perfor-
mance are due to a re-processing of the data in order to align
parallel original–corrected sentences and derive fine-grained
error type labels for later analyses (see Section 6.2).

https://github.com/samueljamesbell/sequence-labeler
https://github.com/samueljamesbell/sequence-labeler
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CoNLL Test 1 CoNLL Test 2 FCE test
P R F0.5 P R F0.5 P R F0.5

Rei (2017) 17.68 19.07 17.86 27.6 21.18 25.88 58.88 28.92 48.48
Rei et al. (2017) 23.28 18.01 21.87 35.28 19.42 30.13 60.67 28.08 49.11
Kasewa et al. (2018) - - 28.3 - - 35.5 - - 55.6

Baseline 20.82 16.31 19.73 31.91 17.81 27.55 46.55 30.58 42.15

Flair 29.53 17.11 25.79 44.12 18.22 34.35 58.36 31.72 49.97
ELMo 30.83 23.90 29.14 46.66 25.77 40.15 58.50 38.01 52.81
BERT base 37.62 29.65 35.70 53.52 30.05 46.29 64.96 38.89 57.28
BERT large 38.04 33.12 36.94 51.40 31.89 45.80 64.51 38.79 56.96

Table 1: Error detection precision, recall, and F0.5 on the FCE and CoNLL-2014 test sets: test 1 and test 2 refer to
the two different CoNLL annotators. ‘Baseline’ refers to our own re-training of the model by Rei (2017).

JFLEG Test Shared Task Dev Shared Task Test
P R F0.5 P R F0.5 P R F0.5

Baseline 72.84 22.83 50.65 31.31 21.18 28.58 40.05 34.99 38.93

Flair 75.65 25.26 54.08 41.80 24.10 36.45 53.40 39.84 50.00
ELMo 74.95 31.21 58.54 47.90 30.41 42.96 58.72 47.79 56.15
BERT base 79.51 32.94 61.98 53.31 35.65 48.50 66.47 54.11 63.57
BERT large 76.47 34.52 61.52 51.54 36.90 47.75 63.35 54.10 61.26

Table 2: Error detection precision, recall, and F0.5 on the JFLEG test set and BEA 2019 GEC Shared Task devel-
opment and test sets.

representations on large unsupervised datasets al-
lows the models to access a wider range of use-
ful information. While our error detection models
are optimized on the FCE training set, we observe
particularly large improvements on the CoNLL-
2014 and BEA shared task datasets, indicating that
contextual embeddings allow the models to gen-
eralize better and capture errors in out-of-domain
texts. Overall, we found BERT base to provide
the highest improvements across all datasets. The
slightly lower performance of BERT large could
be attributed to the larger embedding sizes requir-
ing more parameters to be optimized on our lim-
ited GED dataset.

6.1 Integration method

We performed additional experiments to investi-
gate the optimal method for integrating contextual
embeddings into the error detection model. The
embeddings are either concatenated to the stan-
dard word embeddings at the input level (reported
in our results as ‘input’), or to the output of the
word-level bi-LSTM (reported as ‘output’). In all
experiments, contextual embeddings are not fine-
tuned.

Table 3 compares the F0.5 of these two strate-
gies for each model, across all the datasets. We
observe that, although performance varies across
datasets and models, integration by concatena-

tion to the word embeddings yields the best re-
sults across the majority of datasets for all models
(BERT: 3/5 datasets; ELMo: 4/5 datasets; Flair:
5/5 datasets). The lower integration point allows
the model to learn more levels of task-specific
transformations on top of the contextual represen-
tations, leading to an overall better performance.

6.2 Error type performance

Using ERRANT (Bryant et al., 2017), we analyze
the performance on different types of errors and
specifically focus on two error type taxonomies:
one that uses part-of-speech (POS) based error
types (i.e. the type is based on the POS tag of the
incorrect token), and another based on edit oper-
ations (i.e. is it a missing token, an unnecessary
token, or a replace token error). This allows us to
yield insights into how different types of contex-
tual embeddings and the data in which they were
trained may impact performance on specific er-
rors. Since identifying type-specific false positives
is not possible in this setting, we follow Ng et al.
(2014) and report recall on each error type.

