
Towards Efficient String Processing of Annotated Events

David Woods
ADAPT Centre

Trinity College Dublin, Ireland
dwoods@tcd.ie

Tim Fernando, Carl Vogel
Computational Linguistics Group

Trinity Centre for Computing and Language Studies
School of Computer Science and Statistics

Trinity College Dublin, Ireland
tim.fernando@tcd.ie, vogel@tcd.ie

Abstract

This paper explores the use of strings as models to effectively represent event data such as might
be found in a document annotated with ISO-TimeML. We describe the translation of such data to
strings, as well as a number of operations, such as superposition, which may be used to manipulate
these strings in order to infer new information. Some advantages and limitations of the operations
are discussed, including issues of over-generation, which can be mitigated though the use of suitable
constraints. In particular, we look at how Allen Relations, which might be extracted from a document
annotated with ISO-TimeML, can be understood as useful constraints, and translated to strings.

1 Introduction

This paper explores the use of strings as models to effectively represent event data such as might be found
in a document annotated with ISO-TimeML. It is described how such data may be simply translated to
strings, and how to infer information through operations on these strings. Strings are basic computational
entities that can be more readily manipulated by machines than the infinite models of predicate logic.
Finite sets of strings serve as finite models.

We fix a finite set A of fluents (temporal propositions), and encode sets of these fluents as symbols
to allow any number of them to hold at a time (as in Fernando, 2016). A string s = α1 · · ·αn of subsets
αi of A can be construed as a finite model consisting of n moments of time i ∈ {1, . . . , n} with αi
specifying all fluents (in A) that (as unary predicates) hold simultaneously at i.

Throughout this paper, a fluent a ∈ A will be understood as naming an event, and the powerset 2A

of A will serve as an alphabet Σ = 2A of an event-string s ∈ Σ+. Such strings are finite models of
Monadic Second Order logic, and are amenable to finite state methods. We will further restrict them in
Section 6, with a focus on using Allen Relations adopted in ISO-TimeML, in order to analyse inference
over a finite search space.

An event-string α1 · · ·αn is read from left to right chronologically, so that any predicates which hold
at the moment at index i are understood to have held before another moment indexed by j if and only if
i < j. The precise duration of each moment is taken as unimportant in the current discussion, and thus
the strings model an inertial world, whereby change is the only mark of progression from one moment
to the next – “But neither does time exist without change” (Aristotle, Physics IV). Thus, if αi = αi+1 for
any 1 ≤ i < n, then either αi or αi+1 may be safely deleted from swithout affecting the interpretation of
the string, as the remaining symbol is simply taken as representing a longer moment. This operation of
removing repetition from the event-string is known as block compression (Fernando, 2016). The inverse
of this process introduces repeated elements in an event-string for greater flexibility in manipulating
strings. These operations are detailed in Section 3.

We see that strings may provide useful finite models for event data, once sufficiently constrained.
This is in order to avoid a large combinatorial blow-up when reconciling information from different
strings.



In the following section, we see an example from ISO-TimeML which we might convert to an event-
string, and why it would be useful to do so. Sections 3 and 4 provide the formal string operations used
to manipulate and combine information from event-strings. How these operations are useful in regards
to Allen Relations is described in Section 5, and Section 6 explores constraints to prevent malformed
event-strings. Finally, Section 7 shows how the framework can be applied to data from an ISO-TimeML
document.

2 Motivation in ISO-TimeML

ISO-TimeML (Pustejovsky et al., 2010) is a standard markup language used for the annotation of events
(and their interrelations) in texts. Of particular interest to us here are the TLINK elements, which indicate
the relations between pairs of fluents found in the document. Though not every fluent will necessarily
be linked with another in this manner, a majority will be. The TIMEBANK Corpus (Pustejovsky et al.,
2003) provides a large number of documents annotated using the 1.1 TimeML standard (a predecessor
to ISO-TimeML), which we may extract TLINKs from.

According to the markup specification (TimeML Working Group, 2005), a TLINK is required to have
the following attributes: either a timeID or eventInstanceID attribute, referring to some fluent in
the text, as well as either a relatedToTime or relatedToEventInstance attribute, which will
refer to another fluent, and also a relType attribute, declaring the relation between the two fluents.
Other attributes are optional and not relevant to the current discussion.

