
Proceedings of the 2nd Workshop on Neural Machine Translation and Generation, pages 1–10
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

1

Findings of the Second Workshop on
Neural Machine Translation and Generation

Alexandra Birch♠, Andrew Finch♥, Minh-Thang Luong♣, Graham Neubig♦, Yusuke Oda◦
♠University of Edinburgh, ♥Apple, ♣Google Brain, ♦Carnegie Mellon University ◦Google Translate

Abstract

This document describes the findings of
the Second Workshop on Neural Machine
Translation and Generation, held in con-
cert with the annual conference of the
Association for Computational Linguistics
(ACL 2018). First, we summarize the re-
search trends of papers presented in the
proceedings, and note that there is par-
ticular interest in linguistic structure, do-
main adaptation, data augmentation, han-
dling inadequate resources, and analysis
of models. Second, we describe the re-
sults of the workshop’s shared task on ef-
ficient neural machine translation (NMT),
where participants were tasked with cre-
ating NMT systems that are both accurate
and efficient.

1 Introduction

Neural sequence to sequence models (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Bahdanau et al., 2015) are now a workhorse be-
hind a wide variety of different natural language
processing tasks such as machine translation, gen-
eration, summarization and simplification. The
2nd Workshop on Neural Machine Translation
and Generation (WNMT 2018) provided a forum
for research in applications of neural models to
machine translation and other language genera-
tion tasks (including summarization (Rush et al.,
2015), NLG from structured data (Wen et al.,
2015), dialog response generation (Vinyals and
Le, 2015), among others). Overall, the workshop
was held with two goals:

First, it aimed to synthesize the current state
of knowledge in neural machine translation and
generation: This year we will continue to encour-
age submissions that not only advance the state of

the art through algorithmic advances, but also an-
alyze and understand the current state of the art,
pointing to future research directions. Towards
this goal, we received a number of high-quality
research contributions on the topics of linguis-
tic structure, domain adaptation, data augmenta-
tion, handling inadequate resources, and analysis
of models, which are summarized in Section 2.

Second, it aimed to expand the research hori-
zons in NMT: Based on panel discussions from
the first workshop, we organized a shared task.
Specifically, the shared task was on “Efficient
NMT”. The aim of this task was to focus on not
only accuracy, but also memory and computa-
tional efficiency, which are paramount concerns in
practical deployment settings. The workshop pro-
vided a set of baselines for the task, and elicited
contributions to help push forward the Pareto fron-
tier of both efficiency and accuracy. The results of
the shared task are summarized in Section 3

2 Summary of Research Contributions

We published a call for long papers, ex-
tended abstracts for preliminary work, and cross-
submissions of papers submitted to other venues.
The goal was to encourage discussion and interac-
tion with researchers from related areas. We re-
ceived a total of 25 submissions, out of which 16
submissions were accepted. The acceptance rate
was 64%. Three extended abstracts, two cross-
submissions and eleven long papers were accepted
after a process of double blind reviewing.

Most of the papers looked at the application
of machine translation, but there is one paper on
abstractive summarization (Fan et al., 2018) and
one paper on automatic post-editing of transla-
tions (Unanue et al., 2018).

The workshop proceedings cover a wide range
of phenomena relevant to sequence to sequence



2

model research, with the contributions being con-
centrated on the following topics:

Linguistic structure: How can we incorporate
linguistic structure in neural MT or gener-
ation models? Contributions examined the
effect of considering semantic role struc-
ture (Marcheggiani et al., 2018), latent struc-
ture (Bastings et al., 2018), and structured
self-attention (Bisk and Tran, 2018).

Domain adaptation: Some contributions exam-
ined regularization methods for adapta-
tion (Khayrallah et al., 2018) and “extreme
adaptation” to individual speakers (Michel
and Neubig, 2018)

Data augmentation: A number of the con-
tributed papers examined ways to augment
data for more efficient training. These
include methods for considering multiple
back translations (Imamura et al., 2018),
iterative back translation (Hoang et al.,
2018b), bidirectional multilingual train-
ing (Niu et al., 2018), and document level
adaptation (Kothur et al., 2018)

Inadequate resources: Several contributions in-
volved settings in which resources were in-
sufficient, such as investigating the impact of
noise (Khayrallah and Koehn, 2018), miss-
ing data in multi-source settings (Nishimura
et al., 2018) and one-shot learning (Pham
et al., 2018).

