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Department of Computer Science

IT University of Copenhagen
Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark

zeag@itu.dk

Abstract

In multilingual dependency parsing, trans-
ferring delexicalized models provides un-
matched language coverage and compet-
itive scores, with minimal requirements.
Still, selecting the single best parser for
any target language poses a challenge.
Here, we propose a lean method for parser
selection. It offers top performance, and
it does so without disadvantaging the truly
low-resource languages. We consistently
select appropriate source parsers for our
target languages in a realistic cross-lingual
parsing experiment.

1 Introduction

Treebanks are available for only ∼1% of the lan-
guages spoken in the world today, the resource-
rich sources. One major goal of cross-lingual
transfer learning is to provide robust NLP for all
the targets, or the remaining ∼99%.

If we want to parse any language for syntactic
dependencies, the only principled method that cur-
rently enables it is delexicalized model transfer.
By relying on uniform POS tags only, it offers un-
precedented language coverage. First introduced
by Zeman and Resnik (2008), and consolidated
by the seminal works of McDonald et al. (2011;
2013) and Søgaard (2011), delexicalized parsing
is nowadays considered to be a simple baseline.

Recent work promises cross-lingual methods
that score almost as high as supervised parsers.
Unfortunately, it also introduces requirements that
a vast majority of languages cannot meet. The sys-
tems proposed by, e.g., Ma and Xia (2014) or Ra-
sooli and Collins (2015) require:

- very large parallel corpora, often in excess
of 2M parallel sentences for each language
pair, coupled with near-perfect tokenization
and sentence splitting;

- high-quality sentence and word alignments
for all the language pairs, provided by align-
ers that favor closely related languages;

- accurate POS tagging using fully supervised
taggers that score ∼95% on held-out data.

Latest work by Johannsen et al. (2016), among a
few others, shows that in a real-world scenario,
where no such unrealistic assumptions are made,
delexicalized transfer still constitutes a very com-
petitive choice for multilingual parsing.

Here, we assert that even simple delexicalized
parsing might be in need of a reality check.

Realistic delexicalized parsing? The idea be-
hind delexicalization is very simple: we omit all
lexical features from the parsers, both at training
and at runtime, so that they operate on POS se-
quences only. All that is then needed to parse
an unknown language is a tagger using a uniform
POS representation such as the “universal” POS
tagset by Petrov et al. (2011).

Delexicalized parsing itself comes in two dis-
tinct basic variants:

i) multi-source, where we train a single parser
by joining multiple delexicalized source-
language treebanks, and

ii) single-source, where each source-language
treebank contributes a single parser, and then
we select the one to use from this pool of
parsing models.

Most often, we pick the single-best source parser
for a given target language. The rankings of the
candidate source parsers are determined by evalu-
ation on target language test data.

Single-best parsers generally perform better
than multi-source parsers. For example, in their
experiment, Agić et al. (2016) show that the
single-source variant beats multi-source delexical-
ization in 23/27 languages and scores +3 points
higher in UAS on average. For fairness, their
parsers all work with cross-lingual POS taggers.
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However, we argue that single-best source pars-
ing is not realistic. Only in an evaluation frame-
work do we possess prior knowledge of i) which
target language we are parsing, and ii) what the
source rankings are for the targets. Single-best
parsing thus amounts to an oracle. By contrast,
in the real world, we expect to parse by i) pre-
dicting the target language name from the text in-
put at runtime, and by ii) selecting the most ap-
propriate source parser for that language from the
parser pool. If the prediction or selection turn out
incorrect, we are likely to end up producing a sub-
optimal parse. Furthermore, while parsing accu-
racy is measured on test sets of ∼1000 sentences
on average, the real input can take a much wider
size range. This variation in size may challenge
the validity of any design choices made on test set-
level only.

The cross-lingual parsing community has
largely ignored this problem, focusing instead
on test set-based evaluation by proxy. This, in
addition to a list of methodological biases, has
spawned a number of complex models incapable
of scaling down to real low-resource languages.

Our contributions. How do we single out the
best source parser if the language of the input text
has to be predicted at runtime?

