
Argument Structure and Referent Systems

Marcus Kracht

Bielefeld University

marcus.kracht@uni-bielefeld.de

Yousuf Aboamer

Bielefeld University

yousuf.aboamer@uni-bielefeld.de

1 Introduction

We describe here a theory of semantic composition, which integrates referent systems into argument

structure. The main idea is that argument structure is the key component in linguistic signs, and that

it provides the interface between syntax and semantics. To make this idea work for language, referent

systems as defined in Vermeulen (1995) have been used. Referent systems (RS) are based on the idea

that the identity of variables across different representations is irrelevant (see also Fine (2007)). Thus,

whether or not two variables must be taken to be coreferential in the formation of a syntactic constituent

must be effected by encoded linguistic cues, be they word order or a particular word form. This basic

insight started the present investigation. Many adaptations had to be made in order to make the basic

idea compatible with the requirements of natural language.

In RSs the natural merge operation in semantics makes all variables occurring free in the respective

representations disjoint. Thus, in contrast to an idea promoted in Zeevat (1989), where variables shared

across representations are taken to be pointing to the same object, here this is treated as an unwarranted

assumption. In natural languages, however, there are clearly defined circumstances in which certain

variables need to be identified during the merge operation, for example when a head is merged with its

complement. The way this is done in RSs is that this fact is explicitly encoded by means of a shared

name. This name is taken from a specified set of names.

This idea has been the starting point of the current theory. This theory takes it that argument structures

are lists of argument identification statements (AISs), that need to be discharged one by one in order to

reach the phrase level. A discharge is obtained by matching a single variable from the argument structure

in both the functor and its argument. This match is subject to several conditions: (i) the variables occur

in particular AISs that are visible during match, (ii) the variables have matching names, and (iii) no

morphological conditions are violated.

In the present paper we shall simplify the actual theory in order to concentrate on its main engine,

the argument structure. In particular, we shall not say much about the morphology. The theory is fully

implemented, see the section on implementation for source code.

2 Semantic Structures

Semantic units are called signs. A sign is a triple xm,α,∆y, where m is a morpheme (= a set of morphs),

α an argument structure and ∆ a DRS. Both argument structures and morphs have a combinatorics, that

is to say, they specify some number of arguments and modes how they will combine with them. Each

morph in m has as many arguments as α. The sign combines any number of morphs that have the same

semantics into a single morpheme. This accounts in particular for allomorphy, but may also be used for

portmanteau realisation.



A morph is a pair m “ pg,Aq, where g is its exponent, typically a string, and A a vector of so-

called selectors (the length of which is called the dimension of m). The selectors state the number and

morphological kind of arguments that the morph requires and in which way their exponents are to be

combined with the exponent of the head. If exponents are strings, then we can state (i) that the argument

is required to follow the head (the head is looking right for its argument), or (ii) that the argument

is required to precede the head (head is looking left). Such statements are given for each argument

independently; thus, it may be stated that the subject is to the left, while the direct object is to the right.

The name space is given as follows. We take a finite set A of attributes, and a finite set V of values,

together with a function o : A Ñ ℘pV q. opnq is the set of admissible values for n (see Gazdar et al.

(1988)). A legal attribute value structure (AVS) is a set of pairs pn, sq, where n P A and s Ď opnq. The

sets represent underspecification. An absent name can be added in the form pn, opnqq. Thus we may see

a legal AVS as a function f : A Ñ PpV q such that for all n P A, fpnq Ď opnq. A particular role is

played by pairs pn,∅q, which we write pn, ‹q. ‹ represents the absence of a value. A pair pn, sq matches

a pair pn1, s1q iff (a) n “ n1; (b) s X s1 ‰ ∅ (in which case s ‰ ∅ and s1 ‰ ∅) or s “ s1 “ ∅. Two

legal AVSs f and g are unifiable if for all n P A fpnq and gpnq match. In that case, the unification is

pf X gq, the pointwise intersection. A name is a fully specified AVS, that is, fpnq is either a singleton or

‹ for any given n.

