
A constrained graph algebra for semantic parsing with AMRs

Jonas Groschwitz∗† Meaghan Fowlie∗ Mark Johnson† Alexander Koller∗
∗ Saarland University, Saarbrücken, Germany † Macquarie University, Sydney, Australia

jonasg|mfowlie|koller@coli.uni-saarland.de
mark.johnson@mq.edu.au

Abstract
When learning grammars that map from sentences to abstract meaning representations (AMRs),

one faces the challenge that an AMR can be described in a huge number of different ways using
traditional graph algebras. We introduce a new algebra for building graphs from smaller parts, using
linguistically motivated operations for combining a head with a complement or a modifier. Using
this algebra, we can reduce the number of analyses per AMR graph dramatically; at the same time,
we show that challenging linguistic constructions can still be handled correctly.

1 Introduction

Semantic parsers are systems which map natural-language expressions to formal semantic representa-
tions, in a way that is learned from data. Much research on semantic parsing has focused on mapping
sentences to Abstract Meaning Representations (AMRs), graphs which represent the predicate-argument
structure of the sentences. Such work builds upon the AMRBank (Banarescu et al., 2013), a corpus in
which each sentence has been manually annotated with an AMR.

The training instances in the AMRBank are annotated only with the AMRs themselves, not with
the structure of a compositional derivation of the AMR. This poses a challenge for semantic parsing,
especially for approaches which induce a grammar from the data and thus must make this compositional
structure explicit in order to learn rules (Jones et al., 2012, 2013; Artzi et al., 2015; Peng et al., 2015).
In general, the number of ways in which an AMR graph can be built from its atomic parts, e.g. using
the generic graph-combining operations of the HR algebra (Courcelle, 1993), is huge (Groschwitz et al.,
2015). This makes grammar induction computationally expensive and undermines its ability to discover
grammatical structures that can be shared across multiple instances. Existing approaches therefore resort
to heuristics that constrain the space of possible analyses, often with limited regard to the linguistic
reality of these heuristics.

We propose a novel method to generate a constrained set of derivations directly from an AMR, but
without losing linguistically significant phenomena and parses. To this end we present an apply-modify
(AM) graph algebra for combining graphs using operations that reflect the way linguistic predicates
combine with complements and adjuncts. By equipping graphs with annotations that encode argument
sharing, AM algebra derivations can model phenomena such as control, raising, and coordination straig-
htforwardly. We describe a method to generate the AM algebra for an AMR in practice, and demonstrate
its effectiveness: e.g. for graphs with five nodes, our method reduces the number of candidate terms from
1017 to just 21 on average.

The paper is structured as follows. Section 2 reviews some related work and sets the stage for the
rest of the paper. Section 3 briefly reviews the HR algebra and its problems for grammar induction, and
then defines the AM algebra. In Section 4, we discuss a number of challenging linguistic phenomena
and demonstrate that AM algebra derivations can capture the intended compositional derivations of the
resulting AMRs. We explain how to obtain AM algebra derivations for graphs in the AMRBank in
Section 5. Finally, we show that in practice, we can indeed reduce the set of derivations while achieving
high coverage in Section 6.

2 Related work

swallow

chew

manner

snake

ARG0

prey

ARG1 ARG0

ARG1 -

polarity

poss

Figure 1: AMR of The
snake swallows its prey
without chewing.

This paper is concerned with finding the hidden compositional structure of
AMRs, the semantic representations annotated in the AMRBank (Banarescu
et al., 2013). AMRs are directed, acyclic, rooted graphs with node labels in-
dicating semantic concepts and edge labels indicating semantic roles, such as
arguments ARG0, ARG1, . . . and modifiers, such as manner and time.

An example is shown in Fig. 1.1 Here, snake is an ARG0 of both chew
and swallow, and prey is an ARG1 of swallow. Nodes can fill argument posi-
tions of multiple predicate nodes, not just because of grammatical phenomena
such as control, but also because of coreference (its prey), or because they are
pragmatically implied arguments (edge from chew to prey). An AMR’s root
represents a “focus” in the graph; the root is often the main predicate of the
sentence. In Fig. 1, the root is the swallow node. AMRs are “abstract” be-
cause they gloss over certain details of the syntactic realization. For example,
destruction of Rome and Rome was destroyed have the same AMR; among
others, tense and determiners are dropped.

The availability of the AMRBank has spawned much research on semantic
parsing into AMR representations. The work in this paper is most obviously connected to research that
models the compositional mapping from strings to AMRs with grammars – using either synchronous
grammars (Jones et al., 2012; Peng et al., 2015) or CCG (Artzi et al., 2015; Misra and Artzi, 2016). Not
all AMR parsers learn explicit grammars (Flanigan et al., 2014; Peng et al., 2017). However, we believe
that these, too, may benefit from access to the compositional structure of the AMRs, which the algebra
we present makes easier to compute.

The operations our algebra uses to combine semantic representations are closely related to those
of the “semantic algebra” of Copestake et al. (2001), which was intended to reflect universal semantic
combination operations for large-scale handwritten HPSG grammars. More distantly, the ability of our
semantic representations to select the type of its arguments echoes the use of types in Montague Grammar
and in CCG (Steedman, 2001), applied to graphs.

3 Algebras for constructing graphs

We start by reviewing the HR algebra and discussing some of its shortcomings in the context of grammar
induction. Then we introduce the apply-modify graph algebra, which tackles these shortcomings in a
linguistically adequate way.
Notation: For a given (partial) function f : A→ B, we writeD(f) ⊆ A for the set of values on which f
is defined and I(f) ⊆ B for its image. When convenient, we read functions as sets of input-output pairs,
so that e.g. ∅ denotes the partial function that is undefined everywhere. If f, g are (partial) functions, we
write f ◦ g for the function h such that h(a) = f(g(a)) for all a. If f is injective, we write f−1 for its
inverse (partial) function. We write f for the total function such that f(a) = f(a) if f(a) is defined and
f(a) = a otherwise. Finally, for an input value x ∈ D(f), we write f \ x for the function that is equal
to f except that it is undefined on x.