To answer this question, our paper makes the
following contributions:

i) We propose a set of methods for matching
texts to source parsers. Our methods are sim-
ple, as they rely on nothing but character-
based language identification and typologi-
cal similarity. They consistently find the best
parsers for the target languages.

ii) We set aside the test-set granularity assump-
tion. Instead, we assume that the parser input
can vary in size from as little as one sentence.
Our methods prove to be remarkably adapt-
able to this size variation.

iii) By combining our approaches, our best sys-
tem even manages to exceed the performance
of single-best oracle source parsers.

In our submission, we strive to introduce only
the minimal requirements, and to maintain a re-
alistic setup. For example, in all the experi-
ments, we apply cross-lingual POS taggers for
truly low-resource languages. By controlling for
POS sources, we show how an ingrained bias to-
wards direct supervision of taggers may render

any parsing results irrelevant in a low-resource
context. Our code and data are freely available.1

2 Method

Say we had to find a suitable source parser for the
following sentence, written in an unknown target
language:

Knjiga ima 12 svezaka .
NOUN VERB NUM NOUN PUNCT

Intuitively, and following the language relatedness
hypothesis of McDonald et al. (2013), among the
source languages, we would single out the one ty-
pologically closest to the target sentence, and ap-
ply its delexicalized parser. Further, we build our
approach on this intuition.

More formally, let S ∈ S be a source language
treebank, and T ∈ T a POS-tagged target text to
parse. Further, let dist : S × T → [0,+∞) be
a cross-lingual distance measure.2 In this frame-
work, finding the single-best parser amounts to
minimizing the distance over all sources:

Ŝmin = argmin
S∈S

dist(S, T )

2.1 Distance measures
In estimating distance, or similarity as its inverse,
we consider two basic sources of available infor-
mation for sources and targets: i) the raw texts and
ii) the POS tag sequences.

We proceed to define three distance measures
over these information sources. The first measure
is based on sequences of POS tags. The other two
model character sequences and typological infor-
mation, and they are novel to our work.

KL-POS. This is the POS trigram-based distance
metric of Rosa and Žabokrtský (2015a). Essen-
tially, it expresses the Kullback–Leibler (KL) di-
vergence between distributions of source and tar-
get trigrams of POS tags:

distK(S, T ) =
∑

ti∈T
fT (ti) log

fT (ti)

fS(ti)

The relative frequencies fS and fT of trigrams ti
in source and target data are estimated on the re-

1https://bitbucket.org/zeljko_agic/
freasy

2Rather than metric, we use the term measure, as not all
conditions for metrics are satisfied by all proposed measures.
Namely, KL divergence is not symmetric.
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spective POS sequences:

f(ti) =
count(ti)∑
∀tj

count(tj)

We inherit the properties of the original KL-POS

proposal, but we introduce one minor change:
while i) special tag values are used to encode sen-
tence beginnings and endings, and ii) the source
counts for unseen trigrams are smoothed for the
distance to be well-defined, we use linear in-
terpolation smoothing following Brants (2000)
rather than set these counts to 1 in the Rosa and
Žabokrtský (2015a) implementation.

In plain words, this measure compares the rela-
tive frequencies of target POS trigrams ti ∈ T to
the frequencies of these trigrams in all the sources
S ∈ S , and then we select the one associated
with the lowest KL divergence. For our example
sentence, KL-POS predicts Finnish to be the best
source parser. The sentence is, however, in Croa-
tian, for which the Finnish parser ranks as 19/26
in our experiment. In contrast, if we feed KL-POS

five sentences at a time, it selects Slovene (1/26).
We expect KL-POS to be sensitive to both the

sample size and the POS tagging quality. The lat-
ter is of particular importance for low-resource de-
pendency parsing. Incidentally, the POS tags in
our Croatian example are all correct. For these rea-
sons, we propose the following two measures. The
first one (LANG-ID) is based on character, i.e., byte
n-grams, while the other one (WALS) augments the
n-grams approach by leveraging typological data.

LANG-ID. The approach is very straightforward:
We use Lui and Baldwin’s (2012) langid.py
module to identify the best source language for the
given input. They employ a naive Bayes classifier
with a multinomial event model, and feed it a mix-
ture of byte n-grams (1 ≤ n ≤ 4).

