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Abstract 

Customized translation need pay spe-
cial attention to the target domain ter-
minology especially the named-
entities for the domain. Adding lin-
guistic features to neural machine 
translation (NMT) has been shown to 
benefit translation in many studies. In 
this paper, we further demonstrate that 
adding named-entity (NE) feature with 
named-entity recognition (NER) into 
the source language produces better 
translation with NMT. Our 
experiments show that by just 
including the different NE classes and 
boundary tags, we can increase the 
BLEU score by around 1 to 2 points 
using the standard test sets from 
WMT2017. We also show that adding 
NE tags using NER and applying in-
domain adaptation can be combined to 
further improve customized machine 
translation. 

1 Introduction 

As generic machine translation cannot deal well 
with the translation with local or specific domain 
context, customized machine translation is 
adopted to focus on the terminology of local or 
domain context especially for named-entities 
translation.  

Neural machine translation (NMT) (Sutskever 
et al., 2014; Bahdanau et al., 2014; Luong et al., 
2015) is a more recent and effective approach than 
the traditional statistical machine translation 
(SMT). It uses a large recurrent neural network 
(RNN) to encode a source sentence into a vector, 

and uses another large network to generate sen-
tence in the target language one word at a time us-
ing the source sentence embedding and the atten-
tion mechanism.     

NMT has achieved impressive result by learn-
ing the translation as an end-to-end model (Wu et 
al., 2016; Zhou et al. 2017; Gehring et al. 2017). 
Conventional NMT systems do not use linguistic 
features explicitly. They expect the NMT model 
to learn these complex sentence structures and 
linguistic features from big data as word embed-
ding vectors. However, because of uneven data 
distribution and high linguistic complexity, there 
is no guarantee that NMT can capture this infor-
mation and produce proper translation in all cases, 
especially for those terms which do not occur very 
often. 

Recently, researchers have shown the potential 
benefit of explicitly encoding the linguistic fea-
tures into NMT. Sennrich and Haddow (2016) 
proposed to include linguistic features (part-of-
speech tag, lemmatized form and dependency la-
bel, morphology) at NMT source encoder side. 
Roee et al. (2017) instead incorporated syntactic 
information of target language as linearized, lexi-
calized constituency trees into NMT target decod-
er side. Their experiments showed adding linguis-
tic information at both the source and target side 
can be beneficial for NMT. Based on these find-
ings, in this paper, we propose to incorporate 
named-entity (NE) features to further improve 
neural machine translation. 

Named entities play a crucial role in many 
monolingual and multilingual Natural Language 
Processing (NLP) tasks. Proper NE identification 
will enhance the sentence structure understanding 
for NMT, and thus give better translation of the 
named entities as well as the whole sentence. 
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In general, named entities are more difficult to 
translate for NMT than SMT. This is because and 
NMT is weaker in translating less frequent words 
as compared to SMT. In addition, since there are 
different types of named entities, e.g. Person, 
Place, Organization, etc., so linguistically and log-
ically speaking, the translation mechanisms for 
different types of named entities are also different. 
Unlike other words or phrases which occur more 
frequent in the training corpus, NE expressions 
are quite flexible, they can be composed of any 
character or word; moreover, in real-world appli-
cations, new named entities can emerge every 
day. Thus, NMT need to pay special attention to 
named entities to enhance the overall translation 
quality.  Without NE context information, it is dif-
ficult to know the meaning of the words or entities 
with different meaning under ambiguous situation 
(我 喜欢 秋月。秋月 can be interpreted as per-
son name or natural phenomenon.  三十六行 can 
be interpreted as a number entity or an idiomatic 
expression). It is also very difficult to translate 
number entities under never seen or rare situation 
(百分之 8 千点零零七). 