Model analysis: There were also many methods
that analyzed modeling and design decisions,
including investigations of individual neuron
contributions (Bau et al., 2018), parameter
sharing (Jean et al., 2018), controlling output
characteristics (Fan et al., 2018), and shared
attention (Unanue et al., 2018)

3 Shared Task

Many shared tasks, such as the ones run by the
Conference on Machine Translation (Bojar et al.,
2017), aim to improve the state of the art for
MT with respect to accuracy: finding the most
accurate MT system regardless of computational
cost. However, in production settings, the effi-
ciency of the implementation is also extremely im-
portant. The shared task for WNMT (inspired by
the “small NMT” task at the Workshop on Asian

Translation (Nakazawa et al., 2017)) was focused
on creating systems for NMT that are not only ac-
curate, but also efficient. Efficiency can include a
number of concepts, including memory efficiency
and computational efficiency. This task concerns
itself with both, and we cover the detail of the eval-
uation below.

3.1 Evaluation Measures

The first step to the evaluation was deciding what
we want to measure. In the case of the shared task,
we used metrics to measure several different as-
pects connected to how good the system is. These
were measured for systems that were run on CPU,
and also systems that were run on GPU.

Accuracy Measures: As a measure of translation
accuracy, we used BLEU (Papineni et al.,
2002) and NIST (Doddington, 2002) scores.

Computational Efficiency Measures: We mea-
sured the amount of time it takes to translate
the entirety of the test set on CPU or GPU.
Time for loading models was measured by
having the model translate an empty file, then
subtracting this from the total time to trans-
late the test set file.

Memory Efficiency Measures: We measured:
(1) the size on disk of the model, (2) the
number of parameters in the model, and (3)
the peak consumption of the host memory
and GPU memory.

These metrics were measured by having par-
ticipants submit a container for the virtualization
environment Docker1, then measuring from out-
side the container the usage of computation time
and memory. All evaluations were performed on
dedicated instances on Amazon Web Services2,
specifically of type m5.large for CPU evalu-
ation, and p3.2xlarge (with a NVIDIA Tesla
V100 GPU).

3.2 Data

The data used was from the WMT 2014 English-
German task (Bojar et al., 2014), using the pre-
processed corpus provided by the Stanford NLP
Group3. Use of other data was prohibited.

1https://www.docker.com/
2https://aws.amazon.com/
3https://nlp.stanford.edu/projects/

nmt/

https://www.docker.com/
https://aws.amazon.com/
https://nlp.stanford.edu/projects/nmt/
https://nlp.stanford.edu/projects/nmt/


3

102 103

Time (s, log scale)

18

20

22

24

26

28

30
BL

EU
 (%

)

Marian-Trans-Base-AAN

Marian-Trans-Big
Marian-Trans-Big-int8

Marian-Trans-Small-AAN OpenNMT-Small

OpenNMT-Tiny

Baseline

(a) CPU Time vs. Accuracy

100 101

Time (s, log scale)

18

20

22

24

26

28

30

BL
EU

 (%
)

Amun-FastGRU

Amun-MLSTMMarian-TinyRNN

Marian-Trans-Base-AAN
Marian-Trans-Big

Marian-Trans-Small-AAN
NICT

Baseline

(b) GPU Time vs. Accuracy

250 500 750 1000 1250 1500 1750 2000
Memory (MB)

18

20

22

24

26

28

30

BL
EU

 (%
)

Marian-Trans-Base-AAN
Marian-Trans-Big

Marian-Trans-Big-int8
Marian-Trans-Small-AAN
OpenNMT-Small

OpenNMT-Tiny

Baseline

(c) CPU Memory vs. Accuracy

2 × 103 3 × 103 4 × 103 6 × 103

Memory (MB)
18

20

22

24

26

28

30

BL
EU

 (%
)

Amun-FastGRU

Amun-MLSTMMarian-TinyRNN

Marian-Trans-Base-AAN

Marian-Trans-Big

Marian-Trans-Small-AAN

NICT

Baseline

(d) GPU Memory vs. Accuracy

Figure 1: Time and memory vs. accuracy measured by BLEU, calculated on both CPU and GPU

3.3 Baseline Systems

Two baseline systems were prepared:

Echo: Just send the input back to the output.

