
Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW 2017), pages 107–116,
Gothenburg, Sweden, 22 May 2017.

From Universal Dependencies to Abstract Syntax

Aarne Ranta
University of Gothenburg
aarne@chalmers.se

Prasanth Kolachina
University of Gothenburg

prasanth.kolachina@gu.se

Abstract

Abstract syntax is a tectogrammatical tree
representation, which can be shared be-
tween languages. It is used for program-
ming languages in compilers, and has been
adapted to natural languages in GF (Gram-
matical Framework). Recent work has
shown how GF trees can be converted to
UD trees, making it possible to generate
parallel synthetic treebanks for those 30
languages that are currently covered by
GF. This paper attempts to invert the map-
ping: take UD trees from standard tree-
banks and reconstruct GF trees from them.
Such a conversion is potentially useful in
bootstrapping treebanks by translation. It
can also help GF-based interlingual trans-
lation by providing a robust, efficient front
end. However, since UD trees are based
on natural (as opposed to generated) data
and built manually or by machine learn-
ing (as opposed to rules), the conversion is
not trivial. This paper will present a basic
algorithm, which is essentially based on
inverting the GF to UD conversion. This
method enables covering around 70% of
nodes, and the rest can be covered by ap-
proximative back up strategies. Analysing
the reasons of the incompleteness reveals
structures missing in GF grammars, but
also some problems in UD treebanks.

1 Introduction

GF (Grammatical Framework (Ranta, 2011)) is
a formalism for multilingual grammars. Simi-
larly to UD (Universal Dependencies, (Nivre et al.,
2016)), GF uses shared syntactic descriptions for
multiple languages. In GF, this is achieved by us-
ing abstract syntax trees, similar to the internal
representations used in compilers and to Curry’s

tectogrammatical formulas (Curry, 1961). Given
an abstract syntax tree, strings in different lan-
guages can be derived mechanically by lineariza-
tion functions written for that language, similar to
pretty-printing rules in compilers and to Curry’s
phenogrammatical rules. The linearization func-
tions of GF are by design reversible to parsers,
which convert strings to abstract syntax trees. Fig-
ure 1 gives a very brief summary of GF to readers
unfamiliar with GF.

In UD, the shared descriptions are dependency
labels and part of speech tags used in dependency
trees. The words in the leaves of UD trees are
language-specific, and languages can extend the
core tagset and labels to annotate constructions
in the language. The relation between trees and
strings is not defined by grammar rules, but by
constructing a set of example trees—a treebank.
From a treebank, a parser is typically constructed
by machine learning (Nivre, 2006). There is no
mechanical way to translate a UD tree from one
language to other languages. But such a trans-
lation can be approximated in different ways to
bootstrap treebanks (Tiedemann and Agic, 2016).

GF’s linearization can convert abstract syntax
trees to UD trees (Kolachina and Ranta, 2016).
This conversion can be used for generating mul-
tilingual (and parallel) treebanks from a given set
of GF trees. However, to reach the full potential of
the GF-UD correspondence, it would also be use-
ful to go to the opposite direction, to convert UD
trees to GF trees. Then one could translate stan-
dard UD treebanks to new languages. One could
also use dependency parsing as a robust front-
end to a translator, which uses GF linearization
as a grammaticality-preserving backend (Angelov
et al., 2014), or to a logical form generator in the
style of (Reddy et al., 2016), but where GF trees
give an accurate intermediate representation in the
style of (Ranta, 2004). Figure 2 shows both of
these scenarios, using the term gf2ud for the con-

107

The abstract syntax defines a set of categories, such as
CN (Common Noun) and AP (Adjectival Phrase), and a
set of functions, such as ModCN (modification of CN
with AP):
cat CN ; AP
fun ModCN : AP -> CN -> CN

A concrete syntax defines, for each category, a lineariza-
tion type, and for each function, a linearization func-
tion; these can make use of parameters. For English,
we need a parameter type Number (singular or plural).
We define CN as a table (similar to an inflection ta-
ble), which produces a string as a function Number
(Number=>Str). As AP is not inflected, it is just a string.
Adjectival modification places the AP before the CN,
passing the number to the CN head of the construction:
param Number = Sg | Pl
lincat CN = Number => Str
lincat AP = Str
lin ModCN ap cn = \\n => ap ++ cn ! n