A Σ-algebra A = 〈A, (f)F∈Σ〉 is a structure in which terms over a signature Σ can be evaluated as
elements from the algebra’s domain A. Here, Σ is a ranked signature; that is, a set of symbols F ∈ Σ,
each of which is equipped with a rank ∈ N. Symbols of rank 0 are called constants. For each F ∈ Σ of
rank k, the algebra defines a function f : Ak → A; in particular, constants are interpreted as elements
of A. The functions may be partial; then A is called a partial algebra. We define the terms over Σ, TΣ,
recursively: all constants are terms, and if F ∈ Σ has rank n and t1, . . . , tn ∈ TΣ, then F(t1, . . . , tn) is

1Originally, AMR represents labels on nodes as labelled leaves, i.e. edges of cardinality 1. For readability, we write the
labels directly in the nodes, and refer to them as node labels in text. We also drop the predicate senses that AMR draws from
the OntoNotes project: In reality, e.g. the swallow node would be labelled swallow-01

APPO

Gtv[love] Gn[rose]

(a) AM term

fO

||

Gtv[love] renrt7→O

Gn[rose]

(b) HR term

����
��

�

����

�

����

(c) Gtv[love]

����
��

����
�

(d) renrt7→O

in Gn[rose]

����
��

�

����

����
�

����

(e) Merge c and d

����
��

�

����

����

����

(f) Forget O source

Figure 2: HR algebra derivation of loves a rose.

also a term. Such a term evaluates recursively to the value JtK = f(Jt1K , . . . , JtnK) ∈ A. Approaching
graphs algebraically allows us to examine the compositionality of graphs – how graphs can be built from
smaller graphs. For example, the terms in Figures 2a and 2b both describe the combining of the graphs
in Figures 2c and 2d to form the graph in Fig. 2f. We describe the operations used in these terms in the
following subsections.
Convention: To increase readability and since in this paper we focus on the functions and rarely refer
to a symbol itself, we will denote a function corresponding to a symbol with the symbol itself. I.e. we
will use the same notation for both symbol and associated function, not making the distinction between
F and f as in the definition above. But as a general principle in this paper, this common notation always
refers to the function in text and definitions, and to the symbol in terms such as in Figures 2a and 2b.

3.1 S-graphs and the HR algebra love
rt

prince

ARG0

rose

ARG1

(a) AMR

fX

||

||

renrt 7→X

Nrose

||

EARG1 renX 7→rt

frt

||

renX7→rt,rt 7→X

EARG0

Nprince

Nlove

(b) HR term

Figure 3: AMR generated by
linguistically bizarre HR term

A standard algebra for the theoretical literature for describing graphs
is the HR algebra of Courcelle (1993). It is very closely related to
hyperedge replacement grammars (Drewes et al., 1997), which have
been used extensively for grammars of AMR languages (Chiang et al.,
2013; Peng et al., 2015), and Koller (2015) showed explicitly how to
do compositional semantic construction using the HR algebra.

The objects of the HR algebra are s-graphs G = (g, S), consisting
of a graph g (here, directed and with node and edge labels) and a par-
tial function S : S V , which maps sources from a fixed finite set
S of source names to nodes of g. Sources thus serve as external, inter-
pretable names for some of the nodes. If we have S(a) = v, then we
call v an a-source of G. An example of an s-graph with a root-source
(rt) and a subject-source (S) is shown in Fig. 2f. Sources are marked in
diagrams as red node labels.

The HR-algebra serves as a compositional algebra for graphs be-
cause it includes an operation merge which connects two graphs at the
nodes that share source names. The algebra evaluates terms from a
signature which, in addition to constants for s-graphs, contains three
further types of function symbols. The merge operation ||, of rank two,
combines two s-graphs G1 and G2 into a new s-graph G′ that contains
all the nodes and edges of G1 and G2. If G1 has an a-source u and G2

has an a-source v, for some source name a, then u and v will be map-
ped to the same node inG′, taking with it all the edges into and out of u
and v. We will usually write || in infix notation. The rename operation
ren{a1 7→b1,...,an 7→bn}, of rank one, renames the sources of an s-graph; if
the node u was an ai-source before the rename, it becomes a bi-source.
Finally, the forget operation fa, of rank 1, removes the entry for source
a from S, i.e. the resulting s-graph no longer has an a-source.

An example for a term of the HR algebra is shown in Fig. 2b. This term uses the constants Gtv[love]
(Fig. 2c) andGn[rose], which are evaluated by replacing the node label “∗∗” in the graphsGtv andGn in

Fig. 4 with “love” and “rose”, respectively. The term renames the rt-source of Gn[rose] to an O-source
(Fig. 2d). Thus when the result is merged with Gtv[love], the “rose” label is inserted into the object
position of the verb (Fig. 2e). Finally, we forget the O-source, yielding the s-graph in Fig. 2f.

The operations of the HR algebra are rather fine-grained, and can be combined flexibly. This is
an advantage when developing grammars using the HR algebra by hand (Koller, 2015), but makes the
automatic induction of grammars from the AMRBank expensive and error-prone. Groschwitz et al.
(2015) show that with more than three sources, the problem becomes quite extreme, and that with such
few sources available, one must use constants of only one or two nodes. Following the experimental
setup of Groschwitz et al. (2015), Nrose, Nprince and Nlove in Figure 3b evaluate to labelled nodes with a
rt-source, and EARG0 and EARG1 evaluate to single edges with a rt-source at their source and an X-source
at their target. Using these constants and just the two sources rt and X, there are already 3584 terms over
the HR algebra which evaluate to the (quite small) s-graph in Fig. 3a.