Base: A baseline system using attentional LSTM-
based encoder-decoders with attention (Bah-
danau et al., 2015).

3.4 Submitted Systems

Four teams, Team Amun, Team Marian, Team
OpenNMT, and Team NICT submitted to the
shared task, and we will summarize each below.
Before stepping in to the details of each system,
we first note general trends that all or many sys-
tems attempted. The first general trend was a
fast C++ decoder, with Teams Amun, Marian, and
NICT using the Amun or Marian decoders in-
cluded in the Marian toolkit,4 and team OpenNMT

4https://marian-nmt.github.io

using the C++-decoder decoder for OpenNMT.5.
The second trend was the use of data augmenta-
tion techniques allowing the systems to train on
data other than the true references. Teams Amun,
Marian, and OpenNMT all performed model dis-
tillation (Kim and Rush, 2016), where a larger
teacher model is used to train a smaller student
model, while team NICT used back translation,
training the model on sampled translations from
the target to the source (Imamura et al., 2018).
Finally, a common optimization was the use of
lower-precision arithmetic, where Teams Amun,
Marian, and OpenNMT all used some variety of
16/8-bit or integer calculation, along with the cor-
responding optimized CPU or GPU operations.
These three improvements seem to be best prac-
tices for efficient NMT implementation.

5http://opennmt.net

https://marian-nmt.github.io
http://opennmt.net


4

3.4.1 Team Amun

Team Amun’s contribution (Hoang et al., 2018a)
was based on the “Amun” decoder and consisted
of a number of optimizations to improve transla-
tion speed on GPU. The first major unique con-
tribution was a strategy of batching together com-
putations from multiple hypotheses within beam
search to exploit parallelism of hardware. An-
other contribution was a methodology to create
a fused GPU kernel for the softmax calculation,
that calculates all of the operations within the
softmax (e.g. max, exponentiation, and sum) in
a single kernel. In the end they submitted two
systems, Amun-FastGRU and Amun-MLSTM,
which use GRU (Cho et al., 2014) and multiplica-
tive LSTM (Krause et al., 2016) units respectively.

3.4.2 Team Marian

Team Marian’s system (Junczys-Dowmunt et al.,
2018) used the Marian C++ decoder, and con-
centrated on new optimizations for the CPU.
The team distilled a large self-attentional model
into two types of “student” models: a smaller
self-attentional model using average attention
networks (Zhang et al., 2018), a new higher-
speed version of the original Transformer model
(Vaswani et al., 2017), and a standard RNN-based
decoder. They also introduced an auto-tuning
approach that chooses which of multiple matrix
multiplication implementations is most efficient
in the current context, then uses this implementa-
tion going forward. This resulted in the Marian-
TinyRNN system using an RNN-based model,
and the Marian-Trans-Small-AAN, Marian-
Trans-Base-AAN, Marian-Trans-Big, Marian-
Trans-Big-int8 systems, which use different vari-
eties and sizes of self-attentional models.

3.4.3 Team OpenNMT

Team OpenNMT (Senellart et al., 2018) built a
system based on the OpenNMT toolkit. The
model was based on a large self-attentional teacher
model distilled into a smaller, fast RNN-based
model. The system also used a version of vo-
cabulary selection (Shi and Knight, 2017), and a
method to increase the size of the encoder but
decrease the size of the decoder to improve the
efficiency of beam search. They submitted two
systems, OpenNMT-Small and OpenNMT-Tiny,
which were two variously-sized implementations
of this model.