In French, we also need the parameter of gender. An AP
depends on both gender and number. A CN has a table on
Number like in English, but in addition, an inherent gen-
der. The table and the gender are collected into a record.
Adjectival modification places the AP after the CN, pass-
ing the inherent gender of the CN head to the AP, and the
number to both constituents:
param Gender = Masc | Fem

lincat CN = {s : Number => Str ; g : Gender}
lincat AP = Gender => Number => Str
lin ModCN ap cn = {
s = \\n => cn ! n ++ ap ! cn.g ! n ;
g = cn.g
}

Context-free grammars correspond to a special case of
GF where Str is the only linearization type. The use of
tables (P=>T) and records ({a : A ; b : B}) makes
GF more expressive than context-free grammars. The
distinction between dependent and inherent features, as
well as the restriction of tables to finite parameter types,
makes GF less expressive than unification grammars.
Formally, GF is equivalent to PMCFG (Parallel Multiple
Context-Free Grammars) (Seki et al., 1991), as shown
in (Ljunglöf, 2004), and has polynomial parsing com-
plexity. The power of PMCFG has shown to be what
is needed to share an abstract syntax across languages.
In addition to morphological variation and agreement,
it permits discontinuous constituents (used heavily e.g.
in German) and reduplication (used e.g. in Chinese
questions). The GF Resource Grammar Library uses a
shared abstract syntax for currently 32 languages (Indo-
European, Fenno-Ugric, Semitic and East Asian) written
by over 50 contributors.
Software, grammars, and documentation are available in
http://www.grammaticalframework.org

Figure 1: GF in a nutshell. The text works out a simple GF grammar of adjectival modification in English
and French, showing how the structure can be shared despite differences in word order and agreement.

version of Kolachina and Ranta (2016) and ud2gf
for the inverse procedure, which is the topic of this
paper.

GF was originally designed for multilingual
generation in controlled language scenarios, not
for wide-coverage parsing. The GF Resource
Grammar Library (Ranta, 2009) thus does not
cover everything in all languages, but just a “se-
mantically complete subset”, in the sense that it
provides ways to express all kinds of content, but
not necessarily all possible ways to express it. It
is has therefore been interesting to see how much
of the syntax in UD treebanks is actually covered,
to assess the completeness of the library. In the
other direction, some of the difficulties in ud2gf
mapping suggest that UD does not always anno-
tate syntax in the most logical way, or in a way
that is maximally general across languages.

The work reported in this paper is the current
status of work in progress. Therefore the results
are not conclusive: in particular, we expect to im-
prove the missing coverage in a straightforward
way. The most stable part of the work is the an-
notation algorithm described in Sections 3 an 4. It

is based on a general notation for dependency con-
figurations, which can be applied to any GF gram-
mar and to any dependency annotation scheme—
not only to the UD scheme. The code for the algo-
rithm and the annotations used in experiments is
available open source.1

The structure of the paper is as follows: Sec-
tion 2 summarizes the existing gf2ud conversion
and formulates the problem of inverting it. Sec-
tion 3 describes a baseline bottom-up algorithm
for translation from UD trees to GF trees. Sec-
tion 4 presents some refinements to the basic al-
gorithm. Section 5 shows a preliminary evalua-
tion with UD treebanks for English, Finnish, and
Swedish. Section 6 concludes.

2 From gf2ud to ud2gf

The relation between UD and GF is defined declar-
atively by a set of dependency configurations.
These configurations specify the dependency la-
bels that attach to each subtree in a GF tree. Fig-
ure 3 shows an abstract syntax specification to-

1https://github.com/GrammaticalFramework/
gf-contrib/tree/master/ud2gf

108

Figure 2: Conversions between UD trees, GF trees, and surface strings in English and French.

gether with a dependency configuration, as well
as a GF tree with corresponding labels attached.