There are many domain-based or location-
based named entities. These named entities are of-
ten rare words in the document, and generally 
NMT cannot produce good translation for these 
local contexts with local named entities. Identify-
ing local named entities and generating their trans-
lation with local context is also a challenging task 
which we will address in this paper. (e.g., the Eng-
lish name for 张志贤 is ‘Teo Chee Hean’ in Sin-
gapore while it’s pinyin translation is ‘Zhang Zhi 
Xian’ in China) 

To address the NE translation issue, some re-
searchers work on separate models or methods 
while others incorporate these separate mod-
els/methods with the main NMT models (Li et al., 
2016; Wang et al., 2017). They use NER to identi-
fy and align the NE pairs at both of source and 
target sentences, then NE pairs are replaced with 
NE tags for training the model; at reference stage 
the NE tags at target are replaced by the separate 
NE translation model or bilingual NE dictionary. 
The disadvantages of the replacement methods in-
clude NE information loss and NE alignment er-
rors.    

To avoid the complexity and disadvantages of 
separate model training and integration, in this 
paper, we add the NE type information and 
boundary information directly to the source sen-

tence by a NER tool, we hope NMT will learn and 
understand the sentence better with this additional 
NE information. NE classification based on con-
text information is important for NMT to reduce 
translation error under various ambiguous situa-
tions. A named entity can consist of a single word 
or several words, the boundary tag feature of the 
named entity will inform NMT model to treat the-
se words as a single entity during translation.  

Since named entities often contain local names 
or domain-specific names, however, the amount 
of local or domain-specific training data is often 
small. Thus, in this paper we apply domain adap-
tation together with named entity features to make 
further improvement for local context or domain-
specific translation.  

2 Neural Machine Translation  

Machine Translation (MT) translates text sentenc-
es from a source language to a target language. 
SMT systems use phrases as atomic units. It ob-
tains phrase pairs by training on large parallel cor-
pora. NMT is a new approach in which we train a 
single, large neural network to maximize the 
translation performance. Our baseline system is 
based on attention-based encoder-decoder neural 
network model (Cho et al., 2015). 

The encoder, which is often implemented as a 
bidirectional recurrent network with long short-
term memory units (LSTM) (Hochreiter and 
Schmidhuber, 1997), first reads a source sentence 
represented as a sequence of words 𝒙 =
(	𝑥&, 𝑥(, … 𝑥*). The encoder calculates a forward 
sequence of hidden states and a backward se-
quence of hidden states. These forward and back-
ward hidden states are concatenated to obtain the 
sequence of bidirectional hidden states as h=
(	ℎ&, ℎ(, … ℎ*).  

The decoder is implemented as a conditional 
recurrent language model that predicts a target 
sequence 𝒚 = (	𝑦&, 𝑦(, … 𝑦/) given the input se-
quence 𝒙 = (	𝑥&, 𝑥(, … 𝑥*). Each word 𝑦0 is pre-
dicted based on the decoder hidden state 𝑠0, the 
previous word 𝑦02&, and a context vector 𝑐0. 𝑐0 is 
a time-dependent content vector that is computed 
as a weighted-sum of the hidden states of h: 𝑐0 =
𝑎0,5	ℎ55 . The weight 𝑎0,5of each hidden state ℎ5 

is computed by the attention model which mod-
els the probability that 𝑦5 is aligned to 𝑥0. 
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The details of the attention-based multi-layer 
bidirectional-LSTM encoder-decoder NMT model 
can be found at (Cho et al., 2015). Figure 1 shows 
the overall system architecture. 

3 NMT with NE Features and Domain 
Adaptation   

Our main innovation over the standard sequence-
to-sequence NMT model is a very simple and 
straight-forward way to add NE information of the 
source language. Compared with NE tag replace-
ment and alignment methods (Li et al., 2016; 
Wang et al., 2017), our method just insert NE tags 
in the source sentences, there is no information 
loss and NE alignment issues. Since our approach 
does not modify the main NMT model structure, 
thus, our method can be applied to any sequence-
to-sequence NMT model. In our model, apart 
from the original words in the sentence, we gener-
ate and insert NE tags which include both the NE 
class and NE boundary type for each NE into the 
sentence, thus we present the NMT encoder with 
the combined sentence sequence with additional 
NE tags. 

The NE tags can be applied to both word-based 
and character-based source input of any language. 
For Chinese-to-English translation, the Chinese 
input can be either a word sequence or a character 
sequence, the English side is still word-based to-
kens. We segment all the unknown words as a se-
quence of subword units using the byte-pair en-
coding (Sennrich et al., 2016b).   