In order to give a more concrete understanding, let us take a small fragment from an ISO-TimeML
document, which will give us three TLINK nodes:

<TLINK lid="l2" relType="IS INCLUDED" eventInstanceId="ei1"(1a)

relatedToTime="t1" origin="USER"/>

<TLINK lid="l9" relType="IS INCLUDED" timeID="t1"(1b)

relatedToEventInstance="ei9" origin="USER"/>

<TLINK lid="l10" relType="BEFORE" eventInstanceID="ei9"(1c)

relatedToEventInstance="ei10" origin="USER"/>

The value of relType will correspond to exactly one of the relations described in Allen (1983), though
it should be noted that some of these Allen Relations can correspond to multiple relTypes (for ex-
ample, IDENTITY and SIMULTANEOUS are both covered by the Allen Relation equal). The other
attributes (lid, origin) in each TLINK may be ignored for now.

We can represent the information in (1a)–(1c) in predicate logic as follows:

Includes(t1, ei1)(2a)

Includes(ei9, t1)(2b)

Before(ei9, ei10)(2c)

where Includes (the inverse of IS INCLUDED) and Before are binary relations, corresponding to the
Allen Relations during (inverse) and before, respectively (see Section 5).

An issue with this representation is that the full picture of the chronological sequence of events is not
intuitively obvious from the three predicates. It is possible to create a set of inference rules (see Setzer
et al., 2005) which allow for drawing new conclusions from the given information – for example, that the
predicate Before(t1, ei10) also holds. However, the amount of information that can be obtained from any
single binary relation is relatively small, and reasoning about more than two fluents at once can require
the conjunction of multiple relations.

Using an event-string, we may include all of the above information in a single, readable string, which
allows us to reason about the relations between any number of fluents. Additionally, we provide facilities
to infer new relations from this event-string (see Section 6).



3 Superposition and Block Compression

In order to usefully collect information from multiple strings into a single string, we define here the
operation of superposition. With two strings s and s′ of the same length n built from an alphabet Σ, the
powerset of some fixed set A, the superposition s & s′ of s and s′ is their componentwise union:

α1 · · ·αn & α′1 · · ·α′n := (α1 ∪ α′1) · · · (αn ∪ α′n)(3)

For convenience of notation, we will use boxes rather than curly braces { } to represent sets in Σ, such
that each symbol α in a string s corresponds to exactly one box. For example, with a, b, c, d ∈ A:

a c & b d = a, b c, d ∈ Σ2(4)

Extending superposition to languages L and L′ over the same alphabet is a simple matter of collecting
the superpositions of strings of equal length from each language:

L & L′ :=
⋃
n≥0
{s & s′ | s ∈ L ∩ Σn and s′ ∈ L′ ∩ Σn}(5)

For example, L &
∗

= L. If L and L′ are regular languages computed by finite automata with tran-
sitions→ and→′, then the superposition L & L′ is a regular language computed by a finite automaton
with transitions⇒ formed by running→ and→′ in lockstep according to the rule

q
α→ r q′

α′

→′ r′

(q, q′)
α∪α′⇒ (r, r′)

(6)

A disadvantage of this operation is that it requires the string operands to be of equal length, which is an
overly specific case. In order to generalise this procedure to strings of arbitrary lengths, we may manip-
ulate the strings to move away from the synchrony of the lockstep procedure. One such manipulation is
that we can cause a string s = α1 · · ·αn to stutter such that αi = αi+1 for some integer 0 < i < n. For
example, a a a c c is a stuttering version of a c . If a string does not stutter, it is stutterless, and
we can transform a stuttering string to this state by using “block compression”:

bc(s) :=


s if length(s) ≤ 1
bc(αs′) if s = ααs′

α bc(α′s′) if s = αα′s′ with α 6= α′
(7)

This function can be applied multiple times to a string, but the output will not change after the first
application: bc(bc(s)) = bc(s). We can also use the inverse of this function to generate infinitely many
stuttering strings:

bc−1( a c ) = { a c , a a c , a c c , a a c c , . . .}(8)

We can say that any of the strings generated by this inverse block compression are bc-equivalent. Pre-
cisely, a string s′ is bc-equivalent to a string s iff s′ ∈ bc−1bc(s).

We can now define the asynchronous superposition s &∗ s
′ of strings s and s′ as the (provably) finite

set obtained by block compressing the infinite language generated by superposing the strings which are
bc-equivalent to s and s′:

s &∗ s
′ := {bc(s′′) | s′′ ∈ bc−1bc(s) & bc−1bc(s′)}(9)

For example, a c &∗ b d will comprise three strings:

{ a, b c, d , a, b a, d c, d , a, b b, c c, d }(10)

In order to avoid generating all possible strings when using the inverse block compression, we introduce
an upper bound to the length of the strings which will be superposed. It can be shown that with two
strings of length n and n′, the longest bc-unique string (one which has no shorter bc-equivalent strings)
produced through asynchronous superposition will be of length n+ n′ − 1.