In the sequel we use functor in place of head. When a functor F combines with an argument A, we

require that there always be a semantic object, a variable, that needs to be shared between them. (This is

called the main variable.) The mechanism will be spelled out below. Both the functor and the argument

contain an argument structure. Let α be the AVS of the functor and β be the argument structure of the

argument. The merge is denoted by α‚β. An argument structure is a sequence of argument identification

statements (AISs). An AIS takes the form

px : δ : Σ :: P q

where

1. x is a variable;

2. δ is a diacritic;

3. Σ is a pair of AVSs;

4. P is a pair of parameter AVSs.

We first spell out merge in case α and β contain single AISs: α “ xµy, β “ xνy, where

µ “ px : δ : Σ :: P q, ν “ py : ǫ : Ξ :: Qq.

The diacritic δ contains specific instructions on merge. They specify among other whether x is supplied

by the functor or not (we speak of the variable being exported or not, indicated by the presence or absence

of the diacritic △) and whether it is to be supplied by the argument or not (we speak of a variable being

imported or not, indicated by the presence or absence of the diacritic ▽). This is a fourfold alternative;

yet, since x is in the functor it must be imported by the functor. This reduces the space to two choices:

if the functor does not export the variable, the AIS µ will be removed after merge. If it does, the merge

µ ‚ ν will replace it. This reproduces the argument/adjunct distinction (though it is more general since

import names may be changed).

The argument variable y is likewise accompanied by a diacritic, ǫ. As the argument must export its

variable, we are left with two options: ν is either importing y or not. In the latter case, the argument

structure is not saturated, a case to which we shall return below.

Σ is a pair of AVSs. The first of these determines under which name the variable is imported, the

second under which name the variable is exported. If the diacritic says “no export” then the second AVS

is left empty (and is omitted in the notation); likewise when the diacritic says “no import” the first AVS



is left empty (or is simply omitted). Abstractly speaking, when a variable is both imported and exported,

the functor specifies a function from import names to (sets of) export names. However, this function is

restricted. The export name is actually underspecified, and so is the import name. Thus, the function

is actually undefined or returns the same set of export names. However, the export AVS may contain a

special value X for an attribute, in which case the function returns the same value, ie is the identity. Thus

the pair

rpcase, tnom, accus , rpcase,Xqs

returns rpcase, tnomuqs given rpcase, tnomuqs and rpcase, taccuqs given rpcase, taccuqs. However,

rpcase, tnom, accus , rpcase, tnom, accuqs

returns rpcase, tnom, accuqs for both inputs. This situation is quite frequent. For example, if an adjective

A composes with a noun N that can either be nominative or accusative, then if the noun is accusative, so

is the complex rAN s, and if the noun is nominative, so is the complex rAN s. Thus, the indeterminacy is

only in the noun, and the indeterminate value is being passed up “as is”, without adding indeterminacies

for the new constituent.

The merge is simply function composition. For AVSs, this is spelled out as follows.

Σ “ pf1, g1q, Ξ “ pf2, g2q.

Primarily, f1 and g2 must be unifiable. If so, a new pair of AVSs is being computed. The details are

straightforward, but tedious.

With the combination of Σ and Ξ defined, we turn to P and Q. Likewise, they consist of two parts,

which are now parameter AVSs. These are sets of statements of the form pπ, xq, where π is some name

(taken from a given set of parameter names), and x a variable. If P “ pU, V q, and Q “ pU 1, V 1q, then

parameters will be unified during merge iff there is a name π such that U contains pπ, xq and V 1 contains

pπ, yq (where y is potentially a different variable).

When all components match, we first get a pair of substitutions σ1 and σ2. The first substitution is to

be executed on the first sign (the functor) and the second substitution is to be executed on the second sign

(the argument). This substitution is effected on the semantics as well as the argument structure (main

variable and parameter AVSs alike). After that a new sign is computed by:

1. applying each morph of the functor to each morph of the argument and keeping only the successful

combinations;

2. computing the merge of the argument structures; and

3. taking the union (= Zeevat-merge) of the new DRSs.