More specifically, langid.py has predefined
models for ∼100 languages, but we constrain it
to predict into the set of source languages S only.
We also use its probability re-normalization fea-
ture. Our distance measure then amounts to:3

distL(S, T ) = 1−pS , (S, pS) ∈ langid.rank(T )

As langid.py estimates pS , the probability of
3Note that langid.rank(T) returns pairs of source

languages and respective probabilities (S, pS), ∀S ∈ S.
We apply langid.py with the options -d -l -n, see
https://github.com/saffsd/langid.py.

input T belonging to a source language S, we con-
vert it to a distance (1− pS).

For our Croatian sample sentence, LANG-ID

predicts Slovene with a confidence of 0.99, and it
converges already for the first token.

On the downside, limiting langid.py predic-
tions to sources S only might negatively impact
parsing. The classifier commits early on to one
answer, assigning it a high confidence, and for lan-
guages with fewer related source languages in the
model, source selection might be significantly off.
For example, take this Hungarian sentence:

Ettől a győzelemtől magabiztos lettem .
ADV VERB NOUN NOUN NOUN PUNCT

While KL-POS selects Estonian (1/26), our source-
constrained LANG-ID predicts Spanish (19/26) as
the best source. However, if we allow LANG-ID to
predict beyond the list of source languages only, it
guesses Hungarian with p = 1.

Since Hungarian poses as a target language, we
cannot use this correct guess to select a model di-
rectly, but we can exploit it downstream. Our next
distance measure does so by leveraging typology
data on top of LANG-ID.

WALS. Our typology-based approach relies on a
simple premise: If we can guess the language of
the target text, we can employ a language database
to match the input with a similar source language.
This language database should encode various lin-
guistic properties across many languages in a prin-
cipled way. One such resource is WALS (Dryer
and Haspelmath, 2013). Currently it contains
structured data for 2,679 languages.4 Each lan-
guage is described through 202 features: they in-
clude various structural properties in several cat-
egories, most notably in phonology, morphology,
and syntax.

Now we describe the WALS-reliant distance
measure. For any target language T , we predict
the language name using LANG-ID. For this pre-
diction, we retrieve the corresponding feature vec-
tor vT from WALS, provided that WALS contains
some information on T . Our distance measure
then amounts to comparing the target WALS vec-
tor vT to source WALS vectors vS, ∀S:

distW(S, T ) = dh(vS,vT),

where dh is the Hamming distance between WALS
source and target vectors vS and vT.

4http://wals.info/download
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For each S and T , we only compare the sub-
sets of features for which both vS and vT are non-
empty. If there would be no WALS entries for T ,
we would fall back to LANG-ID. In our experi-
ments, however, all the languages are already rep-
resented in WALS.

For our Croatian example input, WALS predicts
Slovene as source (1/26), while it chooses Finnish
(6/26) for the Hungarian sentence.

2.2 Combining the measures
Both LANG-ID and WALS suffer a same constraint:
in contrast to KL-POS, they do not abstract away
from the alphabet. This may cause issues for lan-
guages with distinct alphabets. On the other hand,
KL-POS needs more data for estimation, and might
deteriorate with POS tagging accuracy.

Since the strengths and drawbacks of the three
approaches appear to be complementary, here we
propose their linear combination.

Normalization. The distances that our measures
output are not directly comparable, even if their
source language rankings are. We normalize the
distances into probability distributions by apply-
ing a softmax function:

P̂ (S|T ) = softmax(dist−1(S, T ), τ)

=
exp dist−1(S,T )

τ∑

X∈S
exp dist−1(X,T )

τ

Note that we invert the distances (dist−1) as a
small distance between S and T translates into
a high probability of S lending its parser to T .
We use the softmax temperature τ for controlling
the contributions of the sources. For very large
τ , τ → +∞, the probabilities for the individual
sources all even out at p → 1/|S|, while τ → 0+

isolates the most probable source at p→ 1.
The change from dist to P̂ (S|T ) changes our

objective from minimizing the distance between
sources and targets to maximizing the probability
of S lending a parser to T :

Ŝmax = argmax
S∈S

P̂ (S|T )

COMBINED. With the probability normalization
in place, we now introduce the linear combination
of the three approaches:

P̂ (S|T ) =
∑

i

λiP̂i(S|T ),with
∑

i

λi = 1

Algorithm 1: Source selection and reparsing.
Data: Target language sample T , source

language treebanks S, and parsers hS
Result: Predicted single-best parses Gtmax,

reparsed trees DMST(Gt), ∀t ∈ T
Create the sources distribution.