4 Upper Bound on Asynchronous Superposition

The aforementioned bound on the length of superposed strings can be established as follows. For all
s, s′ ∈ Σ∗, we define a finite set s &̂ s′ of strings over Σ with enough of the strings in bc−1bc(s) & bc−1bc(s′)
to form s &∗ s

′. The definition proceeds by induction on s and s′, with

ε &̂ ε := {ε}(11a)

ε &̂ s := ∅ for s 6= ε(11b)

s &̂ ε := ∅ for s 6= ε(11c)

and for all α, α′ ∈ Σ,

αs &̂ α′s′ := {(α ∪ α′)s′′ | s′′ ∈ (αs &̂ s′) ∪ (s &̂ α′s′) ∪ (s &̂ s′)}(12)

Note that a string in s &̂ s′ might stutter, even if neither of the operands s or s′ do (e.g. a, c a, c ∈
a c &̂ c a ). However, it can be made stutterless through block compression.

Proposition 1. For all s, s′ ∈ Σ+ and all s′′ ∈ s &̂ s′,

length(s′′) ≤ length(s) + length(s′)− 1(13)

Proposition 2. For all s, s′ ∈ Σ+,

s &̂ s′ ⊂ bc−1bc(s) & bc−1bc(s′)(14)

and

{bc(s′′) | s′′ ∈ s &̂ s′} = s &∗ s
′(15)

Now, for any integer k > 0 and string s = α1 · · ·αn over Σ, we introduce a new function padk which
will generate the set of strings with length k which are bc-equivalent to s:

padk(α1 · · ·αn) := α+
1 · · ·α

+
n ∩ Σk(16a)

= {αk11 · · ·α
kn
n | k1, . . . , kn ≥ 1 and

n∑
i=1

ki = k}(16b)

⊂ bc−1bc(α1 · · ·αn)(16c)

For example, pad4( a c ) will generate { a a a c , a a c c , a c c c }. We can use this new
function in our calculation of asynchronous superposition, to limit the generation of strings from the
inverse block compression step. Since we know from Proposition 1 that the maximum possible length
we might need is n+ n′ − 1, we can use this value in the pad function to just generate the strings of that
length, giving us a new definition of asynchronous superposition:

Corollary 3. For any s, s′ ∈ Σ+ with nonzero lengths n and n′ respectively,

s &∗ s
′ = {bc(s′′) | s′′ ∈ padn+n′−1(s) & padn+n′−1(s

′)}(17)

Neither s &̂ s′ nor padn+n′−1(s) & padn+n′−1(s
′) need be a subset of the other, even though, under the

assumptions of Corollary 3, both sets block compress to s &∗ s
′.



5 Event Representation

Now we may use asynchronous superposition to generate the 13 strings in e &∗ e′ , each of
which corresponds to one of the unique interval relations in Allen (1983). No more than one of these
relations may hold between any two fluents, and thus each of the 13 generated event-strings exists in a
distinct possible “world”. We use the empty box as a string of length 1 (not to be confused with the
empty string ε, which is length 0) to bound events, allowing us to represent the fact that they are finite –
they have a beginning and ending point. It is prudent to assume that we will deal only with finite event
data, such that there are no fluents which do not have both an associated start-point and end-point. If
such a non-finite fluent without a begining and ending were to occur, it could trivially appear in every
position in the event-string.

The bounding boxes represent the time before and after the event occurs, during which no other
fluents a ∈ A are mentioned. The event-strings associated with the Allen Relations are laid out below:

e = e′ e, e′ equal

e s e′ e, e′ e′ starts

e si e′ e, e′ e starts (inverse)

e f e′ e′ e, e′ finishes

e fi e′ e e, e′ finishes (inverse)

e d e′ e′ e, e′ e′ during

e di e′ e e, e′ e during (inverse)

e o e′ e e, e′ e′ overlaps

e oi e′ e′ e, e′ e overlaps (inverse)

e m e′ e e′ meets

e mi e′ e′ e meets (inverse)

e < e′ e e′ before

e > e′ e′ e after

These Allen Relations are included in the attributes of ISO-TimeML, as types of relation annotated
by TLINKs (though some relations are named slightly differently). By extracting the TLINKs from
an annotated document, and translating them to our event-string representation (see Section 7), we may
begin to reason about the relationships between annotated events which do not have an associated TLINK
in the markup. For example, the document may give us a relation between events e and e′, and another
relation between e′ and e′′, and from this we may infer the possible relations between e and e′′.