We emphasise that the substitutions will unify variables on the basis of the AVSs alone. Thus, if the

functor contains x as main variable and the argument contains y ‰ x, and the merge succeeds, we will

have σ1pxq “ σ2pyq. However, if they do not get identified, then σ1pxq ‰ σ2pyq. Likewise, if the first

sign contains x and so does not the second, then σ1pxq ‰ σ2pxq unless they are identified under merge.

This is a desired outcome.

Crucially, the number of arguments that are needed in morphology is the same as the number of

arguments given by the argument structure. This says nothing else but that each time a syntactic nexus

is established, some semantic merge must be performed—and conversely.

Here is a simple case of how this works. A verb may contain a specification of its subject in the

following form.

{rennen{ : px : ▽ :

»

–

pers : t1, 3u
num: tplu
case:tnomu

fi

fl ::q



This says that the variable x is imported under merge under the name nominative-1st-plural or nominative-

3rd-plural (a third option, that this is the infinitive, has been omitted). A pronoun in turn can contain the

following

{wir{ : py :△:

»

–

pers : t1u
num: tplu
case:tnomu

fi

fl ::q

In that case the AISs merge successfully, and the complex has an empty argument structure. Moreover,

the substitutions will be arranged such that σ1pxq “ σ2pyq. Thus, the constituent /wir rennen/ is

well formed, since they have the argument structures displayed above. By contrast, the following is not

well-formed: /uns rennen/, even if the pronoun is given the following argument structure:

{uns{ : px :△:

»

–

pers : t1u
num: tplu
case:taccu

fi

fl ::q

This is because accusative case blocks identification under merge, irrespective of the actual variable

chosen.

3 Merge and Fusion

So far we have only talked about the case of a single AIS in each argument structure. Now we need to go

full scale. First, say that an argument structure is saturated if none of its AISs imports a variable. There

are now two kinds of merge: proper merge and fusion. Fusion is marked option. In a proper merge the

argument structure of the complement is saturated. In a fusion it is not. The diacritic (in addition to the

above fourfold choice) states whether the particular AIS allows for fusion.

Second, it is theoretically possible to identify several variables under merge. A merge is called n-

ary if exactly n AISs are merged at the same time. A monadic merge is a 1-ary merge. A polyadic

merge is an n-ary merge with n ą 1. This option is used on control constructions. In the sen-

tence /Bert persuaded Mary to leave./ it is Mary who does the leaving, while in /Bert

promised Mary to leave./ it is Bert. This is accomplished by assigning the infinitive /to leave/

its semantic arguments, including the actor. However, the actor is not imported, it is exported on a par

with the the event variable. Thus, when the higher verb identifies the event variable, it will also identify

the actor. In this case, it can choose to either make it the same as the subject (in the case of /promise/)

or the same as the theme (in the case of /persuade/).

Third, when the argument structures contain several AISs, access conditions apply. Suppose that

α “ pµ1, µ2, ¨ ¨ ¨ , µkq

and that

β “ pν1, ν2, ¨ ¨ ¨ , νℓq.

Then in a monadic merge

1. ν1 must export a variable; and

2. for the largest (!) j such that µj ‚ ν1 succeeds the following holds:

• the global option of E-access is valid and j “ k; or

• the global option of G-access is valid and for no i ą j, the variable of νi is a barrier.

In a polyadic merge, we inspect ν2 for the next exported variable, and try to see if some µi, i ă j, imports

it. And so on.



To explain this, we need to resort to diacritics again. In a diacritic, a further specification is being

made: whether the AISs can be skipped in merge or not (in the latter case it is a barrier). Now, a grammar

is E-access if all AISs are barriers. A grammar is otherwise G-access.