This set of terms is riddled with spurious ambiguity and linguistically bizarre analyses, such as the
term shown in Fig. 3b. Two strange aspects of this example are: one, prince becomes an X-source by
first switching X and rt and then switching them back; this step is unnecessary and inconsistent with
the corresponding process for rose here. Two, prince and rose are combined with empty argument
connectors before love finally is inserted as the predicate, despite these roles being originally defined in
love’s semantic frame.

Not only does this make graph parsing computationally expensive (Chiang et al., 2013; Groschwitz
et al., 2015), it also makes grammar induction difficult. For example, Bayesian algorithms sample
random terms from the AMRBank and attempt to discover grammatical structures that are shared across
different training instances. When the number of possible terms is huge, the chance that no two rules
share any grammatical structure increases, undermining the grammar induction process. Existing sys-
tems therefore apply heuristics to constrain the space of allowable HR terms. However, these heuristics
are typically ad-hoc, and not motivated on linguistic grounds. Thus there is a risk that the linguistically
correct compositional derivation of an AMR is accidentally excluded.

3.2 The apply-modify graph algebra

Figure 4: Lexicon. ** can be replaced by a label of the right category. Examples: Gtv: love, Giv: sleep; Gunacc:
relax; Gmod: red; Gn: prince,rose,sheep,pilot; Gscv: want; Gocv: persuade; Gc-[s]: and (seeking operands of type
[S]). rt stands for root, S for subject, O for object, and mod for modifier.

Upon closer reflection, the structure of the HR term in Fig. 2b is not arbitrary. Many semantic theories
assume that two key operations in combining semantic representations compositionally are application
(i.e., the combination of a predicate with a complement) and modification. The term in Fig. 2b simply
spells out application for the O-argument of “love”: The root of “rose” is inserted into the O-argument-
slot, and afterwards we forget the O-source since the slot has been filled. Here we define the apply-modify
(AM) graph algebra, which replaces the rename-merge-forget operation sequences of the HR algebra
with operations that directly model application and modification. In this way, we constrain the set of
possible terms for each graph, while preserving linguistically motivated compositional structures. For
instance, there will be no equivalent for the term in Fig. 3b.

Apps

Appo
s

Gscv[want]
s,o[s]

Gunacc[relax]
s

Gn[sheep]

(a) Term

want
rt

relax

ARG1

sheep

ARG0

ARG1

(b) AMR

Figure 5: Subject control The sheep wants to relax

APPO2

S,O

Gocv[persuade]
S,O ,

O2[S][S 7→O]

Giv[go]
S

(a) Term

persuade
rt

S

ARG0

O

ARG1

go

ARG2

ARG0

(b) AMR

Figure 6: Object control: persuade to go

3.2.1 Application

We first define the apply operation APPα, where α is a source name. In the simple case of Fig. 2a, APPO

renames the rt-source of its second argument G2 to O, merges the result with the first argument G1, and
then forgets O – just as in the HR term in Fig. 2b, but with a single algebra operation.

In this simple case, G2 was complete; its only source was rt. However, in certain cases, we want to
combine a predicate with an argument that is itself still looking for arguments. Take the graph in Fig. 5b
for example, corresponding to the sentence “the sheep wants to relax”, where the sheep is both the wanter
and the relaxer. For the subject control verb want, we use the lexicon entry Gscv[want] of Fig. 4. Its
O source is annotated with the argument type S (written O[S]). This means that Gscv[want] requires
its object argument to contain an S-source; during application this node is merged with the S-source of
Gscv[want] itself. This yields a graph with an (undirected) cycle, that is, a graph that is not a tree.

We also allow annotations for renaming sources, in order to model phenomena such as object control
verbs, as in “the prince persuaded the sheep to sleep” (see Fig. 6a-b). Here, sheep is both the subject of
sleep and the object of persuade. We can handle this with the graph for Gocv[persuade] in Fig. 4, that
features an O2-source which is annotated as O2[S][S 7→O]. This O2-source must be filled by a graph G2

that still has an S-source, which is renamed to an O-source during application, and thus merged with the
O-source of persuade. This yields the structure shown in Fig. 6b. To capture these intuitions formally,
we present the following definitions.

Definition 3.1 (Graph types (TY)). A graph type is a pair τ = (T,R) of a function T : S → TY,
where S ⊆ S is a set of source names, that assigns a graph type to each source, and a function
R : S → {r : S S | r partial, injective} that annotates each source with a renaming function. R
may only rename sources T requires , i.e. we demand ∀T (α) = 〈T ′, R′〉, D(R(α)) ⊆ D(T ′). We say
that S is the domain of τ . Intuitively, the graph type τ provides annotations for all source names in S.

Definition 3.2 (Annotated s-graph (as-graph)). An annotated s-graph (as-graph) is a pair G = 〈G, τ〉
of an s-graph G = (g, S) that contains a “root” source (i.e. rt ∈ D(S)) and a graph type τ ∈ TY with
domain S \ {rt}. We write AS for the set of all as-graphs.

Our notation, as seen in the above examples, follows the pattern α[T (α)][R(α)] for a source α and
its annotation, but we simplify it and drop empty types and functions. For example, the notation O in
Gtv[love] indicates that T (O) = (∅, ∅) and R(O) = ∅. The notation O[S] in Gscv[want] indicates that
T (O) = ({S 7→ (∅, ∅)}, {S 7→ ∅}) and R(O) = ∅. That is, we require the argument to have an S-
source that itself is not further annotated, and we do not rename it. Finally, the notation O2[S][S 7→O] in
Gocv[persuade] indicates that similarly T (O2) = ({S 7→ (∅, ∅)}, {S 7→ ∅}), but nowR(O2) = {S 7→ O},
signalling the rename.