P̂ (S|T )← softmax(dist−1(S, T ), τ), ∀S
Find the best source.

Ŝmax ← argmax
S

P̂ (S|T )
for each sentence t in T do

Get all parses, build the graph.
Gt = (V,E), E = {(uS , v) ∈ hS(t),∀S}
Get the single-best parse.
Gtmax = (V,Emax),

where Emax = {(uŜmax
, v)}

end
return Gtmax,DMST(Gt),∀t ∈ T

The values λi can be tuned empirically on devel-
opment data, with i indexing our three distance
measures. That way, we can control the amounts
of contributions for the individual methods, sim-
ilar to tuning the contributions of the individual
sources through softmax temperature τ .

With the COMBINED approach, we aim specif-
ically at providing “the best of both worlds” in
source discovery: an improved robustness to or-
thographies on one side, and an added stability to
varying input sample sizes on the other.

3 Experiments

In our setup, we parse the target texts T with mul-
tiple source parsers hS , and we seek to predict the
best source parses for all the targets. We now ex-
pose the details of this experiment outline.

Data. We use the Universal Dependencies (UD)
treebanks (Nivre et al., 2016) version 1.3.5 UD
currently offers 54 dependency treebanks for 41
different languages.

Since our experiment requires realistic cross-
lingual POS taggers, we use the freely available
collection of training sets by Agić et al. (2016).6

It is built through low-resource annotation projec-
tion over parallel texts from The Watchtower on-
line library (WTC).7 Thus, we intersect the lan-

5hdl.handle.net/11234/1-1699
6https://bitbucket.org/lowlands/

release/
7http://wol.jw.org/
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guages with POS tagging support from WTC with
the UD treebanks for a total of 26 languages whose
training and testing sets that we proceed to use in
the experiment. We make use of the English UD
development data in hyper-parameter tuning.

Tools. For POS tagging, we use a state-of-the-
art CRF-based tagger MarMoT8 (Müller et al.,
2013). We use Bohnet’s (2010) mate-tools
graph-based dependency parser. Both tools are run
with their default settings.

In our experiments, we control for the sources
of POS tags. We distinguish i) direct in-language
supervision, where the taggers are trained on tar-
get language UD training data, from ii) cross-
lingually predicted POS, where we train the tag-
gers on WTC-projected annotations.

For training the delexicalized source parsers, we
use the following standard features, in reference to
the CoNLL 2009 file format:9 ID, POS, HEAD,
and DEPREL (Hajič et al., 2009). In specific,
we don’t leverage the UD morphological features
(FEATS) as not all languages support them in the
1.3 release. We subsample the treebanks for parser
training with a ceiling of 10k sentences, so as to
avoid the bias towards the largest treebanks such
as Czech with 68k training set sentences.

Baselines and upper bounds. We set the oracle
SINGLE-BEST source parsing results as the main
reference point for our evaluation. We compare
all systems to these scores, as our benchmarking
goals are to i) reach SINGLE-BEST performance
through best source prediction and to ii) surpass it
by weighted reparsing.

We compare our approach to the standard multi-
source delexicalized parser of McDonald et al.
(2011) (multi-dir in their paper, MULTI here). In
training, we uniformly sample from the contribut-
ing sources up to 10k sentences.

Reparsing. We collect all single-source parses
of target sentences t ∈ T into a dependency graph.
The graph Gt = (V,E) has target tokens as ver-
tices V . The edges (uS , v) ∈ E originate in the
delexicalized source parsers hS , ∀S.