To explain this notion, consider a language with case markers. Say a verb has an argument structure

of the following form (think a verb in a language with subject agreement):

{zumuten{ : px : ▽ :

»

–

pers : t1, 3u
num: tplu
case:tnomu

fi

fl ::q, py : ▽ :
“

case:taccu
‰

::q, pz : ▽ :
“

case:tdatu
‰

::q

An NP that is marked for dative case can merge in both access conditions. For the last of the AISs

matches the case of the NP. An NP with accusative can match only if it is allowed to skip the dative. An

NP with nominative case can match only if it is allowed to skip both the dative and the accusative. So,

given that arguments are to the left, under E-access only the following is grammatical:

NP-nom NP-acc NP-dat V

Given G-access and no variable is a barrier, we get 6 possibilities:

NP-nom NP-acc NP-dat V

NP-nom NP-dat NP-acc V

NP-acc NP-nom NP-dat V

NP-acc NP-dat NP-nom V

NP-dat NP-nom NP-acc V

NP-dat NP-acc NP-nom V

If word order is different, then matters can become more involved. For example, if only the nominative

NP is to the left, there are only two patterns left:

NP-nom V NP-acc NP-dat

NP-nom V NP-dat NP-acc

In this way one can account for different word order patterns in languages. In Latin all word orders

are well formed (though some may be dispreferred), while in English only one is permitted (/John

gave a book to Mary/). German patterns like Latin, however verb-second complicates matters

substantially.

4 Agreement

Grammar formalisms can be largely divided into those that base themselves on agreement (HPSG) and

those that base themselves on cancellation (Categorial Grammar). The present framework combines

cancellation with agreement. It performs cancellation under agreement. Thus, it is similar to some

variant of UCG (unification categorial grammar, Calder et al. (1988)), however its categorial apparatus

is greatly reduced.

It takes its motivation from the fact that agreement is one of the main inputs in deciding the asso-

ciation between variables across constituents. In many languages this is case; however, head marking

regimes also exist. For example, in German a verb displays subject agreement. This fact not only

regiments the proper form of the subject, as in the case of ˚/uns rennen/ above. It also helps to dis-

ambiguate sentences as in /Uns haben die Fragen geholfen./ “The questions were helpful

for us.”. The fact that the pronoun in first position, /uns/, is in the accusative, means that it cannot be

subject. German allows for G-type access, so accusative NP may be sentence initial. On the other hand,

/die Fragen/ (“the questions”) may be both nominative and accusative. It turns out that only when



we decide them to be nominative is the sentence grammatical. This is borne out, assuming the following.

(1) The verb /helfen/ has the argument structure

{helfen{ : px : ▽ :

»

–

pers : t1, 3u
num: tplu
case:tnomu

fi

fl ::q, py : ▽ :
“

case:taccu
‰

::q

(2) The NP /die Fragen/ has two separate argument structures:

{die Fragen{ : px :△:

»

–

pers : t3u
num: tplu
case:taccu

fi

fl ::q

and

{die Fragen{ : px :△:

»

–

pers : t3u
num: tplu
case:tnomu

fi

fl ::q

(3) The pronoun /uns/ has the structure

{uns{ : px :△:

»

–

pers : t1u
num: tplu
case:taccu

fi

fl ::q

(We do not display the morphology here, for it is quite complicated.) Choosing a single entry in (2) with

underspecified case gives the wrong result.

The calculus admits as many marking patterns for a verb as there are arguments that it takes. There-

fore, it is possible to have no agreement (Chinese), subject agreement (German), subject and object

agreement (Mordvin), and more. Similarly, adjectives may exhibit agreement with the noun they mod-

ify.

5 Parameters

The parameters are another important feature. Recall that an AIS contains a pair pU, V q of parameter

AVSs. These consist of pairs pπ, xq, where x is a variable and π a parameter name. There is no prohibi-

tion for a variable to occur both as a parameter and as a main variable of the AIS. Also, variables may be

assigned different parameter rules in import and in export AVSs.