3.4.4 Team NICT

Team NICT’s contribution (Imamura and Sumita,
2018) to the shared task was centered around us-
ing self-training as a way to improve NMT accu-
racy without changing the architecture. Specifi-
cally, they used a method of randomly sampling
pseudo-source sentences from a back-translation
model (Imamura et al., 2018) and used this to aug-
ment the data set to increase coverage. They tested
two basic architectures for the actual translation
model, a recurrent neural network-based model
trained using OpenNMT, and a self-attentional
model trained using Marian, finally submitting the
self-attentional model using Marian as their sole
contribution to the shared task NICT.

3.5 Shared Task Results

A brief summary of the results of the shared task
(for newstest2015) can be found in Figure 1, while
full results tables for all of the systems can be
found in Appendix A. From this figure we can
glean a number of observations.

First, encouragingly all the submitted systems
handily beat the baseline system in speed and ac-
curacy.

Secondly, observing the speed/accuracy curves,
we can see that Team Marian’s submissions tended
to carve out the Pareto frontier, indicating that the
large number of optimizations that went into creat-
ing the system paid off in aggregate. Interestingly,
on GPU, RNN-based systems carved out the faster
but less accurate part of the Pareto curve, while on
CPU self-attentional models were largely found to
be more effective. None of the submissions con-
sisted of a Transformer-style model so small that
it under-performed the RNN models, but a fur-
ther examination of where the curves cross (if they
do) would be an interesting examination for future
shared tasks.

Next, considering memory usage, we can see
again that the submissions from the Marian team
tend to be the most efficient. One exception is the
extremely small memory system OpenNMT-Tiny,
which achieves significantly lower translation ac-
curacies, but fits in a mere 220MB of memory on
the CPU.

In this first iteration of the task, we attempted
to establish best practices and strong baselines
upon which to build efficient test-time methods
for NMT. One characteristic of the first iteration
of the task was that the basic model architectures



5

used relatively standard, with the valuable contri-
butions lying in solid engineering work and best
practices in neural network optimization such as
low-precision calculation and model distillation.
With these contributions, we now believe we have
very strong baselines upon which future iterations
of the task can build, examining novel architec-
tures or methods for further optimizing the train-
ing speed. We also will examine other considera-
tions, such as efficient adaptation to new training
data, or latency from receiving a sentence to trans-
lating it.

4 Conclusion

This paper summarized the results of the Sec-
ond Workshop on Neural Machine Translation and
Generation, where we saw a number of research
advances, particularly in the area of efficiency in
neural MT through submissions to the shared task.
The workshop series will continue next year, and
continue to push forward the state of the art on
these topics for faster, more accurate, more flex-
ible, and more widely applicable neural MT and
generation systems.

Acknowledgments

We would like to warmly thank Amazon for its
support of the shared task, both through its dona-
tion of computation time, and through its provi-
sion of a baseline system for participants to build
upon. We also thank Google and Apple for their
monetary support of the workshop.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. ICLR.

Joost Bastings, Wilker Aziz, Ivan Titov, and Khalil
Simaan. 2018. Modeling latent sentence structure
in neural machine translation. In Proc. WNMT.

D. Anthony Bau, Yonatan Belinkov, Hassan Sajjad,
Nadir Durrani, Fahim Dalvi, and James Glass. 2018.
On individual neurons in neural machine translation.
In Proc. WNMT.

Yonatan Bisk and Ke Tran. 2018. Inducing grammars
with and for neural machine translation. In Proc.
WNMT.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara

Logacheva, et al. 2017. Findings of the 2017 con-
ference on machine translation (wmt17). In Proc.
WMT, pages 169–214.

Ondrej Bojar et al. 2014. Findings of the 2014 work-
shop on statistical machine translation. In Proc.
WMT, pages 12–58.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proc. EMNLP,
pages 1724–1734.

George Doddington. 2002. Automatic evaluation
of machine translation quality using n-gram co-
occurrence statistics. In Proc. HLT, pages 138–145.

Angela Fan, David Grangier, and Michael Auli. 2018.
Controllable abstractive summarization. In Proc.
WNMT.

Hieu Hoang, Tomasz Dwojak, Rihards Krislauks,
Daniel Torregrosa, and Kenneth Heafield. 2018a.
Fast neural machine translation implementation. In
Proc. WNMT.

Vu Cong Duy Hoang, Philipp Koehn, Gholamreza
Haffari, and Trevor Cohn. 2018b. Iterative back-
translation for neural machine translation. In Proc.
WNMT.