As asynchronous superposition is commutative and associative, we may superpose arbitrary numbers
of event-strings: s1 &∗ · · · &∗ sn. We can show that superposing n unconstrained bounded event-strings
will generate strings of maximum length 2n+1.1 Note, however, that superposing even a relatively small
number of unconstrained bounded events leads to a massive combinatorial blow-up in the number of
1The proof is by induction:
Let each string to be superposed si ∈ {s1, . . . , sn} be ei , with each ei ∈ A.

For n = 2: s1 &∗ s2.
From Proposition 1, the maximum length of the result is 3 + 3− 1 = 5 = 2(2) + 1.
We assume true for n = p, thus the maximum length of s1 &∗ · · · &∗ sp is 2(p) + 1.
Next, we prove for n = p+ 1: s1 &∗ · · · &∗ sp+1 = s1 &∗ · · · &∗ sp &∗ sp+1 = s1...p &∗ sp+1.
From Proposition 1, the maximum length of the result is (2(p) + 1) + 3− 1 = 2(p+ 1) + 1.
Thus true for p+ 1, and by induction, true for any n ≥ 2.



outcomes, or possible worlds, as each event-string generated from one superposition (e.g. s1 &∗ s2) will
in turn be superposed with each generated from another (e.g. s3 &∗ s4). Additionally, with each event,
the maximum possible length of the strings grows, meaning a larger set of strings will be generated at the
pad stage. Table 1 shows the maximum lengths of the stutterless strings generated from n unconstrained
bounded events, up to n = 5. For n ≥ 2, one can show that 2n < b(n) < (2n2 − n)n, where b(n)
represents the number of distinct outcomes generated by asynchronously superposing n unconstrained
bounded events.2 Table 1 also sets out these numbers.
Clearly, simply superposing bounded events in this manner is not feasible, given the huge growth in the

Number of events:
n

Maximum length:
2n+ 1

Lower bound:
2n

Number b(n) of outcomes from
s1 &∗ · · · &∗ sn

Upper bound:
(2n2 − 1)n

2 5 4 13 36

3 7 8 409 3, 375

4 9 16 23, 917 61, 456

5 11 32 2, 244, 361 184, 528, 125

Table 1: Outcomes of asynchronous superposition of n bounded events

number of possible outcomes, and it is unreasonable to expect that any given document should contain
five or fewer events. In order to avoid generating such a large number of computed event-strings, it is
necessary to add constraints to limit the strings that may be considered allowable for a particular context.

Interestingly, because each unconstrained bounded event-string e contains exactly one fluent,
we may determine the maximum possible length of a string generated by superposition, 2n + 1, from
the size of the set A of fluents, where n = |A|. By keeping track of |A|, we ensure that the length of
the string will always be finite, opening up the possibility of using methods from constraint satisfaction,
exploiting the finite search space.

6 Constraints on Event-Strings

Two approaches to constraints may be implemented, which are not mutually exclusive. The first is to
prevent unwanted strings from being generated, based on the nature of the operand strings, and the
second is to remove disallowed strings from the set of outputs. The former approach is preferred from a
computational standpoint, as there is less data to store and process. For either, we define some properties
of what we may consider to be a well-formed event-string.

We assume that every fluent we encounter has exactly one beginning and one ending – that is, that
events do not resume once they have ended. Events of the same type may stop and start frequently, but
by assuming that every instance of an event will have a uniquely identifying fluent, we can discard any
strings which feature such a resumption.3 In this way, fluents are interval-like. We define the function
ρX on strings of sets to component-wise intersect with X for any X ⊆ A (Fernando, 2016):

ρX(α1 · · ·αn) := (α1 ∩X) · · · (αn ∩X)(18)

Applying block compression to an event-string which has been reduced with ρ{a} should produce a single
string: a . For example, with a, b ∈ A:

bc(ρ{a}( a a, b b )) = a(19)

2A single bounded event may be represented in a (possibly stuttering) string of length 2n + 1 in
∑2n−1

i=1 i = 2n2 − n ways.
Together, n of these leads to (2n2 − n)n.