Figure 2 presents the performance on POS-
based error types, showing the change in error type
recall of each contextual embedding model com-
pared to our baseline, averaged over all datasets.
While all models yield an improvement in aggre-
gate performance metrics (P,R, F0.5), when bro-
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Shared Task Dev CoNLL Test 1 CoNLL Test 2 FCE test JFLEG test

Flair Input 36.45 25.79 34.35 49.97 54.08
Output 33.47 24.52 33.18 48.50 52.10

ELMo Input 42.96 29.14 40.15 52.81 58.54
Output 37.33 27.33 38.10 52.99 54.86

BERT base Input 48.50 35.70 46.29 57.28 61.98
Output 46.33 37.04 46.50 55.32 60.97

BERT large Input 47.75 36.94 45.80 56.96 61.52
Output 46.72 39.07 46.96 55.10 60.56

Table 3: Error detection F0.5 of different embedding integration strategies (‘input’ vs. ‘output’) per model on all
datasets.

ken down by POS-based error type, some trends
emerge. BERT base, BERT large and ELMo each
show strong improvements in recall of errors re-
lating to nouns, particles, prepositions and mor-
phology. In comparison, relatively weak improve-
ments are achieved for errors of conjugation, or-
thography and spelling. As such words/errors are
less likely to occur frequently in general-purpose
corpora of English (i.e. spelling mistakes are less
frequent in news articles compared to learner es-
says), contextual embeddings trained on such cor-
pora are also less helpful for these error types.

We also note the sharp decline in recall of the
BERT base model on contraction errors. This error
type occurs quite infrequently (see Figure 1 in the
Appendix) and we do not observe this issue with
BERT large.

Compared to BERT and ELMo, Flair offers
very little improvement on POS-based error type
recall or even actively degrades recall (e.g. con-
jugation, punctuation or spelling errors). While
the purely character-based representations of Flair
could potentially offer more flexibility in the
model, these results suggest that the limited vo-
cabulary of our learner data may be better captured
with word-level approaches.

Figure 3 presents the differences between mod-
els when looking at error types based on the nec-
essary edit operation: missing token, replace to-
ken or unnecessary token. While BERT improves
overall performance compared to ELMo, this im-
provement appears to be limited to replacement
and unnecessary error types. On missing word er-
rors, BERT base performs comparably to ELMo
and BERT large even decreases performance. We
discuss the possible reasons for this in Section 7.

We include the full results table for different
error types in the Appendix (Table 1, Table 2).
Our analysis shows that focusing more on punctu-

ation, determiner and preposition errors might be
the most beneficial avenue for improving the over-
all performance on GED. For example, punctua-
tion errors are the third most common error type,
but even with contextual embeddings the models
only achieve 27.7% recall across all datasets.

Overall, our results suggest that, while contex-
tual embeddings always improve aggregate perfor-
mance on GED, error type specific properties of
models should also be considered.

7 Discussion

The previous section has demonstrated consistent
improvement in precision, recall and F0.5 across
a range of GED datasets, including many exam-
ples of transfer to different domains, irrespective
of the choice of contextual embedding. Contex-
tual embeddings bring the possibility of leverag-
ing information learned in an unsupervised man-
ner from high volumes of unlabeled data, by large
and complex models, trained for substantial peri-
ods of time. For these reasons, they are a partic-
ularly appropriate addition to a low-resource task
such as GED. While each choice of contextual em-
bedding yields improved performance, BERT base
and BERT large consistently outperform ELMo
and Flair embeddings. Here, we suggest that de-
tails of the BERT architecture and training process
may be responsible for its specific performance
profile.

One difference between contextual embedding
models is the choice of training corpora. While
both ELMo and Flair embeddings are trained us-
ing the One Billion Word Benchmark, BERT
is trained on the BooksCorpus, and English
Wikipedia. It is likely that the usage and dis-
tribution of English varies across these corpora,
yielding different results on downstream tasks. We
might expect a corpus of books to exhibit a greater
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Figure 2: Mean change in recall of ERRANT-induced POS-based error types over all datasets when adding con-
textual embeddings at the input level, vs. our baseline without contextual embeddings. A: ELMo. B: BERT base.
C: BERT large. D: Flair.

variance in writing style, audience, and even writer
ability than a corpus of news articles, perhaps re-
sulting in more useful contextual embeddings for
GED. However, in contrast to the 0.8 billion to-
kens of training data available to ELMo and Flair,
BERT’s combination of BooksCorpus and English
Wikipedia provides 3.3 billion tokens of train-
ing data. The increased volume of training data
may alone suffice to explain BERT’s compara-
tively strong performance.

