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Abstract

This paper describes the submissions of the
“Marian” team to the WNMT 2018 shared
task. We investigate combinations of
teacher-student training, low-precision ma-
trix products, auto-tuning and other meth-
ods to optimize the Transformer model on
GPU and CPU. By further integrating these
methods with the new averaging atten-
tion networks, a recently introduced faster
Transformer variant, we create a number of
high-quality, high-performance models on
the GPU and CPU, dominating the Pareto
frontier for this shared task.

1 Introduction

This paper describes the submissions of the “Mar-
ian” team to the Workshop on Neural Machine
Translation and Generation (WNMT 2018) shared
task (Birch et al., 2018). The goal of the task is to
build NMT systems on GPUs and CPUs placed on
the Pareto Frontier of efficiency in accuracy.1

Marian (Junczys-Dowmunt et al., 2018) is an
efficient neural machine translation (NMT) toolkit
written in pure C++ based on dynamic computa-
tion graphs.2 One of the goals of the toolkit is to
provide a research tool which can be used to de-
fine state-of-the-art systems that at the same time
can produce truly deployment-ready models across
different devices. Ideally this should be accom-
plished within a single execution engine that does
not require specialized, inference-only decoders.

The CPU back-end in Marian is a very recent
addition and we use the shared-task as a testing
ground for various improvements. The GPU-bound

1See the shared task description: https://sites.
google.com/site/wnmt18/shared-task

2https://marian-nmt.github.io

computations in Marian are already highly opti-
mized and we mostly concentrate on modeling as-
pects and beam-search hyper-parameters.

The weak baselines (at 16.9 BLEU on new-
stest2014 at least 12 BLEU points below the state-
of-the-art) could promote approaches that happily
sacrifice quality for speed. We choose a quality
cut-off of around 26 BLEU for the first test set
(newstest2014) and do not spend much time on
systems below that threshold.3 This threshold was
chosen based on the semi-official Sockeye (Hieber
et al., 2017) baseline (27.6 BLEU on newstest2014)
referenced on the shared task page.4

We believe our CPU implementation of the
Transformer model (Vaswani et al., 2017) and at-
tention averaging networks (Zhang et al., 2018)
to be the fastest reported so far. This is achieved
by integer matrix multiplication with auto-tuning.
We also show that these models respond very well
to sequence-level knowledge-distillation methods
(Kim and Rush, 2016).

2 Teacher-student training

2.1 State-of-the-art teacher

Based on Kim and Rush (2016), we first build four
strong teacher models following the procedure for
the Transformer-big model (model size 1024, fil-
ter size 4096, file size 813 MiB) from Vaswani
et al. (2017) for ensembling. We use 36,000 BPE
joint subwords (Sennrich et al., 2016) and a joint
vocabulary with tied source, target, and output em-
beddings. One model is trained until convergence
for eight days on four P40 GPUs. See tables 3 and
4 for BLEU scores of an overview of BLEU scores
for models trained in this work.

3We added smaller post-submission systems to demon-
strate that our approach outperforms systems by other partici-
pants when we take part in the race to the quality bottom.

4https://github.com/awslabs/sockeye/
tree/wnmt18/wnmt18

https://sites.google.com/site/wnmt18/shared-task
https://sites.google.com/site/wnmt18/shared-task
https://marian-nmt.github.io
https://github.com/awslabs/sockeye/tree/wnmt18/wnmt18
https://github.com/awslabs/sockeye/tree/wnmt18/wnmt18
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Model Emb. FFN MiB

Transformer-big 1024 4096 813
Transformer-base 512 2048 238
Transformer-small 256 2048 101
Transformer-tiny-256* 256 1536 84
Transformer-tiny-192* 192 1536 60

Table 1: Transformer students dimensions. Post-
submission models marked with *.

2.2 Interpolated sequence-level
knowledge-distillation

As described by Kim and Rush (2016), we re-
translate the full training corpus source data with
the teacher ensemble as an 8-best list. Among the
eight hypotheses per sentence we choose the trans-
lation with the highest sentence-level BLEU score
with regard to the original target corpus. Kim and
Rush (2016) refer to this method as interpolated
sequence-level knowledge-distillation. Next, we
train our student models exclusively on the newly
generated and selected output.

2.3 Decoding with small beams

Whenever we use beam size 1, we skip softmax
evaluation and simply select the output word with
highest activation. The input sentences are sorted
by source length, then decoded in batches of ap-
proximately equal length. We batch based on num-
ber of words. For CPU decoding we use a batch
size of at least 384 words (ca. 15 sentences), for
the GPU at least 8192 words (ca. 300 sentences).