Definition 3.3 (Apply operation (APP)). Let G1 = ((g1, S1), (T1, R1)), G2 = ((g2, S2), (T2, R2)) be
as-graphs. Then we let APPα(G1,G2) = ((g′, S′), (T ′, R′)) such that

(g′, S′) = fα((g1, S1) || ren{rt 7→α}(renR1(α)((g2, S2))))

T ′ = (T1 \ {α}) ∪ (T2 ◦R1(α)−1)

R′ = (R1 \ {α}) ∪ (R2 ◦R1(α)−1)

if and only if

1. G1 actually has an α-source to fill, i.e. α ∈ D(T1),
2. G2 has the type α is looking for, i.e. T1(α) = (T2, R2), and
3. T ′, R′ are well-defined (partial) functions;

otherwise APPα(G1,G2) is undefined.

The interpretation is just as discussed at the start of Section 3.2 above: we apply all renamings
required by R1 to (g2, S2), we rename the root to α, we merge the graphs, and then we forget α. The
type of the output graph, (T ′, R′), is defined such that the source we just filled, α, is removed, and the
renaming function of G1 at α is applied to the domains of T2 and R2, so that any requirements G2 had on
its arguments are properly carried over into the new renamed graph. Conditions 1 and 2 ensure that the
operation matches the intuition behind the source annotations. Condition 3 guarantees that there are no
conflicts in the remaining source annotations of the two graphs. Note that since T1(α) equals the type
(T2, R2) if Condition 2 holds, the type (T1, R1) can then alone guarantee Condition 3. Observe that the
term in Fig. 2a generates the as-graph in Fig. 2f; in both Figures 5 and 6, the term in (a) generates the
graph in (b).

3.2.2 Modification

MODMOD

Gn[rose] Gmod[red]
MOD

(a) AM term

||

Gn[rose] renMOD 7→rt

frt

Gmod[red]

(b) HR term

rose
rt

red

mod

(c) AMR

Figure 7: Modification: a red rose

We further define a modify operation MODα,
which models modification of its first argument
G1 by its second argument G2. An example of
using MODMOD to construct an as-graph for “red
rose” is shown in Fig. 7, where the modify ope-
ration captures the HR term in Fig. 7b: We for-
get the rt-source of the as-graph Gmod[red]; re-
name its MOD-source to rt; and then merge it with
Gn[rose]. That is, we shift the rt-source of the modifer G2 to the unlabelled MOD-source and attach it at
the root of G1. This yields the AMR in Fig. 7c. Unlike in the apply case, we can repeat this modification
operation as many times as we like: no sources of G1 are forgotten.

Definition 3.4 (Modify operation (MOD)). In general, we define the modify operation for a source α
as follows. Again, let G1 = ((g1, S1), (T1, R1)), G2 = ((g2, S2), (T2, R2)) be as-graphs. Then we let
MODα(G1,G2) = ((g′, S′), (T1, R1)) such that

(g′, S′) = (g1, S1) || ren{α 7→rt}(frt((g2, S2)))
if and only if

1. α ∈ D(τ2), i.e. G2 has an α source,
2. T2(α) = (∅, ∅), i.e. G2 does not have complex expectations at α, and
3. T2 \ α ⊆ T1 and R2 \ α ⊆ R1, i.e. any remaining sources and annotations in G2 are already in G1;

otherwise it is undefined.

Again, the s-graph evaluation and Condition 1 are straightforward. Modification is more restricted
then application, and we demand that the modifier does not change the modifiee’s type (Condition 3).
We do however allow additional sources in G2 to merge with existing ones of G1. For example, when
chew would modify swallow to create the graph in Fig. 1 (“without chewing”), their subject and object
would merge. Condition 2 avoids using e.g. the control structure of Gscv[want] for modification.

We conclude this section by defining the apply-modify graph algebra (AM algebra) as an algebra
whose domain is the set of all as-graphs. In addition to constants (which evaluate to as-graphs), the
AM algebra’s signature contains the symbols APPα (of rank 2) and MODα (of rank 2). The associated
functions are the ones just defined.

4 Linguistic Discussion

The AM algebra restricts the derivations for a given AMR. The danger, then, is that we could lose all
derivations for an AMR, making it unparseable, or that the terms we are left with are not linguistically
reasonable. In this section, we show we find reasonable terms for a range of challenging examples. A
quantitative analysis of the amount of graphs in the AMRBank for which we can find a decomposition is
provided in Section 6.

Apps

Appo
s

Gscv[want]
s, o[s]

Appop2
s

Appop1
op2[s]

Gc−[s][and]
op1[s]
op1[s]

Giv[sleep]
s

Gunacc[relax]
s

Gn[sheep]

(a) Term

���
��

�����

���

�����

���

�

���� ����

(b) sleep and
relax

want
rt and

ARG1

sheep

ARG0 sleep

op1

relax

op2

ARG0 ARG1

(c) The sheep wants to
sleep and relax.

Figure 8: Conjoining intransitive verbs

We have already seen how to
derive simple argument application,
modification, and control constructi-
ons. APP is designed explicitly to
parallel for example beta-reduction
in lambda calculus, and syntactic
operations such as forward and
backward application in categorial
grammars or endocentric context-
free rules. The two arguments of the
function combine in such a way that
one is in a sense inserted into the ot-
her, and the operation is only per-
mitted if the types are correct. In an
AM-algebra, APPα is only allowed
if the first argument’s type includes the source α, and the second argument’s type is T1(α), and the result
is a graph in which the first argument keeps its original root, and the second graph is inside the first. MOD

is designed to parallel for example modification of phrases by phrases in a context-free grammar, or mo-
dification as X/X categories in categorial grammars: the type of the modifier is a subset of the modified
graph, so that modification has no effect on the type of the modified graph, and the modification happens
at the root. Modification can also derive control in secondary predicates that modify the verb phrase and
link an argument to an argument of the verb. For example, to derive (1), the graph for without dreaming
modifies Giv[sleep] while both have an open S-source.