3We adopt simplifying assumptions made in Allen Relations, though it should be noted that the distinction between event
instances and event types (see Fernando, 2015) is not imposed by the event-string framework itself, allowing for discontinuous
events (such as judder) in future work.



Additionally, fluents may be referred to multiple times by different TLINKs in an annotated document,
and we assume that they will be consistent within the context of that document i.e. if a relation holds
between e and e′, and a relation holds between e′ and e′′, then both instances of e′ refer to the same
fluent. In this case, if a relation also holds between e and e′′, then this relation should not contradict the
other two relations. For example, if e > e′ and e′ > e′′, then it should be impossible for a well-formed
event-string to also have the relation e < e′′, as this would break the interval-like fluent constraint
mentioned above.

These last two points are interesting in particular, as they lead to a specific kind of superposition
between strings s, s′ ∈ Σ+ when some symbol α ∈ s is equal to some other symbol α′ ∈ s′. In this
scenario, the symbols must unify when superposing the strings, in order to create a well-formed event-
string in accordance with the above two constraints. To achieve this, when a symbol α in s is also present
in s′, and the asynchronous superposition of these strings is desired, padding is carried out as normal, but
superposition is only permitted of those results of padding in which the indices of the matching symbols
are equal. To do otherwise would permit event-strings which are not well-formed.

Allen (1983) gives a transitivity table showing the inferred possible relations between two events a
and c, given the relation between each and an intermediary event, b. Each cell of the table shows simply
the symbol which represent the binary relation – we may improve on the readability of this by showing
explicitly the well-formed event-string(s) formed by the asynchronous superposition in each case. A
fragment of the entire table is shown in Table 2 below:

“before”
b c

“during”
c b, c c

“meets”
b c

“starts”
b, c c

“before”
a b

a b c

a c b, c c ,

a a, c c b, c c ,

a c b, c c ,

c a, c c b, c c ,

a, c c b, c c

a b c a b, c c

“during”
b a, b b

b a, b b c c b, c a, b, c b, c c b a, b b c b, c a, b, c b, c c

“meets”
a b

a b c

a a, c b, c c ,

c a, c b, c c ,

a, c b, c c

a b c a b, c c

“starts”
a, b b

a, b b c c a, b, c b, c c a, b b c a, b, c b, c c

Table 2: Fragment of Allen Transitivity Table using event-strings

Here and in the original table, only three events are mentioned: a, b, and c. We can see that the asyn-
chronous superposition of an event-string sa,b mentioning a and b with an event-string sb,c mentioning
b and c gives a language L of event-strings mentioning all three events. Applying the reduct ρ{a,b} to
any string in L (and block compressing the result) should give back exactly sa,b, and likewise applying
ρ{b,c} to any string in L should give back exactly sb,c. It should, in theory, be possible to generalise
this to any number of events, ensuring the same level of readability by using event-strings. Then for
an event-string of arbitrary length featuring any number of fluents, we can apply the reduct ρ{e,e′} and
block compress the result to obtain the Allen Relation between fluents e and e′ by comparing with the
event-strings corresponding to each Allen Relation, laid out in Section 5.



Finally, we may also introduce further constraints if external information is available, and these
might be simply intersected with the result of a superposition: (s &∗ s

′) ∩ C, where C represents
the constraints to be applied, for example, “e is among the first events to occur in the string s” (true iff
s & e

∗
= s). This allows for extension beyond Allen Relations in the future.

7 Application to TLINKs

As mentioned in Section 5, attempting to generate all of the possible worlds becomes difficult when using
just the unconstrained bounded event-strings alone, as there are just too many (rarely, if ever, featuring
five fluents or fewer). Instead, we begin by looking at just those fluents which are linked to another by
Allen Relation, which we may extract from the TLINKs in a document annotated with ISO-TimeML, as
noted in Section 2.

As each relation corresponds exactly to one possible model, we translate the TLINKs immediately
to the appropriate event-strings, and superpose these according to the constraints mentioned in Section
6. This allows us to avoid simply superposing based on the fluents, and bypasses having to generate the
initial 13 possibilities. In this way, we may generate a much smaller set of possible outcomes from a
larger number of bounded events.