Kenji Imamura, Atsushi Fujita, and Eiichiro Sumita.
2018. Enhancement of encoder and attention using
target monolingual corpora in neural machine trans-
lation. In Proc. WNMT.

Kenji Imamura and Eiichiro Sumita. 2018. Nict self-
training approach to neural machine translation at
nmt-2018. In Proc. WNMT.

Sèbastien Jean, Stanislas Lauly, and Kyunghyun Cho.
2018. Parameter sharing strategies in neural ma-
chine translation. In Proc. WNMT.

Marcin Junczys-Dowmunt, Kenneth Heafield, Hieu
Hoang, Roman Grundkiewicz, and Anthony Aue.
2018. Marian: Cost-effective high-quality neural
machine translation in c++. In Proc. WNMT.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proc. EMNLP,
pages 1700–1709.

Huda Khayrallah and Philipp Koehn. 2018. On the
impact of various types of noise on neural machine
translation. In Proc. WNMT.

Huda Khayrallah, Brian Thompson, Kevin Duh, and
Philipp Koehn. 2018. Regularized training objective
for continued training for domain adaption in neural
machine translation. In Proc. WNMT.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proc. EMNLP,
pages 1317–1327.

https://aclweb.org/anthology/D16-1139
https://aclweb.org/anthology/D16-1139


6

Sachith Sri Ram Kothur, Rebecca Knowles, and
Philipp Koehn. 2018. Document-level adaptation
for neural machine translation. In Proc. WNMT.

Ben Krause, Liang Lu, Iain Murray, and Steve Renals.
2016. Multiplicative lstm for sequence modelling.
arXiv preprint arXiv:1609.07959.

Diego Marcheggiani, Joost Bastings, and Ivan Titov.
2018. Exploiting semantics in neural machine trans-
lation with graph convolutional networks. In Proc.
WNMT.

Paul Michel and Graham Neubig. 2018. Extreme adap-
tation for personalized neural machine translation.
In Proc. WNMT.

Toshiaki Nakazawa, Shohei Higashiyama, Chenchen
Ding, Hideya Mino, Isao Goto, Hideto Kazawa,
Yusuke Oda, Graham Neubig, and Sadao Kurohashi.
2017. Overview of the 4th workshop on asian trans-
lation. In Proc. WAT, pages 1–54, Taipei, Taiwan.
Asian Federation of Natural Language Processing.

Yuta Nishimura, Katsuhito Sudoh, Graham Neubig,
and Satoshi Nakamura. 2018. Multi-source neu-
ral machine translation with missing data. In Proc.
WNMT.

Xing Niu, Michael Denkowski, and Marine Carpuat.
2018. Bi-directional neural machine translation
with synthetic parallel data. In Proc. WNMT.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proc. ACL,
pages 311–318.

Ngoc-Quan Pham, Jan Niehues, and Alexander Waibel.
2018. Towards one-shot learning for rare-word
translation with external experts. In Proc. WNMT.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proc. EMNLP, pages 379–
389.

Jean Senellart, Dakun Zhang, Bo Wang, Guillaume
Klein, Jean-Pierre Ramatchandirin, Josep Crego,
and Alexander Rush. 2018. OpenNMT system de-
scription for WNMT 2018: 800 words/sec on a
single-core CPU. In Proc. WNMT.

Xing Shi and Kevin Knight. 2017. Speeding up neural
machine translation decoding by shrinking run-time
vocabulary. In Proc. ACL, pages 574–579.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural net-
works. In Proc. NIPS, pages 3104–3112.

Inigo Jauregi Unanue, Ehsan Zare Borzeshi, and Mas-
simo Piccardi. 2018. A shared attention mechanism
for interpretation of neural automatic post-editing
systems. In Proc. WNMT.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. NIPS.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems. In
Proc. EMNLP, pages 1711–1721.

Biao Zhang, Deyi Xiong, and Jinsong Su. 2018. Accel-
erating neural transformer via an average attention
network. In Proc. ACL.