Following Sagae and Lavie (2006), we can
apply directed maximum spanning tree decod-
ing DMST(Gt), resulting in a voted dependency

8https://github.com/muelletm/cistern/
blob/wiki/marmot.md

9https://ufal.mff.cuni.cz/
conll2009-st/task-description.html

parse for a target sentence t, where each source
contributes a unit vote. Such unit voting presumes
that all edges have a weight of 1. We refer to
this approach as UNIFORM reparsing. We also ex-
periment with weighing the edges in Gt through
the distance measures KL-POS, WALS, and COM-
BINED:

weight(uS , v) = P̂ (S|T ), ∀uS ∈ Gt, ∀t ∈ T

The weights in turn depend on the granularity, as
varying sizes of T influence the similarity esti-
mates coming from KL-POS and WALS.

Parameters. We tune the softmax temperature
to τ = 0.2 for both KL-POS and WALS by using the
English UD development data. For simplicity, we
fix λK = λW = 0.5, λL = 0 without tuning, i.e.,
in the COMBINED system we give equal weight to
KL-POS and WALS. We exclude LANG-ID from
reparsing as it is subsumed by WALS.

Our experiment assumes the variability of input
size in sentences. We use the full UD test sets for
all 26 languages. However, we vary the sample
size or granularity g in best source prediction. It
is implemented as a moving window over the test
sets, with sizes of 1 to 100.

The experiment workflow is condensed in Algo-
rithm 1. It shows how we arrive at best source pre-
dictions and reparsed trees for a target sample T .
In the algorithm sketch, we assume g = |T |, i.e.,
the granularity is implied by the sample size, but
further we provide results for varying g. Any edge
weighting in reparsing is made internal to DMST.

4 Results

First, we provide a summary of our experiment re-
sults in Table 1. We then proceed to break down
the scores by language in Table 2.

Summary. We discern that our COMBINED ap-
proach yields the best overall scores in the re-
alistic scenario, both in source selection and in
reparsing. The latter score remarkably even sur-
passes the informed upper bound SINGLE-BEST

system by 0.36 points UAS. It reaches the highest
UAS over cross-lingual POS in both selection and
reparsing, while KL-POS closely beats it in repars-
ing over fully supervised POS.

We form a general ordering of the four
approaches following these summary results:
COMBINED>KL-POS≥WALS>LANG-ID.
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POS source: Direct supervision Cross-lingual
95.33±2.42 71.65±5.65 g

Delexicalized
MULTI 62.04±4.67 49.48±5.37 –

SINGLE-BEST 65.53±2.96 51.96±4.35 –

Source selection
KL-POS 63.68±3.30 49.84±5.25 100

LANG-ID 60.12±3.83 48.14±5.25 5
WALS 60.37±4.36 48.87±5.45 3

COMBINED 64.18±3.04 50.20±5.20 50

Reparsing
KL-POS 66.55±3.70 51.55±5.46 4

UNIFORM 64.10±4.68 50.92±5.47 –
WALS 65.17±4.56 51.54±5.52 2

COMBINED 66.50±3.56 52.32±5.30 50

Table 1: Summary UAS parsing scores for all
26 languages, over two underlying sources of POS
tags. Gray: highest scores grouped by POS and
method. ±: 95% confidence intervals. g: sample
size (granularity) associated with the best score.

Looking into the optimal target sample sizes g,
the COMBINED system peaks at 50 sentences. KL-
POS works best with samples of 100 sentences in
source prediction, and only 4 sentences in repars-
ing. In contrast, WALS needs only 2-3 for both,
while LANG-ID peaks at 5 sentences.

Split by languages. The results in Table 2 are
provided as differences in UAS to our reference
point: the oracle SINGLE-BEST system. In source
selection, we aim to match the oracle scores, while
we seek to surpass them through reparsing.

The top-performing source prediction system
is the COMBINED one: it comes closest to the ora-
cle score for 10/26 languages. The other three ap-
proaches manage the same feat for 5-7 languages,
while the MULTI-source delexicalized parsers still
pose a challenge for 8/26 languages.10

Notably, KL-POS even beats the SINGLE-BEST

oracle by 0.4 UAS for one language (Danish), a
score that is made possible by changes in source
selection for different portions of the test set due to
sample granularity. KL-POS and LANG-ID reach
the oracle score for 3 languages, WALS for 5, and
COMBINED for 9 languages. In reparsing, the
COMBINED system once again produces the abso-
lute best scores, here for 15/26 languages. MULTI

parsers are unable to match the reparsing systems,
as both KL-POS and WALS also come very close
to the upper bound on average. Viewed separately,

10Note that in some cases more than one system records
the same score for a language.

these two reparsing systems are evenly split with
13/26 languages for each, and reach almost iden-
tical average scores, with KL-POS ahead WALS by
only 0.01 point UAS.