Consider, for example, the second line of the
“abstract syntax” part of Figure 3, with the sym-
bol ComplV2. This symbol is one of the functions
that are used for building the abstract syntax tree.
Such a function takes a number of trees (zero or
more) as arguments and combines them to a larger
tree. Thus ComplV2 takes a V2 tree (two-place
verb) and an NP tree (noun phrase) to construct a
VP tree (verb phrase). Its name hints that it per-
forms complementation, i.e. combines verbs with
their complements. Its dependency configuration
head dobj specifies that the first argument (the
verb) will contain the label head in UD, whereas
the second argument (the noun phrase) will con-
tain the label dobj (direct object). When the con-
figuration is applied to a tree, the head labels are
omitted, since they are the default. Notice that the
order of arguments in an abstract syntax tree is in-
dependent of the order of words in its lineariza-
tions. Thus, in Figure 2, the object is placed after
the verb in English but before the verb in French.

The algorithm for deriving the UD tree from the
annotated GF tree is simple:

• for each leaf X (which corresponds to a lexi-
cal item)

– follow the path up towards the root until
you encounter a label L

– from the node immediately above L, fol-
low the spine (the unlabelled branches)
down to another leaf Y

– Y is the head of X with label L

It is easy to verify that the UD trees in Figure 2
can be obtained in this way, together with the En-
glish and French linearization rules that produce
the surface words and the word order. In addition
to the configurations of functions, we need cate-
gory configurations, which map GF types to UD
part of speech (POS) tags.

This algorithm covers what Kolachina and
Ranta (2016) call local abstract configurations.
They are sufficient for most cases of the gf2ud
conversion, and have the virtue of being compo-
sitional and exactly the same for all languages.
However, since the syntactic analysis of GF and
UD are not exactly the same, and within UD can
moreover differ between languages, some non-
local and concrete configurations are needed in
addition. We will return to these after showing
how the local abstract configurations are used in
ud2gf.

The path from GF trees to UD trees (gf2ud) is
deterministic: it is just linearization to an anno-
tated string representing a dependency tree. It de-
fines a relation between GF trees and UD trees:
GF tree t produces UD tree u. Since the map-
ping involves loss of information, it is many-to-

109

Figure 3: Annotating a GF tree with dependency labels. The label dobj results from the annotation of
the ComplV2 function. The category annotation (cat) are used in Figures 1 and 3 to map between GF
categories and UD POS tags.

one. The opposite direction, ud2gf, is a nondeter-
ministic search problem: given a UD tree u, find
all GF trees t that can produce u. The first prob-
lem we have to solve is thus

Ambiguity: a UD tree can correspond
to many GF trees.

More problems are caused by the fact that GF trees
are formally generated by a grammar whereas UD
trees have no grammar. Thus a UD tree may lack a
corresponding GF tree for many different reasons:

Incompleteness: the GF grammar is in-
complete.
Noise: the UD tree has annotation er-
rors.
Ungrammaticality: the original sen-
tence has grammar errors.

Coping with these problems requires robustness
of the ud2gf conversion. The situation is similar
to the problems encountered when GF is used for
wide-coverage parsing and translation (Angelov et
al., 2014). The solution is also similar, as it com-
bines a declarative rule-based approach with dis-
ambiguation and a back-up strategy.

3 The ud2gf basic algorithm

The basic algorithm is illustrated in Figure 4

Its main data-structure is an annotated depen-
dency tree, where each node has the form

< L, t, ts,C, p > where

• L is a dependency label (always the
same as in the original UD tree)
• t is the current GF abstract syntax

tree (iteratively changed by the al-
gorithm)
• ts is a list of alternative GF abstract

syntax trees (iteratively changed by
the algorithm)
• C is the GF category of t (itera-

tively changed by the algorithm)
• p is the position of the original

word in the UD tree (always the
same as in the original UD tree)

Examples of such nodes are shown in Figure 4, in
the tree marked (5) and in all trees below it.

The algorithm works in the following steps,
with references to Figure 4:
1. Restructuring. Convert the CoNLL graph
(marked (2) in Figure 4) to a tree data-structure
(3), where each node is labelled by a dependency
label, lemma, POS tag, and word position. This
step is simple and completely deterministic, pro-
vided that the graph is a well-formed tree; if it

110

Restructuring and lexical annotation

A node annotation by endo- and exocentric functions

The final annotated tree

Figure 4: Steps in ud2gf

111

isn’t, the conversion fails2.
2. Lexical annotation. Preserve the tree structure
in (3) but change the structure of nodes to the one
described above and shown in (5). This is done
by using a GF lexicon (4), and a category config-
uration, replacing each lemma with a GF abstract
syntax function and its POS with a GF category.3