We can now rewrite the information given in the TLINKs (1a)–(1c) as the following event-strings:4

t1 ei1, t1 t1(20a)

ei9 t1, ei9 ei9(20b)

ei9 ei10(20c)

We may asynchronously superpose these event-strings while respecting the established constraints
in order to generate a new event-string which contains all of the information from each of the inputs:

ei9 t1, ei9 ei1, t1, ei9 t1, ei9 ei9 ei10(21)

A clear advantage here is the compact, readable representation. Furthermore, we can infer the Allen
Relation between any two fluents in this event-string s by applying a reduct and block compressing the
result. For example, to infer the relationship between ei1 and ei10, we obtain s′ = bc(ρ{ei1,ei10}(s)) =

ei1 ei10 , from which we can conclude that the Allen Relation ei1 before ei10 holds.
A drawback here is that for this to be effective, it relies on the events being heavily constrained by

their interrelations. If there are too few TLINKs relative to the number of events, we still run into the
problem of combinatorial explosion. What’s more, as seen in Table 2, some asynchronous superpositions
will still generate multiple disjoint possibilities (such as a before b with b during c), which will also
impact the combinatorial problem.

An additional issue in computation of the superposition of events arises as multiple superposition op-
erations are be carried out in sequence, meaning unordered data may lead to a much less efficient calcu-
lation of final results. For example, a b &∗ b c &∗ c d and a b &∗ c d

&∗ b c should produce the same, single output: a b c d , which they do. However, due
to the respective orderings, the first sequence will arrive at that conclusion much faster as a b &∗

b c has one possible outcome ( a b c ), which can immediately be asynchronously super-
posed with c d to produce the final output. However, a b &∗ c d has 321 possible
outcomes, each of which must be individually asynchronously superposed with b c , only to come
to the same conclusion, as only one of these results is well-formed.
4Using https://www.scss.tcd.ie/∼dwoods/timeml/ to quickly extract TLINKs from an ISO-TimeML document and translate
them to event-strings. A non-trivial extension of this program which computes results of superposition is in the works.



One potential way to work around this pitfall is a grouping and ordering stage, where initially only
events linked by some relation may be superposed, and only after the operand strings have been sorted
to some optimal order, whereby the event-strings with the most shared fluents are grouped. It may be
prudent to only perform superposition at all on event-strings which may be linked through one or more
relations or shared fluents. In this way, new, underspecified events may be formed from the output strings.
Consider the scenario with e1, . . . , e8 ∈ A, and the following Allen Relations:

e1 < e4(22a)

e1 m e2(22b)

e2 di e3(22c)

e5 s e7(22d)

e8 > e5(22e)

Let us cluster the fluents as follows: for each fluent a ∈ A, fix a set P = {a}, and a set S whose members
are these sets P .

S = {{e1}, {e2}, {e3}, {e4}, {e5}, {e6}, {e7}, {e8}}(23)

Next, check for an Allen Relation between each pair of fluents a and a′. If a relation exists, add the fluent
a′ to the set P .

S′ = {{e1, e4, e2}, {e2, e3}, {e3}, {e4}, {e5, e7}, {e6}, {e7}, {e8, e5}}(24)

Finally, for each pair of sets P,Q, if |P ∩ Q| > 0, form R = P ∪ Q, adding R to the set S′′ and
discarding P,Q. Add the remaining sets from S′ to S′′.

S′′ = {{e1, e4, e2, e3}, {e5, e7, e8}, {e6}}(25)

We might form the underspecified event groups E1 and E2 to refer to these first two clusters, at which
point we may freely treat these groups as normal bounded events, and perform asynchronous superposi-
tion on their event-strings, as well as with that of e6 – reducing the number of inputs from 8 to 3.

Additionally, various weightings might be considered as a method of priority-ordering in the case of
a large A, such as the number of component events in an underspecified event group, or the number of
relations linking to a particular event.

8 Conclusion

We have explored in this work the possibility of using strings as models for event data, motivated by
their nature as computational entities. The operation of asynchronous superposition was described for
composing strings which represent finite, bounded events, as well as its limits in terms of massive growth
in the number of outputs when the operation is repeated in sequence. The problem is addressed by
constraining the strings which may be superposed, with the 13 Allen Relations forming the main part of
these, as these can be found in annotated corpora such as TIMEBANK, using the ISO-TimeML standard.

Future work on this topic will further develop the constraints on asynchronous superposition and
expand on the features of the current framework, while also examining the use of alternative models to
approach the same issue, such as using finite state automata, or a hybrid string/FSA approach. We will
additionally explore the potential of employing methods from distributed computing in order to tackle
the combinatorial explosion that occurs in asynchronously superposing unconstrained bounded events.
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