(1) The princei slept [without [i dreaming]]

4.1 Coordination

Coordination is a source of re-entrancies in AMRs. For example, when two verb phrases are conjoined,
as in (2-a), their subjects must co-refer. Objects can also co-refer in English, as in (2-b). Control verbs,
which already have re-entrencies of their own, can be conjoined, as in (2-c). Even subject- and object-
control verbs can be conjoined if the object control verb is in the passive (2-d).

(2) a. The princei i sang and i danced
b. The princei i grew j and i loved j a rosej
c. The sheepi i wanted and i needed i to relax
d. The princej wanted j to gov , or j was persuaded j to v .
e. The rosei [asked j v] and i [persuaded the Princej to stayv].

Coordination is generally observed to be between like things; for us this mean the arguments have the
same type. For example, in Fig. 8, we choose an and that chooses arguments that are missing their subject
– it has annotated sources OPi[S]. When Giv[sleep] and Gunacc[relax] merge, so do their subjects. In this
way, the graph for sleep and relax can be selected by a control verb,Gscv[want], merging its subject with
theirs. Similarly, for example (2-e), ask and persuade are conjoined by a conjunction and which is look-
ing for two object-control verbs; that is, and has type {OP1[S,O,O2[S][S 7→O]], OP2[S,O,O2[S][S 7→O]]}.

There is nothing in the algebra that principally prevents coordination of graphs with different ty-
pes; however, we restrict our lexicon to constants for coordination nodes that expect like types in their

arguments – we do this in our implementation in Section 5.

4.2 Relative Clauses

Relative clauses are unusual in that one of the arguments of a modifier is the very thing it is modifying.
For example, in (3-a), the relative clause that relaxed has sheep as the subject of relax, and that relaxed
modifies sheep. To capture this, we include MODS and MODO in our repertoire. For a subject relative we
make the subject into the root and use it to modify sheep, as in Figure 9.

(3) a. [The sheepi [that i relaxed]] i slept
b. [The asteroidi that the pilot thought the prince visited i] is tiny

Apps

Giv[sleep]
s

mods

|

Gn[sheep] Gunacc[relax]
s

(a) Term

relax
rt

S

ARG1

(b) Gunacc[relax]

sheep
rt

(c) Gn[sheep]

relax

sheep
rt

ARG1

(d) MODS

sleep
rt

S

ARG0

(e) sleep

sheep

sleep
rt

ARG0

relax

ARG1

(f) APPS

Figure 9: Relative Clause: The sheep that relaxed slept

modo

Gn[asteroid] modo

o

Apps
o

Gtv[visit]
s,o

Gn[prince]

Apps
o

Gtv[think]
s,o

Gn[pilot]

Figure 10: the asteroid the pilot thinks the
prince visited

An unboundedly embedded argument can be relativised
on, as in (3-b). We handle these the same way they are hand-
led in Tree Adjoining Grammars: by relativising on the clau-
sal argument slot (Fig.10).

5 Decomposing AMRs with the AM alge-
bra

At this point, we have defined the AM algebra – as a more
constrained algebra of graphs than the HR algebra – and
shown the adequacy of the apply and modify operations for
a number of nontrivial linguistic examples. We will now show how to enumerate AM terms that evaluate
to a given graph, e.g. an AMR in the AMRBank. As indicated above, this is a crucial ingredient for
grammar induction.

The first step in decomposing a graph G in this way is to select the constants for as-graphs that
we will use in the AM algebra – i.e., “atomic” as-graphs such as those in Fig. 4. During grammar
induction, we have no grammar or lexicon to draw from, so we will use heuristic methods to extract
constants from G. Throughout, we assume that G is an AMR, and we will use a fixed set of sources
S = {rt, S, O, O2, . . . , O9,MOD, POSS, DOMAIN} ∪ {OPx | opx edge label occurs in the corpus}.

5.1 Constants and their types love
rt

prince

ARG0

rose

ARG1

(a) G

prince
rt

(b) sprince

rose
rt

(c) srose

love
rt

S

ARG0

O

ARG1

(d) slove-active

love
rt

S

ARG1

O

ARG0

(e) slove-passive

Figure 11: (a) An AMR G; (b)-(e) the constants we obtain

We start by cutting G up into the
subgraphs that will serve as graph
backbones of the constants. We
do this by splitting G into blobs.
A blob consists of a main labeled
node and its blob edges, which are
the node’s outgoing edges with an
ARGx, opx, sntx (x ∈ N), domain, poss or part label, and its incoming edges with any other label. Blobs

defined in this way uniquely partition an AMR’s edge set. An example of an AMR’s blobs is shown in
Fig. 1, where the blobs are distinguished by colour. For example, the chew blob is the red subgraph, in-
cluding unlabelled nodes where ever a red edge touches a non-red node. These unlabelled endpoints are
its blob-targets. We will construct a set of constants for each blob, such that the value of each constant
is an as-graph whose graph component is the blob. The main node of the blob will be the rt-source. It
remains to assign source names to the blob-targets and annotate them with types and renaming functions.
The different choices of annotated source names constitute the different constants for this blob.

5.1.1 Source names

We heuristically assign (syntactic) source names from S to the blob-target nodes based on the edge label
of their adjacent edge in the blob. Let v be a node. Canonically, we use the following edge-to-source
mapping E2S to determine sources for v’s blob-targets: For most nodes v, E2S maps ARG0 to S; ARG1
to O and other ARGx to Ox; poss and part to POSS; sntx, opx and domain to themselves; and all other
edges to MOD. Exceptionally, if v has a node label that is a conjunction2 and at least two outgoing ARGx
edges, we map ARGx to OPx instead. E2S determines the canonical target-to-source mapping bv, which
assigns a source to each blob-target u: if the edge between v and u has label e, bv(u) = E2S(e). When
decomposing the graph in Figure 11a, looking at the love node as v, this gives us the constant in Figure
11d.