3. Syntactic annotation. The GF trees t in the
initial tree (5) are lexical (0-argument) functions.
The syntactic annotation step annotates the tree re-
cursively with applications of syntactic combina-
tion functions. Some of them may be endofunc-
tions (i.e. endocentric functions), in the sense
that some of the argument types is the same as
the value type. In Figure 3, the functions AdvVP

and ModCN are endocentric. All other functions are
exofunctions (i.e. exocentric functions), where
none of the argument types is the same as the
value type. In the syntactic annotation, it is impor-
tant to apply endofunctions before exofunctions,
because exofunctions could otherwise block later
applications of endofunctions.4 The algorithm is
a depth-first postorder traversal: for an annotated
tree T = (N T1 . . .Tn), where N =< L, t, ts,C, p >,
• syntax-annotate the subtrees T1, . . . ,Tn

• apply available combination functions to N:
– if an endofunction f : C→C applies, re-

place < t, ts > with < ((f t),{t}∪ ts >
– else, if an exofunction f : C → C′

applies, replace < t, ts,C > with <
(f t),{t}∪ ts,C′ >

where a function f : A → B applies if f =
(λx)(g . . .x . . .) where g is an endo- or exocentric
function on C and all other argument places than
x are filled with GF trees from the subtrees of T .
Every subtree can be used at most once.

An example of syntactic annotation is shown
in the middle part of Figure 4. The node for the
word cat at position 3 (the second line in the tree)
has one applicable endofunction, ModCN (adjec-
tival modification), and one exofunction, DetCN
(determination). Hence the application of the end-
ofunction ModCN combines the AP in position 2
with the CN in position 3. For brevity, the subtrees

2This has never happened with the standard UD treebanks
that we have worked with.

3The GF lexicon is obtained from the GF grammar by
linearizing each lexical item (i.e. zero-place function) to the
form that is used as the lemma in the UD treebank for the
language in question.

4This is a simplifying assumption: a chain of two or more
exofunctions could in theory bring us back to the same cate-
gory as we started with.

that the functions can apply to are marked by the
position numbers. 5 Hence the tree

DetCN 1 3

in the final annotated tree actually expands to

DetCN the_Det

(ModCN (PositA black_A) (UseN cat_N))

by following these links. The whole GF tree at
the root node expands to the tree shown in Fig-
ures 2 and 3.

4 Refinements of the basic algorithm

We noted in Section 2 that ud2gf has to deal with
ambiguity, incompleteness, noise, and ungram-
maticality. The basic algorithm of Section 3 takes
none of these aspects into account. But it does
contain what is needed for ambiguity: the list ts
of previous trees at each node can also be used
more generally for storing alternative trees. The
“main” tree t is then compared and ranked to-
gether with these candidates. Ranking based on
tree probabilities in previous GF treebanks, as in
(Angelov, 2011), is readily available. But an even
more important criterion is the node coverage of
the tree. This means penalizing heavily those trees
that don’t cover all nodes in the subtrees.

This leads us to the problem of incompleteness:
what happens if the application of all possible can-
didate functions and trees still does not lead to a
tree covering all nodes? An important part of this
problem is due to syncategorematic words. For
instance, the copula in GF is usually introduced as
a part of the linearization, and does not have a cat-
egory or function of its own.6 To take the simplest
possible example, consider the adjectival predica-
tion function and its linearization:

fun UseAP : AP -> VP

lin UseAP ap = \\agr => be agr ++ ap

where the agreement feature of the verb phrase is
passed to an auxiliary function be, which produces
the correct form of the copula when the subject
is added. The sentence the cat is black has the
following tree obtained from UD:

5If the argument has the same node as the head (like 3
here), the position refers to the next-newest item on the list of
trees.

6This is in (Kolachina and Ranta, 2016) motivated by
cross-lingual considerations: there are languages that don’t
need copulas. In (Croft et al., 2017), the copula is defined
as a strategy, which can be language-dependent, in contrast
to constructions, which are language-independent. This dis-
tinction seems to correspond closely to concrete vs. abstract
syntax in GF.