A particularly instructive use of parameters is the phenomenon of sequence-of-tense (Abusch (1997),

Ogihara (1996)). Recall that languages differ in how they use morphological tenses in subordinate

clauses. Some languages require subordinate clauses to use nonpresent when the superordinate clause

is in the past: /John said that he was ill./. Others require present tense if the subordinate

clause is cotemporaneous with the event of the main clause. Russian is such a language. The phe-

nomenon is explained as follows. Choose two parameter names, ρ (“reference time”) and ε (“event

time”). Put the argument structure of /said/ as

pe :△: r s ::

„

ρ: t

ε:t1



q, px : ▽ : r s ::q, pe1 : ▽ : r s :: r s ,
“

ρ:t1
‰

q

(irrelevant detail omitted) and in the semantics the statement t1 ă t is added as well. Now, present tense

may either be deictic (in which case it states that the event takes place at reference time) or it may be

relational, in which case the event takes place at the event time of the higher predicate. To implement

this, we give it the following argument structure:

pe :△: r s ::

„

ρ: t

ε:t1



q



with t “ t1. The idea is this. A verb of saying has a complement, and this complement needs to be

situated in time. The higher verb decides whether the reference time of the embedded clause is its own

reference time, or whether it is taken to be its event time. The first choice is realised in English. Reference

time is not shifted. The second choice is realised in Russian. Reference time is shifted, because it is set

to the event time of the higher clause.

We may combine this with a more fully fledged account of tense and aspect (as of Klein (1994)),

but the core insight is as explained above, only that one more parameter is added and the choice of

identification is multiplied further.

Time points are by far not the only parameters. From the evidence provided in Schlenker (2003) also

worlds and speaker roles are shiftable, and therefore assume parameter roles. There are more: properties

(to account for adjectives), locations, and even experiencers, eg for expressions of taste, see Kneer et al.

(2017).

6 Implementation

Absent copying, the formalism leads to what is known as Multicomponent CFGs (Seki et al. (1991)).

If copying is allowed, depending on further restrictions, the full power of Literal Movement Grammars

can be achieved, equivalent to PTIME parseability (Groenink (1997), Kracht (2003)). Unlike Mel’cuk

(2000) it is completely surface oriented.

The calculus has been faithfully implemented (in OCaml) and can be downloaded at

wwwhomes.uni-bielefeld.de/mkracht/referent/

This site contains the complete description together with a user manual as well as the source code and

dictionaries for Hungarian nouns and basic Latin morphology.

Data is stored in a special XML-format. It handles UTF-8. Output can be rendered into XML or

LaTeX and then shown via standard DVI or PDF viewers. This ensures high quality output. Based

on a dictionary, one can either merge entries, or parse strings. The parser is a chart parser adapted for

discontinuity. Morphs may be empty, but a special rank function ensures that this does not lead to infinite

loops. The system has not primarily been designed for speed but to faithfully compute according to the

theory. A chart parser has been chosen to determine all possible parses.

As an example we show here the entry of the verbal root /tang/ “to touch” of the Latin dictionary

(as given in the online resource).

Id:tang

✱.p˝, 0q.{tac{x
“

BASE : p; LEVEL : r; STEM : c
‰

: 0
0

˝y

✲.p˝, 0q.{tang{x
“

BASE : a; LEVEL : r; STEM : c
‰

: 0
0

˝y

✳.p˝, 0q.{tetig{x
“

BASE : f; STEM : c
‰

: 0
0

˝y

xe0 :△:

»

—

—

—

—

—

—

–

ASP : ˚
CAT : v

MOOD : ˚
TENSE : ˚
TRS : 2

VOICE : ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

::

„

gf2 : x1

gf1 : x0



y

e0; x0; x1

touch1pe0q; agt1pe0q “ x0;

thm1pe0q “ x1.

Parse terms:

✱.tang : mr104

✲.tang : mr105

✳.tang : mr106

http://wwwhomes.uni-bielefeld.de/mkracht/referent/


The first line is the identifier, an arbitrarily chosen string. The next lines specify the morphs. There are

in total three morphs, corresponding to the three stems: /tang/, /tetig/, and /tact/. Each of them

is accompanied by some morphological properties. Colours are used to highlight identical arguments

across morphs and the argument structure.

Below that are found three boxes. The first contains the argument structure, the second the semantics

(a DRS with head section and body), and finally a box containing the parse terms for the morphs. Three

are listed, coindexed (by the stars of different shape) with the morphs given upstairs. Notice that the

parse terms record the identifier as well as the morph contained in the entry.