A given blob may generate more than one constant, each with different sources on different nodes;
accordingly, for each node v in G, we collect a set B(v) of such target-to-source mappings. B(v)
contains the canonical mapping bv, and we generate further target-to-source mappings by applying a
fixed set of lexical rules to bv. The passive rule switches S with any O, and object promotion maps Oi
to Oi−1 (let O0=O). We allow all results of such mappings with at most one use of passive that have no
duplicate source names. For example, the constant in Figure 11e is a result of the passive rule. For each
mapping in B(v), we create a constant with the respective sources and trivial types.

5.1.2 Annotations want
rt

S

ARG0

O

ARG1

(a) trivial types

want
rt

S

ARG0

O[S]

ARG1

(b) non-trivial types

Figure 12: Possible source assign-
ments for the want constant for the
graph in Figure 5b.

We can also use these target-to-source mappings to extract con-
stants that have sources with non-trivial argument types and re-
naming functions. Consider the subject-control AMR in Fig. 5b
in section 3.2.1 above. So far, we obtain the constant in
Fig. 12a, but we also want to generate the constant Gscv[want]
in Fig. 12b; i.e. determine the S entry in T (O). Writing vwant,
vsheep, and vrelax for the want, sheep, and relax nodes of the
graph in 5b, note that it is the ARG1 edge from vrelax to vsheep
that signals the control structure. That is, vwant has a blob-target
vrelax, and the two share a common blob-target vsheep. For such a triangle structure, we consider any
target-to-source mappings mw ∈ B(vwant) and mr ∈ B(vrelax). We then add a constant for vwant
which as before uses the source names of mw, but now the annotation of mw(vrelax) has an entry for
mr(vsheep), anticipating the open source coming from the vrelax constant. We add a rename annotation
[mr(vsheep) 7→mw(vsheep)] if necessary. That is, we set up the annotation in the vwant constant such that
when we apply it to a vrelax constant that has sources according to mr, we obtain the structure we found
in the graph. Take for example mw = {vrelax 7→ O, vsheep 7→ S} and mr = {vsheep 7→ S}.3 In this
case, mw(vsheep) = mr(vsheep) = S, therefore no rename is necessary and we obtain the constant of
Figure 12b. If we choose mr = {vsheep 7→ O} instead, we obtain a constant for the vwant blob where
the O source is annotated O[O][O 7→S]. In this graph, this is not particularly meaningful from a linguistic
perspective, but in other graphs this principle allows us to generate e.g. the object control structure of

2According to the AMR documentation, these are and, or, contrast-01, either and neither.
3Since relax is an unaccusative verb, its sole argument is semantically an object (ARG1) but we can treat it as a syntactic

subject by choosing the passive mapping, which promotes the object to subject.

Gocv[persuade]. To ensure that we recover the correct constant, we simply add constants for all choices
of mw ∈ B(vwant) and mr ∈ B(vrelax).

Let us now find the constants for the and node in Fig. 8b. Our algorithm restricts constants to
coordination of like types. In the intended AM term, shown in Fig. 8a, we first coordinate relax and
sleep before we apply the result to the common argument sheep. To generate the constant for and, we
consider maps ms ∈ B(vsleep) and mr ∈ B(vrelax), where vsleep and vrelax are the nodes labelled sleep
and relax respectively. The sheep node vsheep is a blob-target of both vsleep and vrelax. If additionally the
target-to-source maps agree, e.g. ms(vsheep) = mr(vsheep) = S, we add a new constant for the and blob
where both T (OP1) and T (OP2) have an S entry. This yields Gc−[s][and] as depicted in Fig. 4. For the
case where ms(vsheep) = S but mr(vsheep) = O, we do not create a new constant. Again, we take all
combinations of choices for ms and mr into account. We never rename for coordination.

Similar patterns allow us to find possible raised subjects for raising constructions, and to handle
coordination of control verbs. Using these patterns recursively, we can handle nested control, coordi-
nation and raising constructions. For example in Fig. 8c, finding the sheep node as a common target in
coordination allows us to generate Gscv[want] analogously to Fig. 5b.

In sum, we obtain types and renaming functions that cover a variety of phenomena, in particular the
ones described in Section 4.

5.2 Coreference

In the AMRBank annotations, the same node can become the argument of multiple predicates in two
very different ways: because the grammar specifies it (as with control, (4-b)), and through accidental
coreference (4-a).

(4) a. Maryi thinks shei/j’s a genius
b. Maryi wants i to be a genius

Because accidental coreference is not a compositional phenomenon, we add an extra mechanism for
handling it. We follow Koller (2015) in introducing special sources COREF1, COREF2,. . . ,COREFn for
some maximal n ∈ N. We add variants of the previously found constants with a COREF source at their
root. We further add constants consisting of a single unlabelled node, which is both a rt-source and a
COREF-source. The COREF sources are never annotated and are ignored in the types. They are never
forgotten, and each can therefore be used only on one node in the derivation. Two COREF sources with
the same index will be automatically merged together during the usual APP and MOD operations, due to
the semantics of the underlying merge operation of the HR algebra.

COREF sources increase runtimes and the number of possible terms per graph significantly (see
Section 6), and thus we limit the number of COREF sources to zero to two in practice.

5.3 Obtaining the set of terms

We can compactly represent the set of all AM terms that evaluate to a given AMR G in a decomposi-
tion automaton (Koller and Kuhlmann, 2011), a chart-like data structure in which shared subterms are
represented only once. We can enumerate the terms from this automaton.