112

root (PredVP 2 4) [UseAP...black_A] S 4

nsubj (DetCN 1 2) [UseN 2,cat_N] 2

det the_Det Det 1

cop "be" String 3 ***

The resulting GF tree is correct, but it does not
cover node 3 containing the copula.7 The problem
is the same in gf2ud (Kolachina and Ranta, 2016),
which introduces language-specific concrete an-
notations to endow syncategorematic words with
UD labels. Thus the concrete annotation

UseAP head {"is","are","am"} cop head

specifies that the words is,are,am occurring in a
tree linearized from a UseAP application have the
label cop attached to the head.

In ud2gf, the treatment of the copula turned out
to be simpler than in gf2ud. What we need is to
postulate an abstract syntax category of copulas
and a function that uses the copula. This function
has the following type and configuration:

UseAP_ : Cop_ -> AP -> VP ; cop head

It is used in the basic algorithm in the same way
as ordinary functions, but eliminated from the final
tree by an explicit definition:

UseAP_ cop ap = UseAP ap

The copula is captured from the UD tree by apply-
ing a category configuration that has a condition
about the lemma:8

Cop_ VERB lemma=be

This configuration is used at the lexical annotation
phase, so that the last line of the tree for the cat is
black becomes

cop be Cop_ 3

Hence the final tree built for the sentence is

PredVP (DetCN the_Det (UseN cat_N))

(UseAP_ be (PositA black_A))

which covers the entire UD tree. By applying the
explicit definition of UseAP_, we obtain the stan-
dard GF tree

PredVP (DetCN the_Det (UseN cat_N))

(UseAP (PositA black_A))

Many other syncategorematic words—such as
negations, tense auxiliaries, infinitive marks—can

7We use *** to mark uncovered nodes; since be has no
corresponding item in the GF lexicon, its only possible cate-
gorization is as a String literal.

8The simplicity is due to the fact that the trees in the tree-
bank are lemmatized, which means that we need not match
with all forms of the copula.

be treated in a similar way. The eliminated con-
stants are called helper functions and helper cat-
egories, and for clarity suffixed with underscores.

Another type of incomplete coverage is due to
missing functions in the grammar, annotation er-
rors, and actual grammar errors in the source text.
To deal with these, we have introduced another
type of extra functions: backup functions. These
functions collect the uncovered nodes (marked
with ***) and attach them to their heads as ad-
verbial modifiers. The nodes collected as back-
ups are marked with single asterisks (*). In the
evaluation statistics, they are counted as unin-
terpreted nodes, meaning that they are not cov-
ered with the standard GF grammar. But we have
added linearization rules to them, so that they are
for instance reproduced in translations. Figure 5
gives an example of a UD tree thus annotated,
and the corresponding translations to Finnish and
Swedish, as well as back to English. What has
happened is that the temporal modifier formed
from the bare noun phrase next week and labelled
nmod:tmod has not found a matching rule in the
configurations. The translations of the resulting
backup string are shown in brackets.

5 First results

The ud2gf algorithm and annotations are tested us-
ing the UD treebanks (v1.4)9. The training section
of the treebank was used to develop the annota-
tions and the results are reported on the test sec-
tion. We evaluated the performance in terms of
coverage and interpretability of the GF trees de-
rived from the translation. The coverage figures
show the percentage of dependency nodes (or to-
kens) covered, and interpreted nodes show the per-
centage nodes covered in “normal” categories, that
is, other than the Backup category. The percentage
of interpreted nodes is calculated as the number
of nodes in the tree that use a Backup function to
cover all its children. Additionally, the GF trees
can be translated back into strings using the con-
crete grammar, allowing for qualitative evaluation
of the translations to the original and other lan-
guages.10

We performed experiments for three languages:
English, Swedish and Finnish. Table 1 show the
scores for the experiments using the gold UD

9https://github.com/UniversalDependencies/
,retrievedinOctober2016

10A quantitative evaluation would also be possible by stan-
dard machine translation metrics, but has not been done yet.