5 Discussion

We reflect on the results of our experiment from
the viewpoints of i) POS tagging impact, and ii)
input size or granularity.

Sources of POS tags. Throughout the paper, we
emphasized the importance of using cross-lingual
POS tagging in dependency parsing work that fea-
tures truly low-resource languages.

We conducted triple runs of all our experi-
ments, by changing the underlying POS tags from
cross-lingual to i) tags obtained through direct in-
language supervision via the UD training data and
ii) gold POS tags. The respective average tagging
accuracies over the 26 test languages thus changed
from 71.65% to 95.33% and 100%. As the ob-
servations were virtually unchanged between fully
supervised tagging and gold tagging, we reported
the former together with cross-lingual tagging.

Table 1 adds insight into the influence of tag-
ging quality. In source selection, KL-POS outper-
forms LANG-ID and WALS by ∼2.5 points UAS
over monolingual POS, but this advantage drops
to less than 1 point with cross-lingual POS.

There is an even more notable turnabout follow-
ing the underlying POS source change in repars-
ing. With direct supervision, KL-POS beats UNI-
FORM and WALS by 2.35 and 1.38 points UAS,
and even surpasses the COMBINED system by
0.05 points. However, when working with cross-
lingually induced POS tags, the COMBINED ap-
proach beats the three other systems by 0.77–1.40
points UAS, and KL-POS and WALS even out.

We expected KL-POS to show less resilience
to changes in POS tagging quality compared to
the other methods. The significant change in the
observations highlights the need for more careful
treatment of low-resource languages in contribu-
tions to cross-lingual parsing.

Granularity. Input size in sentences, or granu-
larity g as a model of input size variation, is an
important feature in our experiments. In Table 1
and 2, we only reported the scores with optimal
granularities for each method. Here, we add in-
sight by observing the link between g and UAS in
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POS Delexicalized Source selection Reparsing COMBINED

MULTI SINGLE-BEST LANG-ID KL-POS WALS UNIFORM KL-POS WALS selection reparsing
Arabic (ar) 51.48 -2.55 37.02 id -8.29 -2.51 -0.24 -0.25 0.26 0.40 -0.90 0.57

Bulgarian (bg) 69.99 -0.42 49.94 cs -1.79 -0.45 -10.00 1.05 1.50 1.22 -1.45 1.32
Czech (cs) 78.24 0.38 50.13 sl -1.14 -0.17 -1.79 2.24 2.64 2.72 -0.05 2.79

Danish (da) 84.89 0.13 58.74 no 0.00 0.40 -0.19 1.29 1.20 2.00 0.20 1.87
German (de) 67.54 -1.32 44.64 no 0.18 -0.63 -0.11 0.37 0.52 0.90 -0.13 1.16

Greek (el) 62.44 2.04 54.98 it -3.82 0.00 -0.82 3.70 4.00 3.81 -0.11 3.93

English (en) 79.75 -0.55 56.34 no -6.17 -1.98 -1.27 0.47 0.70 0.79 -2.18 0.94
Spanish (es) 86.60 -1.76 69.29 it -1.34 -1.01 0.00 0.36 1.43 1.16 0.00 1.27
Estonian (et) 76.11 -7.54 52.34 fi -0.45 -0.60 0.00 -5.75 -3.88 -4.68 0.00 0.09

Persian (fa) 28.04 -1.23 25.33 ar 0.00 -2.67 -8.88 -0.88 -0.25 -0.82 -6.61 -0.13
Finnish (fi) 68.23 -6.03 45.01 et 0.00 -0.22 0.00 -4.59 -3.14 -3.47 0.00 1.00
French (fr) 78.80 -0.64 54.37 es -2.25 -0.59 -0.51 0.02 0.75 0.63 -0.51 1.10