To enumerate all rules of the decomposition automaton, we explore it bottom-up, with Algorithm 1.
We first find all constants for G in Line 2, as described in Section 5.1, and then repeatedly apply APP

and MOD operations (Lines 3 onward; the set O contains all relevant APP and MOD operations). The
constants and the successful operation applications are stored as rules in the automaton.

To ensure that the resulting terms evaluate to the input graphG, we use subgraphs ofG as states – like
one uses spans in string parsing. This is paired with additional constraints, for example in APPα(s, s′),
the root of s′ must be the same node of G as the α-source node in s. These additional constraints are as
described in Groschwitz et al. (2015), when interpreting the AM operations as terms of the HR algebra
(c.f. Section 3.2); plus the constraint that a rt-source at the root node of G may not be renamed or
forgotten. These constraints are the analogue of only combining neighbouring spans in string parsing.

Algorithm 1 Agenda-chart-algorithm

1: init chart, agenda empty
2: add constants to agenda
3: while agenda not empty do
4: pull subgraph s from agenda
5: for operation o ∈ O do
6: for subgraph s′ in chart do
7: if o(s, s′) allowed then
8: add o(s, s′) to agenda
9: end if

10: if o(s′, s) allowed then
11: add o(s′, s) to agenda
12: end if
13: end for
14: end for
15: add s to chart
16: end while

Let us decompose the graph G in Figure 11a as an example.
Let us call the nodes labelled “love”, “prince”, and “rose” vlove,
vprince and vrose respectively. In Line 2, we add the subgraphs
of Fig. 11(b-e) to the agenda. Say we first pull srose from the
agenda – since the chart is empty at this point, no operation is
applicable. Say we pull slove-active next, and try to combine it
with the items in the chart – just srose at this point. If we try
to apply APPS, we realize that this tries to fill the node vprince
of slove-active, but the root of srose is vrose. Thus, the operation
fails. (Trying APPS with srose as the left and slove-active as the
right child fails immediately since srose has no S-source). MODS

fails similarly. However, APPO succeeds – both the O-source in
slove-active and the rt-source in srose are at vrose – and produces the
graph in Fig. 2f. MODO fails, since it would involve forgetting
rt at vlove, and the root of the full graph must be preserved. We
therefore add the result of APPO to the agenda and move on.

To explore the possibilities for combining as-graphs effi-
ciently, we do not iterate over all graphs in Line 6, but for each operation use an indexing structure based
on source nodes and types.

Note that the operations in the automaton are restricted by the AM algebra’s type system. Therefore,
selecting the correct constants as in Section 5.1 is critical to obtaining the desired derivations. We do
obtain all the terms in the examples in this paper in practice.

6 Evaluation

We conclude by analyzing whether the AM algebra achieves our goal of reducing the number of possible
terms for a given AMR, compared to the HR algebra. Both algorithms are implemented and available
in the Alto framework4. For the HR algebra, we use the setup of Groschwitz et al. (2015): Constants
consist of single labeled nodes and single edges, and they are combined using the operations of the HR
algebra. We use an HR algebra with two source names (HR-S2) and one with three source names (HR-
S3); this has an impact on the set of graphs that can be analyzed and on the runtime complexity. For the
AM algebra, we use the method of Section 5 with different numbers of allowed COREF sources (AM-
C0, AM-C1, AM-C2 for 0, 1, 2 COREF sources respectively). We use all graphs of the LDC2016E25
training corpus with up to 50 nodes, for a total of 35685 graphs.

0 10 20 30 40 50

1e
+

00
1e

+
04

1e
+

08
1e

+
12

node count

nu
m

be
r

of
 te

rm
s

AM−C0
AM−C1
AM−C2
HR−S2
HR−S3

a

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

node count

co
ve

ra
ge

AM−C0
AM−C1
AM−C2
HR−S2
HR−S3

b

0 10 20 30 40 50

1
5

10
50

50
0

node count

ru
nt

im
e

[m
s]

AM−C0
AM−C1
AM−C2
HR−S2
HR−S3

c

Figure 13: Number of terms per AMR (a), coverage (b) and runtimes (c).

Coverage. Consider first the coverage of the different graph algebras, i.e. the proportion of graphs
of a given size for which we find at least one term, shown in Fig. 13b as a function of the graph size.
As expected, coverage goes up as the number of source nodes (for HR) and COREF nodes (for AM)

4bitbucket.org/tclup/alto

bitbucket.org/tclup/alto

increases. The coverage of AM-C0 is higher than that of HR-S2 because HR-S2 can only analyze
graphs of treewidth 1, i.e. without (undirected) cycles, whereas AM-C0 can handle local re-entrancies
e.g. from control constructions through the type annotations. For example, the AMRs in Fig. 5b,6b can
be decomposed by AM-C0 and HR-S3, but not HR-S2. The highest coverage is achieved by AM-C2.

Number of terms. We now turn to the (geometric) mean number of terms each algebra assigns
to those graphs of a given size that it can analyze (Fig. 13a). We find that the AM algebras achieve a
dramatic reduction in the number of terms, compared to the HR algebras: Even the high-coverage AM-
C2 has much fewer terms than the very low-coverage HR-S2 (note the log-scale on the vertical axis). As
an example, switching from HR-S2 to AM-C0 reduces the number of terms for the graph in Fig. 3a from
3584 to 4 (they differ in active vs passive, and order of application). For 5 nodes, the average for HR-S3
is 1017 terms, and for AM-C2 just 21. This reduction has multiple reasons: we can use larger constants
in the AM algebra, and the graph-combining operations of the AM algebra are much more constrained.
Further, the type system and carefully chosen set of constants restrict application and modification.