3 Student architectures

3.1 Transformer students

For our Transformer student models we follow
the Transformer-big and Transformer-base con-
figurations from Vaswani et al. (2017). Addi-
tionally we investigate a Transformer-small and
post-submission two Transformer-tiny variants on
the CPU. We also use six blocks of self-attention,
source-attention, and FFN layers with varying em-
bedding (model) and FNN sizes, see Table 1.

Transformer-big is initialized with one of the
original teachers and fine-tuned on the teacher-
generated data until development set BLEU stops
improving for beam-size 1. The remaining stu-
dent models are trained from scratch on teacher-
generated data until development set BLEU stalls
for 20 validation steps when using beam-size 1.

3.2 Averaging attention networks

Very recently, Zhang et al. (2018) suggested aver-
aging attention networks (AAN), a modification
of the original Transformer model that addresses a
decode-time inefficiency, apparently without loss
of quality. During translation, the self-attention lay-
ers in the Transformer decoder look back at their
entire history, introducing quadratic complexity
with respect to output length. Zhang et al. (2018)
replace the decoder self-attention layer with a cu-
mulative uniform averaging operation across the
previous layer. During decoding, this operation
can be computed based on the single last step. De-
coding is then linear with respect to output length.
Zhang et al. (2018) also add a feed-forward net-
work and a gate to the block. We choose a smaller
FFN size than Zhang et al. (2018) (corresponding
to embeddings size instead of FFN size in table 1)
and experiment with removing the FFN and gate.

3.3 RNN-based students

Our focus lies on efficient CPU-bound Transformer
implementations. However, Marian and its prede-
cessor Amun (Junczys-Dowmunt et al., 2016) were
first implemented as fast GPU-bound implemen-
tations of Nematus-style (Sennrich et al., 2017b)
RNN-based translation models. We use these mod-
els to cover the lower end of the quality spectrum in
the task. We train a standard shallow GRU model
(RNN-Nematus, embedding size 512, state size
1024), a small version (RNN-small, embedding
size 256, state size 512) and a deep version with 4
stacked GRU blocks in the encoder and 8 stacked
GRU blocks in the decoder (RNN-deep, embedding
size 512, states size 1024). This model corresponds
to the University of Edinburgh submission to WMT
2017 (Sennrich et al., 2017a).

4 Optimizing for the CPU

Most of our effort was concentrated on improving
CPU computation in Marian. Apart from improve-
ments from code profiling and bottleneck identifica-
tion, we worked towards integrating integer-based
matrix products into Marian’s computation graphs.

4.1 Shortlist

A simple way to improve CPU-bound NMT effi-
ciency is to restrict the final output matrix multipli-
cation to a small subset of translation candidates.
We use a shortlist created with fastalign (Dyer et al.,
2013). For every mini-batch we restrict the output
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vocabulary to the union of the 100 most frequent
target words and the 100 most probable translations
for every source word in a batch. All CPU results
are computed with a shortlist.

4.2 Quantization and integer products
Previously, Marian tensors would only work with
32-bit floating point numbers. We now support
tensors with underlying types corresponding to the
standard numerical types in C++. We focus on
integer tensors.

Some of our submissions replaced 32-bit
floating-point matrix multiplication with 16-bit or
8-bit signed integers. For 16-bit integers, we fol-
low Devlin (2017) in simply multiplying parame-
ters and inputs by 210 before rounding to signed
integers. This does not use the full range of values
of a 16-bit integer so as to prevent overflow when
accumulating 32-bit sums; there is no AVX512F
instruction for 32-bit add with saturation.

For 8-bit integers, we swept quantization multi-
pliers and found that 29 was optimal, but quality
was still poor. Instead, we retrained the model with
matrix product inputs (activations and parameters
but not outputs) clipped to a range. We tried [−3, 3],
[−2, 2], and [−1, 1] then settled on [−2, 2] because
it had slightly better BLEU.5 Values were then
scaled linearly to [−127, 127] and rounded to inte-
gers. We accumulated in 16-bit integers with satu-
ration because this was faster, observing a 0.05%
BLEU drop relative to 32-bit accumulation.

The test CPU is a Xeon Platinum 8175M with
support for AVX512. We used these instructions
to implement matrix multiplication over 32 16-bit
integers or 64 8-bit integers at a time.6

4.3 Memoization
To ensure contiguous memory access, the in-
teger matrix product dot′int(A,B) calculates
ABT instead of AB. It also expects its in-
puts A and B to be correctly quantized in-
teger tensors. Therefore, we have to com-
pute dot′int(quantint(A), quantint(B

T)) to use
the quantized integer product as a replacement for
the floating point matrix product.