The argument structure of a root is minimal: it exports an event variable, e. The category is specified

as v (verbal) and the transitivity as 2. All other attributes have no value. The parameter AVS lists two

parameters (for agent and theme).

7 Conclusion

The design criterion of this calculus has been to derive the complexity of phenomena from an interaction

of several components, each of which are quite simple. In the morphology, we allow for discontinuous

constituents, and each part can specify a limited context condition. Morphs are composed by piecing

together the discontinuous parts in a specified manner. Allomorphy is explained by the fact that morphs

specify context conditions; different morphs under the same morpheme may thus compete for the con-

texts.

The semantic algorithm is independent of this, however. It only takes into account whether the mor-

phemes can be combined or not. Thus, in contrast to Morrill (2017), the discontinuity is not reflected in

the categorical system. The main driver of semantic composition, by contrast, is the argument structure,

which combines morphosyntactically supplied specification (AVSs) with semantic names of variables.

The third component, the semantics proper, is yet again independent. It is subjected to substitution

before merge, where the substitution is calculated from the merge of argument structures.

The presented calculus is quite powerful. It has been designed to deal with the semantics in com-

bination both with morphology and syntax. We do not draw a line between purely syntactic or purely

morphological formation. Thus, there is no commitment to the lexical integrity principle. For example,

it can be shown that case marking in Hungarian is best viewed as phrasal affixation. We have omitted

the details of morphological analysis here. It is possible to decompose full paradigms (eg the nominal

paradigm in Hungarian, the verbal paradigm in Latin) and give them the correct semantics, calculated

bottom up.

The link with overt morphology and syntactic features is theoretically arbitrary. This is a drawback,

which the calculus shares however with the overwhelming majority of frameworks. Further work is

needed. We would ideally like to propose eg that in a language without overt gender marking (like

Finnish or Hungarian) no attribute for gender exists. However, at this point, it is not prohibited to posit

one, and not even mandatory that it have only one value.



References

Abusch, D. (1997). Sequence of tense and temporal de re. Linguistics and Philosophy 20, 1–50.

Calder, J., E. Klein, and H. Zeevat (1988). Unification Categorial Grammar: A Concise Extendable

Grammar for Natural Language Processing. In Proceedings of COLING 12, Budapest, pp. 83–86.

Fine, K. (2007). Semantic relationism. London: Blackwell.

Gazdar, G., G. Pullum, R. Carpenter, T. Hukari, and R. Levine (1988). Category structures. Computa-

tional Linguistics 14, 1–19.

Groenink, A. (1997). Surface without Structure. Word Order and Tractability Issues in Natural Language

Analysis. Ph. D. thesis, University of Utrecht.

Klein, W. (1994). Time in Language. London: Routledge.

Kneer, M., A. Vicente, and D. Zeman (2017). Relativism about predicates of personal taste and perspec-

tival plurality. Linguistics and Philosophy 40, 37–60.

Kracht, M. (2003). Mathematics of Language. Berlin: Mouton de Gruyter.

Mel’cuk, I. (1993 – 2000). Cours de Morphologie Générale, Volume 1 – 5. Les Presses de l’Université

de Montréal.

Morrill, G. V. (2017). Grammar logicised: relativisation. Linguistics and Philosophy 40, 119–163.

Ogihara, T. (1996). Tense, Attitudes and Scope. Dordrecht: Kluwer.

Schlenker, P. (2003). A Plea for Monsters. Linguistics and Philosophy 26, 29–120.

Seki, H., T. Matsumura, M. Fujii, and T. Kasami (1991). On multiple context–free grammars. Theoretical

Computer Science 88, 191–229.

Vermeulen, K. F. M. (1995). Merging without mystery or: Variables in dynamic semantics. Journal of

Philosophical Logic 24, 405–450.

Zeevat, H. (1989). A compositional approach to Discourse Representation Theory. Linguistics and

Philosophy 12, 95–131.


	Introduction
	Semantic Structures
	Merge and Fusion
	Agreement
	Parameters
	Implementation
	Conclusion