113

I have a change in plans next week .

root have_V2 : V2 2 I have a change in plans "."

nsubj i_Pron : Pron 1 [next week]

dobj change_N : N 4

det IndefArt : Quant 3 minulla on muutos suunnitelmissa "."

nmod plan_N : N 6 [seuraava viikko]

case in_Prep : Prep 5

nmod:tmod Backup week_N : N 8 * jag har en ändring i planer "."

amod next_A : A 7 * [nästa vecka]

punct "." : String 9

Figure 5: A tree from the UD English training treebank with lexical annotations and backups marked,
and the resulting linearizations to English, Finnish, and Swedish.

language #trees #confs %cov’d %int’d
English 2077 31 94 72
Finnish 648 12 92 61
Finnish* 648 0 74 55
Swedish 1219 26 91 65
Swedish* 1219 0 75 57

Table 1: Coverage of nodes in each test set
(L-ud-test.conllu). L* (Swedish*, Finnish*)
is with language-independent configurations only.
#conf’s is the number of language-specific config-
urations. %cov’d and %int’d are the percentages
of covered and interpreted nodes, respectively.

trees. Also shown are the number of trees (i.e.
sentences) in the test set for each language. The
results show an incomplete coverage, as nodes
are not yet completely covered by the avail-
able Backup functions. As a second thing, we
see the impact of language-specific configurations
(mostly defining helper categories for syncate-
gorematic words) on the interpretability of GF
trees. For example, in Swedish, just a small num-
ber of such categories (26) increases the coverage
significantly. Further experiments also showed an
average increase of 4-6% points in interpretability
scores when out-of-vocabulary words were han-
dled using additional functions based on the part-
of-speech tags; in other words, more than 10% of
uninterpreted nodes contained words not included
in the available GF lexica.

Table 2 shows how much work was needed
in the configurations. It shows the number of
GF functions (excluding the lexical ones) and
language-independent configurations. It reveals
that there are many GF functions that are not

rule type number
GF function (given) 346
GF category (given) 109
backup function 16
function config 128
category config 33
helper function 250
helper category* 26

Table 2: Estimating the size of the project: GF ab-
stract syntax (as given in the resource grammar li-
brary) and its abstract and concrete configurations.
Helper category definitions are the only genuinely
language-dependent configurations, as they refer
to lemmas.

yet reached by configurations, and which would
be likely to increase the interpreted nodes. The
helper categories in Table 2, such as Copula, typ-
ically refer to lemmas. These categories, even
though they can be used in language-independent
helper rules, become actually usable only if the
language-specific configuration gives ways to con-
struct them.

A high number of helper functions were needed
to construct tensed verb phrases (VPS) covering
all combinations of auxiliary verbs and negations
in the three languages. This is not surprising given
the different ways in which tenses are realized
across languages. The extent to which these helper
functions can be shared across languages depends
on where the information is annotated in the UD
tree and how uniform the annotations are; in En-
glish, Swedish, and Finnish, the compound tense
systems are similar to each other, whereas nega-
tion mechanisms are quite different.

114

Modal verbs outside the tense system were an-
other major issue in gf2ud (Kolachina and Ranta,
2016), but this issue has an easier solution in
ud2gf. In GF resource grammars, modal verbs
are a special case of VP-complement verbs (VV),
which also contains non-modal verbs. The com-
plementation function ComplVV hence needs two
configurations:

ComplVV : VV->VP->VP ; head xcomp

ComplVV : VV->VP->VP ; aux head

The first configuration is valid for the cases where
the VP complement is marked using the xcomp la-
bel (e.g. want to sleep). The second one covers the
cases where the VP complement is treated as the
head and the VV is labelled aux (e.g. must sleep).
The choice of which verbs are modal is language-
specific. For example, the verb want marked as
VV in GF is non-nodal in English but translated
in Swedish as an auxiliary verb vilja. In gf2ud,
modal verbs need non-local configurations, but in
ud2gf, we handle them simply by using alternative
configurations as shown above.

Another discrepancy across languages was
found in the treatment of progressive verb phrases
(e.g. be reading, Finnish olla lukemassa). in En-
glish the verb be is annotated as a child of the con-
tent verb with the aux label. In Finnish, however
the equivalent verb olla is marked as the head and
the content verb as the child with the xcomp la-
bel. This is a case of where the content word is
not chosen to be the head, but the choice is more
syntax-driven.

6 Conclusion

The main rationale of relating UD with GF is
their complementary strengths. Generally speak-
ing, UD strengths lie in parsing and GF strengths
in generation. UD pipelines are robust and fast
at analyzing large texts. GF on the other hand, al-
lows for accurate generation in multiple languages
apart from compositional semantics. This sug-
gests pipelines where UD feeds GF.