3.1 Named-Entity Tags  
For every NE in the source sentence we generate 
the NE class tags using the third-party tool, Stan-
ford NER (Jenny et al., 2005): 

 
• NE class for NE (PERSON, ORG, GPE, 

MISC, etc)1 

• NE class and boundary tags: <PERSON> 
</PERSON> 2 

We add these NE tags to the corresponding NE of 
the source sentence, so as to produce the com-
bined sentence sequence with additional NE tags. 

 When the source language is English, we apply 
subword split (@@ is the subword connector) for 
                                                        
1 ORG: Organization Entity, GPE: Geo-Political Entity 
2 <PERSON>: Start of PERSON, </PERSON>: End of 
PERSON 

the out of vocabulary (OOV) words after tokeni-
zation: 

Original Source:  
Patrick Roy resigns as Avalanche 

coach 
Words and subwords with NE tags3:  
<PERSON> Patrick Roy </PERSON> re-

signs <ORG> Avalan @@che </ORG>   
coach 

 

When the source language is Chinese, we can 
use either word-based input or character-based in-
put. To generate character-based input sequence 
for the Chinese sentence, we just split all Chinese 
word tokens into character tokens (English tokens 
are not split). 

Original Source:  
凯发集团成功进军中国 
Words with NE tags:  
<ORG> 凯发 集团 </ORG> 成功 进军 中国 

Characters with NE tags:  
<ORG> 凯 发 集 团 </ORG> 成 功 进 军 中 国  

3.2 Preprocessing Pipeline 
We design and develop the preprocessing pipeline 
to augment the source sequences with NE tags. It 
is applied on all the training set, the development 
set, and the test set. The preprocessing pipeline 
can also be used for the online translation system. 
The workflow of the pipeline is shown in Figure 2 

The preprocessing pipeline includes the follow-
ing modules: 

Tokenizer: The input sentence is tokenized as 
word tokens. 

NE Tagger: the NE tagger identifies the named 
entities in the sentence, and assigns the NE clas-
ses. 

Subword/Chracter Splitter: We split the 
OOV words as subword units using byte-pair en-
coding (Sennrich et al., 2016b); for the Chinese 

                                                        
3 Words and subwords with NE tags are shown in blue color   

 
Figure 1: System Architecture 
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character-based system, we split each word as a 
character sequence. 

 
Our pipeline framework is very flexible as the 

software components in the pipeline can be easily 
replaced by other software components with simi-
lar functions, for example we can, for better per-
formance, choose different tokenizers based on 
the input language. For the same reason, we can 
switch to a different NE tagger, splitter for a dif-
ferent input language.  

 

4 Experiments & Results 

We have conducted our experiments with bi-
direction translation between Chinese/English 
languages pair.  
 

4.1 Datasets 
We select the first 7 million Chinese-English sen-
tence pairs from United Nations Parallel Corpus 
v1.0 (Ziemski et al., 2015), and data from LDC 
for the training corpus, we also select some in-
domain data from local context for domain adap-
tion training. After filtering out the long sentences 
(Chinese character length > 60 or number of Eng-
lish words > 60), the total number of sentence 
pairs for training is around 7 million. Table 1 
shows the corpus sources for training. 

We use the tuning sets with in-domain content 
for the model tuning. We use the standard test set 
from WMT 17 (http://www.statmt.org/wmt17/) to 
evaluate our model performance and compare 
with other models using same test set. 

 

4.2 Data processing 
We tokenize Chinese sentences using tools THU-
LAC from Tsinghua University NLP (Zhongguo 
Li et al., 2009) (http://thulac.thunlp.org/), and to-
kenize English sentences using scripts from Mo-
ses (http://www.statmt.org/moses/).  We use Stan-
ford Named Entity Recognizer (NER) (Jenny et 
al., 2005) for NE Tagging for all the training, de-
velopment and test data.  

For character-based system, we also split every 
Chinese sentence as a character sequence (English 
words in Chinese sentences are not split into char-
acters, but are split into subword units when OOV 
tokens are encountered), while the English side is 
still word-based. To enable open vocabulary trans-
lation, we used subword units obtained via Byte-
Pair Encoding (Sennrich et al., 2016b) learning 
60,000 merge operations on both Chinese and 
English training data.  