In most cases, B is a parameter, while A contains
activations. Repeating the quantization and trans-

5This might however have been an artifact of the posterior
clipping process rather than an effect of quantization.

6The only packed 8-bit multiplication instruction is
vpmaddubsw, which requires AVX512BW. Interestingly,
Amazon’s hypervisor hides support for AVX512BW from
CPUID but the instruction works as expected so we used it.

Model 1s 384w BLEU

Transf.-base-AAN 1018.8 397.5 27.5
+shortlist 758.1 293.7 27.5
+int16 2703.2 491.4 27.5
+memoization 572.9 294.3 27.5
+auto-tuning 574.8 273.2 27.5

Transformer-big 4797.0 1537.8 28.1
+clip=2 (+mem.) 5006.9 1737.1 27.7
+int8 (+mem.) 1772.6 1169.9 27.5

Table 2: Time to translate newstest2014 with batch-
size equal to 1 sentence (1s) and around 384 words
(384w) using integer multiplication variants vs 32-
bit float matrix multiplication.

position operations for every decoder parameter at
every step would incur a significant performance
penalty. To counter this, we introduce memoization
into Marian’s computation graphs. Memoization
caches the values of constant nodes that will not
change during the lifetime of the graph.

During inference, parameter nodes are constant.
Apart from that any node with only constant chil-
dren is constant and can be memoized. In our exam-
ple, B is constant as a parameter, BT is constant be-
cause its only child is constant, so is quantint(BT).
dot′int(quantint(A), quantint(B

T)) itself is not
constant, as the activations A can change. Val-
ues for constant nodes are calculated only once
during the first forward step in which they appear;
subsequent calls will use cached versions.

4.4 Auto-tuning

At this point, the float32 (Intel’s MKL) product
and our int16 matrix product can be used inter-
changeably for small and mid-sized models (we see
overflow for the large Transformer model). While
trying to choose one implementation, we noticed
that both algorithms will outperform the respective
other in different contexts. In the face of many dif-
ferent matrix sizes and access patterns it is difficult
to determine reliable performance profiles. Instead,
we implemented an auto-tuner.

We hash tensor shapes and algorithm IDs and
annotate each node in an alternative subgraph with
a timer. We collect the total execution time across
100 traversals of each alternate subgraph. Once this
limit has been reached, usually within a few sen-
tences, the auto-tuner stops measurements and se-
lects the fastest alternative for all subsequent calls.
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4.5 Optimization results
Table 2 illustrates the effects of the optimizations
introduced in this section for sentence-by-sentence
and batched translation. Adding a shortlist im-
proves translation speed significantly. Enabling
int16 multiplication without memoization hurts
performance; with memoization we see improve-
ments for single-sentence translation and similar
performance to MKL for batched translation. With
auto-tuning, single-sentence translation achieves
the same performance as before and batched trans-
lation improves. In both cases the auto-tuning al-
gorithm was able to choose a good solution. In
the single-sentence case we would always use the
int16 product. In the batched case a mix performs
better than a hard choice.

We also see respectable improvements for the
Transformer-big model with int8 multiplication.
Most of the loss in BLEU is due to the fine-tuning
process with clipping during training.

5 Results and cost-effective decoding

In tables 3 and 4, we summarize our experiments
with GPU and CPU models. Bold rows contain
results for our task submissions. We report model
sizes in MiB, translation time without initialization
and BLEU scores for newstest2014. Time has been
measured on AWS p3.x2large instances (NVidia
V100) and AWS m5.large instances, the official
evaluation platforms of the shared task.

All our student models outperform the baselines
in terms of translation speed and quality, but as
stated before, we are mostly interested in models
above a 26 BLEU threshold. It seems that the new
AAN architecture is a promising modification of
the Transformer with minimal or no quality loss in
comparison to its standard equivalent. We also see
that teacher-student methods can be successfully
used to create high-performance and high-quality
Transformer systems with greedy decoding.

We compare our systems on a common cost-
effectiveness scale expressed as the number of
source tokens translated per US Dollar

[
w

USD

]
.

Given the hourly price for a dedicated AWS GPU
(p3.x2large, 3.259 USD/h) or CPU (m5.large,
0.102 USD/h) instance7 and the time to translate
newstest2014 consisting of 62,954 source tokens
with a chosen model and instance, we calculate:

62, 954 [w]

Translation time [s]
· 3, 600 [s/h]

Instance price [$/h]
.