Hebrew (he) 62.64 -0.04 44.35 ro -9.36 0.00 -5.12 1.91 1.82 2.02 0.00 2.03

Hindi (hi) 51.62 -20.74 37.07 ta -0.16 -21.73 -21.52 -20.20 -20.35 -19.99 -19.54 -20.33
Croatian (hr) 75.95 -0.02 49.89 sl 0.00 -0.27 0.00 2.59 2.52 2.79 0.00 2.79

Hungarian (hu) 68.38 -8.08 46.07 et -10.86 -8.08 -3.92 -5.86 -6.02 -5.48 0.00 -5.83
Indonesian (id) 77.78 -1.95 56.47 ro -21.38 -0.01 -6.28 1.61 2.13 1.87 0.00 2.09

Italian (it) 87.69 -0.21 67.60 es -0.48 -0.10 -0.15 0.69 2.16 1.88 -0.36 2.32
Dutch (nl) 71.49 1.08 54.15 es -1.45 -0.34 -0.91 2.70 2.96 3.29 -0.91 3.10

Norwegian (no) 86.31 -0.29 63.99 sv -3.10 -1.69 -3.09 0.57 0.86 1.19 -1.70 1.29

Polish (pl) 79.07 0.39 62.95 hr -11.84 -1.70 -1.41 1.85 2.81 2.59 -1.70 3.15
Portuguese (pt) 85.98 -0.88 67.50 it -0.38 -0.43 0.00 0.10 1.23 0.77 0.00 1.09
Romanian (ro) 75.77 -0.10 53.25 es -4.71 -5.14 -0.42 1.96 2.45 2.50 -0.24 2.62

Slovene (sl) 76.53 -2.66 53.72 cs -3.98 -0.64 -3.97 -1.67 -0.81 -1.07 -4.11 -0.84
Swedish (sv) 88.19 -3.15 66.01 no -0.04 -0.52 -3.50 -2.05 -1.36 0.30 -1.54 1.18

Tamil (ta) 43.49 -8.49 29.86 hu -6.23 -3.97 -6.23 -9.45 -6.73 -8.39 -3.97 -1.30

Mean 71.65 -2.48 51.96 -3.81 -2.12 -3.09 -1.05 -0.41 -0.42 -1.76 0.36

Best sample size g – – – – 5 100 3 – 4 2 50 50
Best single # – 8 – – 6 5 7 – – – 10 –

Absolute best # – 0 – – 2 1 0 0 5 3 1 15

Table 2: Parsing target languages using source language weighting. We report changes in UAS over
the SINGLE-BEST delexicalized parsers. POS tags are provided by cross-lingual taggers. Bold: the
best system for a given language, separate for source selection and reparsing, excluding COMBINED.
Underlined: COMBINED systems that match or beat the other respective weighting methods. Gray:
Best overall average score.

source selection and reparsing, for all the weight-
ing approaches.

Figure 1A shows the changes in UAS for
best source prediction with varying input sizes.
LANG-ID and WALS converge on their predictions
early on, so their UAS scores remain nearly con-
stant. Yet, KL-POS largely benefits from more
POS data: it starts at around -1.5 UAS from WALS

and even below LANG-ID, but steadily rises up to
∼1 point over WALS at its peak UAS for g = 100
sentences.

The B part of Figure 1 reveals a different pat-
tern for KL-POS in reparsing. While WALS once
again stays expectedly constant, KL-POS peaks
with +0.01 UAS at g = 4, only to decrease with
growing input sizes. Since WALS rarely updates its
initial predictions, its source distributions P̂ (S|T )
mostly remain unchanged with g, implying the
same invariance for the reparsing scores. How-
ever, KL-POS converges much later, which means
that its P̂ (S|T ) decreases in variation as g in-

creases: all but the best source start contributing
less weight to the edges inGt for reparsing. More-
over, while the differences between WALS vectors
do not update with g, the KL divergences update
towards the predicted best source, and away from
the other contributing sources.