Note that just because an algebra can find some term for an AMR does not necessarily mean that it
makes sense from a linguistic perspective (cf. Fig. 3b). Conversely, by reducing the set of possible terms,
there is a risk that we might throw out the linguistically correct analysis. By choosing the operations of
the AM algebra to match linguistic intuitions about predicate-argument structure, we have reduced this
risk. We leave a precise quantitative analysis, e.g. in the context of grammar induction, for future work.

Runtime. We finish by measuring the mean runtimes to compute the decomposition automata
(Fig. 13c). Once again, we find that the AM algebra solidly outperforms the HR algebra. The runti-
mes of HR-S3 are too slow to be useful in practice, whereas even the highest-coverage algebra AM-C2
decomposes even large graphs in seconds. Moreover, the runtimes for AM-C1 are faster than even for
the very low-coverage HR-S2 algebra.

The previously fastest parser for graphs using hyperedge replacement grammars was the one of
Groschwitz et al. (2016), which used Interpreted Regular Tree Grammars (IRTGs) (Koller and Kuhl-
mann, 2011) together with the HR algebra. Because we have seen how to compute decomposition auto-
mata for the AM algebra in Section 5, we can do graph parsing with IRTGs over the AM algebra instead.
The fact that decomposition automata for the AM algebra are smaller and faster to compute promises a
further speed-up for graph parsing as well, making wide-coverage graph parsing for large graphs feasible.

7 Conclusion

In this paper, we have introduced the apply-modify (AM) algebra for graphs. The AM algebra replaces
the general-purpose, low-level operations of the HR algebra by high-level operations that are specifically
designed to combine semantic representations of syntactic heads with arguments and modifiers. We have
demonstrated that the AM algebra dramatically reduces the number of terms for given AMR graphs,
while supporting natural analyses of a number of challenging linguistic phenomena.

With this work we have laid the foundation for automatically inducing grammars that can map com-
positionally between strings and AMRs while using linguistically meaningful graph-combining opera-
tions. Our immediate next step will be to use the AM algebra for this purpose. On a more theoretical
level, while the algebra objects differ greatly, the similarity of the signature of the AM algebra with that
of the “semantic algebra” of Copestake et al. (2001) is striking. We will explore this connection, and
investigate whether a universal signature for a semantic construction algebra can be defined.

8 Acknowledgements

We thank the anonymous reviewers for their comments. We would also like to thank Christoph Teich-
mann, Antoine Venant and Mark Steedman for helpful discussions. This work was supported by the DFG
grant KO 2916/2-1, and a Macquarie University Research Excellence Scholarship for Jonas Groschwitz.

References

Artzi, Y., K. Lee, and L. Zettlemoyer (2015). Broad-coverage ccg semantic parsing with amr. In Procee-
dings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1699–1710.

Banarescu, L., C. Bonial, S. Cai, M. Georgescu, K. Griffitt, U. Hermjakob, K. Knight, P. Koehn, M. Pal-
mer, and N. Schneider (2013). Abstract Meaning Representation for sembanking. In Proceedings of
the 7th Linguistic Annotation Workshop and Interoperability with Discourse.

Chiang, D., J. Andreas, D. Bauer, K. M. Hermann, B. Jones, and K. Knight (2013). Parsing graphs with
hyperedge replacement grammars. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics.

Copestake, A., A. Lascarides, and D. Flickinger (2001). An algebra for semantic construction in
constraint-based grammars. In Proceedings of the 39th ACL.

Courcelle, B. (1993). Graph grammars, monadic second-order logic and the theory of graph minors. In
N. Robertson and P. Seymour (Eds.), Graph Structure Theory, pp. 565—590. AMS.

Drewes, F., H.-J. Kreowski, and A. Habel (1997). Hyperedge replacement graph grammars. pp. 95–162.

Flanigan, J., S. Thomson, J. Carbonell, C. Dyer, and N. A. Smith (2014). A discriminative graph-based
parser for the abstract meaning representation. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 1426–1436.

Groschwitz, J., A. Koller, and M. Johnson (2016). Efficient techniques for parsing with tree automata.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.

Groschwitz, J., A. Koller, and C. Teichmann (2015). Graph parsing with S-graph Grammars. In Pro-
ceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing.

Jones, B., J. Andreas, D. Bauer, K.-M. Hermann, and K. Knight (2012). Semantics-based machine
translation with hyperedge replacement grammars. In Proceedings of COLING.

Jones, B. K., S. Goldwater, and M. Johnson (2013). Modeling graph languages with grammars extracted
via tree decompositions. In Proceedings of the 11th International Conference on Finite State Methods
and Natural Language Processing, pp. 54–62.

Koller, A. (2015). Semantic construction with graph grammars. In Proceedings of the 11th International
Conference on Computational Semantics, pp. 228–238.

Koller, A. and M. Kuhlmann (2011). A generalized view on parsing and translation. In Proceedings of
the 12th International Conference on Parsing Technologies.

Misra, D. K. and Y. Artzi (2016). Neural shift-reduce ccg semantic parsing. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing.

Peng, X., L. Song, and D. Gildea (2015). A synchronous hyperedge replacement grammar based appro-
ach for amr parsing. In Proceedings of the 19th Conference on Computational Language Learning,
pp. 32–41.

Peng, X., C. Wang, D. Gildea, and N. Xue (2017). Addressing the data sparsity issue in neural AMR
parsing. In Proceedings of the 15th EACL.

Steedman, M. (2001). The Syntactic Process. Cambridge, MA: MIT Press.

	Introduction
	Related work
	Algebras for constructing graphs
	S-graphs and the HR algebra
	The apply-modify graph algebra
	Application
	Modification

	Linguistic Discussion
	Coordination
	Relative Clauses

	Decomposing AMRs with the AM algebra
	Constants and their types
	Source names
	Annotations

	Coreference
	Obtaining the set of terms

	Evaluation
	Conclusion
	Acknowledgements