In this paper, we have done preparatory work
for such a pipeline. Most of the work can be done
on a language-independent level of abstract syn-
tax configurations. This brings us currently to
around 70–75 % coverage of nodes, which ap-
plies automatically to new languages. A hand-
ful of language-specific configurations (mostly for
syncategorematic words) increases the coverage to
90–95%. The configuration notation is generic

property UD GF
parser coverage robust brittle
parser speed fast slow
disambiguation cont.-sensitive context-free
semantics loose compositional
generation ? accurate
new language low-level work high-level work

Table 3: Complementary strengths and weak-
nesses of GF and UD. UD strengths above the di-
viding line, GF strengths below.

and can be applied to any GF grammar and de-
pendency scheme.

Future work includes testing the pipeline in ap-
plications such as machine translation, abstractive
summarization, logical form extraction, and tree-
bank bootstrapping. A more theoretical line of
work includes assessing the universality of cur-
rent UD praxis following the ideas of Croft et al.
(2017). In particular, their distinction between
constructions and strategies seems to correspond
to what we have implemented with shared vs.
language-specific configurations, respectively.

Situations where a shared rule would be possi-
ble but the treebanks diverge, such as the treatment
of VP-complement verbs and progressives (Sec-
tion 5), would deserve closer inspection. Also an
analysis of UD Version 2, which became available
in the course of the project, would be in place, with
the expectation that the differences between lan-
guages decrease.

Acknowledgements
We want to thank Joakim Nivre and the anony-
mous referees for helpful comments on the work.
The project has been funded by the REMU project
(Reliable Multilingual Digital Communication,
Swedish Research Council 2012-5746).

References
Krasimir Angelov, Björn Bringert, and Aarne Ranta.

2014. Speech-enabled hybrid multilingual trans-
lation for mobile devices. In Proceedings of the
Demonstrations at the 14th Conference of the Eu-
ropean Chapter of the Association for Computa-
tional Linguistics, pages 41–44, Gothenburg, Swe-
den, April. Association for Computational Linguis-
tics.

Krasimir Angelov. 2011. The Mechanics of the Gram-
matical Framework. Ph.D. thesis, Chalmers Univer-
sity of Technology.

115

William Croft, Dawn Nordquist, Katherine Looney,
and Michael Regan. 2017. Linguistic Typol-
ogy meets Universal Dependencies. In Treebanks
and Linguistic Theories (TLT-2017), pages 63–75,
Bloomington IN, January 20–21.

Haskell B. Curry. 1961. Some Logical Aspects of
Grammatical Structure. In Structure of Language
and its Mathematical Aspects: Proceedings of the
Twelfth Symposium in Applied Mathematics, pages
56–68. American Mathematical Society.

Prasanth Kolachina and Aarne Ranta. 2016. From Ab-
stract Syntax to Universal Dependencies. Linguistic
Issues in Language Technology, 13(2).

Peter Ljunglöf. 2004. The Expressivity and Complex-
ity of Grammatical Framework. Ph.D. thesis, De-
partment of Computing Science, Chalmers Univer-
sity of Technology and University of Gothenburg.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A Multilingual
Treebank Collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), Paris, France, May. Euro-
pean Language Resources Association (ELRA).

Joakim Nivre. 2006. Inductive Dependency Parsing.
Springer.

Aarne Ranta. 2004. Computational Semantics in Type
Theory. Mathematics and Social Sciences, 165:31–
57.

Aarne Ranta. 2009. The GF Resource Grammar Li-
brary. Linguistic Issues in Language Technology,
2(2).

Aarne Ranta. 2011. Grammatical Framework: Pro-
gramming with Multilingual Grammars. CSLI Pub-
lications, Stanford.

Siva Reddy, Oscar Täckström, Michael Collins, Tom
Kwiatkowski, Dipanjan Das, Mark Steedman, and
Mirella Lapata. 2016. Transforming Dependency
Structures to Logical Forms for Semantic Parsing.
Transactions of the Association for Computational
Linguistics, 4.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii,
and Tadao Kasami. 1991. On multiple context-
free grammars. Theoretical Computer Science,
88(2):191–229.

Jörg Tiedemann and Zeljko Agic. 2016. Synthetic
treebanking for cross-lingual dependency parsing.
The Journal of Artificial Intelligence Research
(JAIR), 55:209–248.

116