7The same instance types were used for the shared task.

This representation has multiple advantages:

• Systems deployed on different hardware can
be compared directly;

• The linear mappings into the common space
are scale-preserving and correctly represent
relative speed differences between systems on
the same hardware;

• We can relate three important categories —
speed, quality, and cost — to each other in a
single visualization.

Figures 1 and 2 illustrate cost-effectiveness of
our models, the baselines and submissions by
other participants versus translation quality on new-
stest2014. Figure 1 contains all models with a cost-
effectiveness log-scale. This reflects a trend that
speed gains are exponential in quality loss. Based
on Figure 1, it seems that our models dominate the
Pareto-frontier for high-quality models for CPU
and GPU models compared to the baselines and
other participants.

We added post-submission systems (23i) and
(24i) on the CPU to demonstrate that we can out-
perform the results of other participants for speed
and quality when lowering our quality threshold.

In Figure 2 with a linear cost-effectiveness scale,
we emphasize models around and above the qual-
ity threshold of 26 BLEU which were our main
focus in this work. It is interesting to see that
similar Marian models have surprisingly similar
cost-effectiveness across different hardware types.

6 Conclusions

We demonstrated that Marian can serve as an in-
tegrated research and deployment platform with
highly efficient decoding algorithms on the GPU
and CPU. Transformer architectures can be ef-
ficiently trained in teacher-student settings and
then used with small beams or with greedy de-
coding. To our knowledge, this is also the first
work to integrate Transformer architectures with
low-precision matrix multiplication. By combining
these methods with the new averaging attention
networks, we created a number of high-quality,
high-performance models on the GPU and CPU,
dominating the Pareto frontier for this shared task.
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No Model MiB Time BLEU

(1) Baseline GPU – 51.6 16.8
(2) Sockeye GPU (Transformer-base b=5) – 231.9 27.6

(3) Teacher - Transformer-big b=8 813 109.7 28.1
(4) Teacher - Transformer-big×4 b=8 3252 410.8 29.0

(5) Transformer-big b=4 813 52.0 28.4
(6) Transformer-big b=2 813 31.9 28.4
(7) Transformer-big 813 19.9 28.2

(8) Transformer-base b=4 238 40.5 27.8
(9) Transformer-base b=2 238 22.9 27.8
(10) Transformer-base 238 12.8 27.6

(11) Transformer-base-AAN b=4 220 15.9 27.7
(12) Transformer-base-AAN b=2 220 8.9 27.7
(13) Transformer-base-AAN 220 7.2 27.6

(14) Transformer-small 101 10.8 26.4

(15) Transformer-small-AAN 100 5.9 25.8
(16) Transformer-small-AAN -ffn 98 5.7 26.2
(17) Transformer-small-AAN -ffn -gate 95 5.6 25.8

(18) RNN-small-Amun 88 1.6 24.1
(19) RNN-Nematus-Amun 199 2.2 24.8

(20) RNN-small 88 1.8 24.1
(21) RNN-Nematus 199 2.5 24.8
(22) RNN-Deep 323 2.9 25.7

Table 3: Results on newstest2014 - GPU systems. Submitted systems in bold. All student systems have
been used with beam-size 1 unless stated differently (b=n).

No Model MiB Time BLEU

(1) Baseline CPU – 4492.2 16.8
(2) Sockeye CPU (Transformer-base b=5) – 1168.6 27.4

(7) Transformer-big 813 1537.8 28.1
(7i) Transformer-big-int8 813 1169.9 27.5

(10) Transformer-base 238 393.1 27.4
(10i) Transformer-base-int16 238 400.2 27.4

(13) Transformer-base-AAN 220 288.7 27.5
(13i) Transformer-base-AAN-int16 220 273.2 27.5

(14) Transformer-small 101 134.1 26.5
(14i) Transformer-small-int16 101 133.2 26.5

(15i) Transformer-small-AAN-int16 100 108.8 25.8
(16i) Transformer-small-AAN-int16 -ffn 98 108.3 26.2
(17) Transformer-small-AAN -ffn -gate 95 100.6 26.0
(17i) Transformer-small-AAN-int16 -ffn -gate 95 94.1 26.0

(23i) Transformer-tiny-256-AAN-int16 -ffn -gate* 84 79.7 25.3
(24i) Transformer-tiny-192-AAN-int16 -ffn -gate* 60 61.1 24.4

Table 4: Results on newstest2014 - CPU systems. Submitted systems in bold. Post-submission systems
marked with *. All student systems have been used with beam-size 1 unless stated differently (b=n).
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