A Full Shared Task Results

For completeness, in this section we add tables of
the full shared task results. These include the full
size of the image file for the translation system
(Table 1), the comparison between compute time
and evaluation scores on CPU (Table 2) and GPU
(Table 3), and the comparison between memory
and evaluation scores on CPU (Table 4) and GPU
(Table 5).

http://www.aclweb.org/anthology/W17-5701
http://www.aclweb.org/anthology/W17-5701
http://aclweb.org/anthology/D15-1044
http://aclweb.org/anthology/D15-1044
http://aclweb.org/anthology/P17-2091
http://aclweb.org/anthology/P17-2091
http://aclweb.org/anthology/P17-2091
http://aclweb.org/anthology/D15-1199
http://aclweb.org/anthology/D15-1199


7

Table 1: Image file sizes of submitted systems.

Team System Size [MiB]
edin-amun fastgru 4823.43

mlstm.1280 5220.72
Marian cpu-transformer-base-aan 493.20

cpu-transformer-big 1085.93
cpu-transformer-big-int8 1085.92
cpu-transformer-small-aan 367.92
gpu-amun-tinyrnn 399.08
gpu-transformer-base-aan 686.59
gpu-transformer-big 1279.32
gpu-transformer-small-aan 564.32

NICT marian-st 2987.57
OpenNMT cpu1 339.02

cpu2 203.89
Organizer echo 110.42

nmt-1cpu 1668.25
nmt-1gpu 3729.40

Table 2: Time consumption and MT evaluation metrics (CPU systems).

Dataset Team System
Time Consumption [s]

BLEU % NIST
CPU Real Diff

Empty Marian cpu-transformer-base-aan 6.48 6.55 — — —
cpu-transformer-big 7.01 9.02 — — —
cpu-transformer-big-int8 7.31 7.51 — — —
cpu-transformer-small-aan 6.32 6.33 — — —

OpenNMT cpu1 0.64 0.65 — — —
cpu2 0.56 0.56 — — —

Organizer echo 0.05 0.06 — — —
nmt-1cpu 1.50 1.50 — — —

newstest2014 Marian cpu-transformer-base-aan 281.72 281.80 275.25 27.44 7.362
cpu-transformer-big 1539.34 1541.00 1531.98 28.12 7.436
cpu-transformer-big-int8 1173.32 1173.41 1165.90 27.50 7.355
cpu-transformer-small-aan 100.36 100.42 94.08 25.99 7.169

OpenNMT cpu1 471.41 471.43 470.78 25.77 7.140
cpu2 77.41 77.42 76.86 23.11 6.760

Organizer echo 0.05 0.06 0.00 2.79 1.479
nmt-1cpu 4436.08 4436.27 4434.77 16.79 5.545

newstest2015 Marian cpu-transformer-base-aan 223.86 223.96 217.41 29.59 7.452
cpu-transformer-big 1189.04 1190.97 1181.95 30.56 7.577
cpu-transformer-big-int8 907.95 908.43 900.92 30.15 7.514
cpu-transformer-small-aan 80.21 80.25 73.92 28.61 7.312

OpenNMT cpu1 368.93 368.95 368.30 28.60 7.346
cpu2 59.02 59.02 58.46 25.75 6.947

Organizer echo 0.05 0.06 0.00 3.24 1.599
nmt-1cpu 3401.99 3402.14 3400.64 18.66 5.758



8

Table 3: Time consumption and MT evaluation metrics (GPU systems).

Dataset Team System
Time Consumption [s]

BLEU % NIST
CPU Real Diff

Empty edin-amun fastgru 4.18 4.24 — — —
mlstm.1280 4.44 4.50 — — —

Marian gpu-amun-tinyrnn 4.27 4.33 — — —
gpu-transformer-base-aan 5.62 5.68 — — —
gpu-transformer-big 6.00 6.05 — — —
gpu-transformer-small-aan 5.48 5.54 — — —

NICT marian-st 5.78 5.84 — — —
Organizer nmt-1gpu 3.73 3.80 — — —

newstest2014 edin-amun fastgru 5.68 5.74 1.50 17.74 5.783
mlstm.1280 8.64 8.70 4.20 23.85 6.833