4.3 Baseline Models 
In this paper, we implement our experiment based 
on OpenNMT-py 4  (Klein et al., 2017) using 
PyTorch5 (The PyTorch Developers, 2017). It is 
an open-source (MIT) neural machine translation 
system using Python. We train the model on one 
GPU: Nvidia P40. We use mini-batches of size 64, 
a maximum sequence length of 60, word embed-
ding of size 600, NE boundary embedding of size 
5, NE class embedding of size 10, hidden layers 
of size 1024, 4-layer bi-directional LSTM encoder 
and 4-layer uni-directional LSTM decoder. We 
use adam optimizer (Kingma et al., 2015) for 
training, we apply a dropout probability of 0.2 be-
tween LSTM stacks.  

 
Baselines: The baseline system we trained for 

Chinese-to-English (ZH→EN) translation is a 
character-based model without any additional fea-
tures, in which the Chinese source is split into 
characters and English is word-based with OOVs 
split into subword units. For ZH→EN, the per-
formance of the character-based model is better 
than the word-based model. The baseline system 
we trained for EN→ZH translation is a word-
based model, in which both source and target sen-
tences are word tokens with OOVs split into sub-

                                                        
4 https://github.com/OpenNMT/OpenNMT-py 
5 http://pytorch.org/  

 
Figure 2: Preprocess Pipeline. 

Corpus # of sentence 
pairs (K) 

# of charac-
ters (M) 

UNPCv1 6,453 1,722 
LDC2017T05 63 16 
LDC2017T06 6 1 
LDC2006E26 35 9 
In-domain 188 42 
Total 6,745 1,790 

Table 1:  Training Data Corpus Selection. 



45

 
 
 

 

  
 

word units. We found that for the baseline system 
without any additional linguistic features, the 
character-based model produces better translation 
than the word-based model. 

 
Models with NE Tags: In our experiments, we 

train both word-based and character-based models 
with NE features. We found that when NE fea-
tures are added, the word-based model performs 
better than the character-based model for both 
ZH→EN and EN→ZH translation.  

4.4 Test Results  
We calculate the performance matrix using the 
evaluation script multi-bleu.perl from Moses 
(Koehn et al., 2007). Two test sets are used for the 
evaluation; one is the standard news test set (new-
stest2017) from WMT 2017, while the other is our 
in-domain test set. Table 2 shows the performance 
metrics for WMT 2017 news test set for both 
ZH→EN and EN→ZH translation. 

As shown in Table 2, we can see the perfor-
mance improvement (around 1 BLEU score) for 
both directions (ZH→EN, EN→ZH) after adding 
NE features compared to the best baseline model.  

We also apply the in-domain adaptation to the 
models by continue training on the in-domain data 
for 2-5 additional training epochs. Table 3 shows 
the test results for our in-domain test data.  

In Table 3, we show the same performance 
improvement when adding NE features with in-
domain translation, and we also obtain further 
improvement for our in-domain translation by 
domain adaptation on top of the models with NE 
improvement. 

5 Conclusion and Future Work 

In this paper, we introduce an innovative and sim-
ple method to combine NE features and domain 

adaptation with NMT to improve customization 
translation. We add NE tags for every NE in the 
input sequence and pass the combined sequence to 
the encoder of the NMT framework. Our experi-
ments on Chinese-to-English and English-to-
Chinese translation show that adding NE features 
can significantly improve the performance of neu-
ral machine translation.  The idea is language in-
dependent and applicable to other language pairs. 
Our method can also be applied to other NMT 
models such as the convolutional sequence-to-
sequence model (Jonas Gehring et al. 2017) or the 
attention-only model (Vaswani et al. 2017). We al-
so show that domain adaptation can also be ap-
plied to this method with additional improvement 
for in-domain text translation. 

We believe that the results can be further im-
proved by adding NE information at the target de-
coder side of NMT. In the future, we will explore 
new experiments and develop new methods to uti-
lize the NE features to benefit translation at both 
source and target sides. 
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