Another difference is that BERT is not trained
with a bi-directional LM objective. In contrast to
ELMo and Flair, BERT is trained with a masked
LM objective, such that it must predict the original
tokens when presented with a sentence with any
number of tokens masked. This training objective
always provides the model access to the correct
number of tokens in each sentence, which means
it never needs to consider possible missing tokens.
This could explain the decreased improvements on
the “missing” error types compared to other error
operations (Figure 3), and future work could ex-

periment with integrating missing tokens directly
into the BERT training objective.

At this point, we note that while the number of
parameters, and the dimensionality of the resulting
representations vary by model, extensive ablation
studies (Devlin et al., 2018; Peters et al., 2018) in-
dicate only small decreases in performance with
decreasing layers or dimensionality. Future re-
search may contrast the models considered here
with those of a paired number of parameters but
with randomly-initialized contextual embeddings.
However, as contextual embeddings enable the in-
tegration of information captured via unsupervised
learning on large general-purpose corpora, we ex-
pect that embeddings without this information (i.e.
randomly-initialized) would not yield the degree
of improvement detailed herein.

8 Conclusion

We have experimentally demonstrated that us-
ing contextual embeddings substantially improves
GED performance, achieving a new state of the art
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Figure 3: Mean change in recall of ERRANT-induced edit operation error types across all datasets when adding
contextual embeddings at the input level, vs. the model using BERT base. A: ELMo. B: BERT large. C: Flair.

on a number of public datasets. We have shown
that a sequence labeling architecture augment-
ing the input word embeddings with the BERT
family (base or large) of contextual embeddings
produces, overall, the best performance across
datasets. In addition to improving overall perfor-
mance, contextual embeddings proved to be par-
ticularly useful for improving on out-of-domain
datasets.

We have also performed a detailed analysis of
the strengths and weaknesses of the use of differ-
ent contextual embeddings on detecting specific
types of errors. We aim for the analyses pre-
sented here to facilitate future work in GED and
in improving such systems further. Future work
can also be directed towards investigating alterna-
tive approaches to integrating contextualized rep-
resentations and fine-tuning such representations
for GED.
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A Supplementary figures

Figure 1: Mean proportion of ERRANT-induced POS-based error types across datasets (FCE test set, CoNLL 2014
test set 1 (both annotators), BEA 2019 GEC Shared Task development set and JFLEG test set). Error bars show
the standard deviation.

Figure 2: Mean proportion of ERRANT-induced edit operation error types across all datasets (FCE test set, CoNLL
2014 test set (both annotators), BEA 2019 GEC Shared Task development set and JFLEG test set). Error bars show
the standard deviation.
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B Supplementary tables

R
Baseline BERT base BERT large ELMo Flair Frequency

ADJ 16.35 25.47 29.49 24.13 18.77 373
ADV 8.18 16.62 17.39 13.81 11.25 391
CONJ 9.63 15.56 12.59 8.89 8.15 135
CONTR 18.60 11.63 20.93 25.58 25.58 43
DET 24.78 38.11 38.02 37.28 27.30 2304
MORPH 36.34 53.12 52.69 47.53 35.48 465
NOUN 26.28 40.53 45.97 36.26 31.45 2245
ORTH 29.40 28.96 28.20 30.49 27.76 915
OTHER 18.77 29.96 31.06 27.04 20.69 4800
PART 9.62 28.85 31.41 31.41 16.67 156
PREP 10.70 34.71 35.25 31.40 20.42 1841
PRON 12.20 25.98 28.35 19.69 13.78 508
PUNCT 17.21 27.72 26.32 22.80 15.97 2504
SPELL 88.33 92.88 91.48 89.06 84.88 1362
VERB 18.63 33.75 36.80 25.40 19.32 3929
WO 13.52 23.16 22.13 19.47 14.75 488

Table 1: Overall recall of each model over all datasets broken out by ERRANT-induced POS-based error type,
with frequency of occurrence of each error type.

R
Baseline BERT base BERT large ELMo Flair Frequency

Missing 19.00 28.98 26.83 29.17 22.48 3816
Replacement 27.02 39.94 41.60 35.02 28.63 14839
Unnecessary 15.38 29.07 31.81 24.50 16.72 3804

Table 2: Overall recall of each model over all datasets broken out by ERRANT-induced edit operation error type,
with frequency of occurrence of each error type.