Marian gpu-amun-tinyrnn 5.90 5.96 1.63 24.06 6.879
gpu-transformer-base-aan 14.58 14.64 8.95 27.80 7.415
gpu-transformer-big 36.74 36.80 30.74 28.34 7.486
gpu-transformer-small-aan 12.46 12.52 6.97 26.34 7.219

NICT marian-st 82.07 82.14 76.30 27.59 7.375
Organizer nmt-1gpu 51.24 82.14 47.50 16.79 5.545

newstest2015 edin-amun fastgru 5.41 5.47 1.23 19.26 5.905
mlstm.1280 8.15 8.22 3.71 26.51 7.015

Marian gpu-amun-tinyrnn 5.62 5.68 1.35 26.86 7.065
gpu-transformer-base-aan 12.67 12.73 7.04 30.10 7.526
gpu-transformer-big 30.81 30.90 24.84 30.87 7.630
gpu-transformer-small-aan 11.04 11.10 5.56 28.87 7.379

NICT marian-st 72.84 72.90 67.06 30.19 7.541
Organizer nmt-1gpu 39.95 40.01 36.21 18.66 5.758



9

Table 4: Peak memory consumption (CPU systems).

Dataset Team System
Memory [MiB]

Host GPU Both
Empty Marian cpu-transformer-base-aan 531.39 — 531.39

cpu-transformer-big 1768.56 — 1768.56
cpu-transformer-big-int8 1193.13 — 1193.13
cpu-transformer-small-aan 367.22 — 367.22

OpenNMT cpu1 403.86 — 403.86
cpu2 194.61 — 194.61

Organizer echo 1.15 — 1.15
nmt-1cpu 1699.71 — 1699.71

newstest2014 Marian cpu-transformer-base-aan 761.07 — 531.39
cpu-transformer-big 1681.81 — 1768.56
cpu-transformer-big-int8 2084.66 — 1193.13
cpu-transformer-small-aan 476.21 — 367.22

OpenNMT cpu1 458.08 — 403.86
cpu2 219.79 — 194.61

Organizer echo 1.20 — 1.15
nmt-1cpu 1770.69 — 1699.71

newstest2015 Marian cpu-transformer-base-aan 749.29 — 531.39
cpu-transformer-big 1712.08 — 1768.56
cpu-transformer-big-int8 2086.02 — 1193.13
cpu-transformer-small-aan 461.27 — 367.22

OpenNMT cpu1 455.21 — 403.86
cpu2 217.64 — 194.61

Organizer echo 1.11 — 1.15
nmt-1cpu 1771.35 — 1699.71



10

Table 5: Peak memory consumption (GPU systems).

Dataset Team System
Memory [MiB]

Host GPU Both
Empty edin-amun fastgru 442.55 668 1110.55

mlstm.1280 664.88 540 1204.88
Marian gpu-amun-tinyrnn 346.80 522 868.80

gpu-transformer-base-aan 487.18 484 971.18
gpu-transformer-big 1085.29 484 1569.29
gpu-transformer-small-aan 366.26 484 850.26

NICT marian-st 510.43 484 994.43
Organizer nmt-1gpu 378.81 640 1018.81

newstest2014 edin-amun fastgru 456.29 1232 1688.29
mlstm.1280 686.29 5144 5830.29

Marian gpu-amun-tinyrnn 346.93 1526 1872.93
gpu-transformer-base-aan 492.91 1350 1842.91
gpu-transformer-big 1081.69 2070 3151.69
gpu-transformer-small-aan 366.55 1228 1594.55

NICT marian-st 922.53 1780 2702.53
Organizer nmt-1gpu 377.18 2178 2555.18

newstest2015 edin-amun fastgru 473.72 1680 2153.72
mlstm.1280 684.84 6090 6774.84

Marian gpu-amun-tinyrnn 350.19 1982 2332.19
gpu-transformer-base-aan 489.62 1350 1839.62
gpu-transformer-big 1082.52 2198 3280.52
gpu-transformer-small-aan 372.56 1228 1600.56

NICT marian-st 929.70 1778 2707.70
Organizer nmt-1gpu 383.02 2178 2561.02