The COMBINED method manages to integrate
the advantages of KL-POS and WALS. In source se-
lection, it improves its predictions with larger sam-
ples, while maintaining the robustness over very
small samples (+0.5 UAS over WALS, +1.9 over
KL-POS for g = 1, 2). In reparsing, the combi-
nation significantly outperforms the two systems
it integrates. Even more notably, where KL-POS

deteriorates and WALS flatlines, the COMBINED

reparsing scores steadily improve with g. We sug-
gest that integrating i) the invariance of WALS lan-
guage vector distances with ii) the variation of
KL-POS towards the predicted best source with in-
creasing granularity causes this positive effect.

Source rankings are implicit in the distributions
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Figure 1: Sample size (granularity) impact on source selection and reparsing. A, B: Changes in UAS
over different sample sizes for the four approaches in best single source prediction, and three approaches
in reparsing. C: Average true rank of the predicted best source in relation to granularity.

P̂ (S|T ). Here, we compare them to the gold rank-
ings induced from the SINGLE-BEST scores. In
Figure 1C, we observe how the average true rank
of the selected source changes with granularity.
KL-POS significantly improves with larger sam-
ples. Working with one-sentence inputs, it assigns
the targets to only the 9th best source on average,
while with 50-100 sentences, it assigns the 3rd or
4th best source parser. WALS is mostly constant
at an average rank of 4.5. COMBINED once again
provides the best of both worlds, as it assigns the
5th or 6th best source with g = 1, 2, and stably
predicts the 3rd best source on average with inputs
of +20 sentences.

6 Limitations

Contributions of sources. In our experiments,
we used SINGLE-BEST parsers as upper bounds.
There, the best source parser was selected for each
target language by its overall performance on the
respective test set. This system recorded an aver-
age UAS of 51.96±4.35. However, if we select the
best single source for each sentence instead, the
oracle score rises significantly: by +13.58 points
UAS, to 65.54±4.88.

To substantiate, in Figure 2, we show that for
28.66% of the parsed sentences on average, the
best parse does not come from the parser that was
ranked best in test set-level evaluation. We view
this 13-point gap in UAS as a margin for improv-
ing our source selection in future work, as it sug-
gests that we have yet to exhaust the search space
of predictive features for sentence-level source
ranking. For example, we could use the UD devel-
opment data to learn models that predict the rank-

ings of source parsers from the target sequences of
tokens and POS tags, possibly using WALS as an
additional feature source.

Scalability. Our contribution is mainly focused
on the link between delexicalized parsing and lan-
guage identification. In that focus, we abstracted
away from certain relevant low-level issues in re-
alistic text processing.

Firstly, we used gold-standard tokenization and
sentence splits. While accurate splitters exist for
many languages, realistic segmentation would still
incur a penalty. Secondly, the LANG-ID models
we used are readily available for around 100 lan-
guages. Scaling up to +1000 languages would re-
quire scaling down on the available resources for
building identifiers, which would likely result in a
minor performance decrease downstream.

Finally, and most importantly, our models de-
pend on the existing cross-lingual POS taggers by
Agić et al. (2016), which in turn rely on parallel
resources. While their models do scale up, we ex-
cluded POS tagging from language identification.
A more realistic proposal would assume that tag-
gers, too, have to be selected at runtime before any
parsing takes place.

7 Related work

Research in cross-lingual POS tagging and depen-
dency parsing is nowadays plentiful, but only a
fraction of it focuses on truly low-resource lan-
guages and realistic proposals.

McDonald et al. (2011) were among the first
notable exceptions to use real cross-lingual POS
taggers in their multi-source parser transfer ex-
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periments. They employed the label propagation-
based taggers from Das and Petrov (2011). Agić
et al. (2015; 2016) used a simpler approach to pro-
jection, but they were the first to propose multilin-
gual projection for building taggers and parsers for
100+ low-resource languages in one pass. Zeman
and Resnik (2008) used perplexity per word as a
metric to select the source training instances that
relate to the target data. Søgaard (2011) extended
their approach to sequences of POS tags, and to
multiple sources. Their metrics in turn relate to
LANG-ID and KL-POS, but their approach is based
on test-set granularity and the selection of appro-
priate data for training the parsers, while ours
deals with varying input sizes and source parser
selection at runtime.

Ammar et al. (2016) noted a -6.3 points de-
crease in UAS for cross-lingual parsing accuracy
when the language identifiers and POS tags are
predicted at runtime. Their taggers are fully su-
pervised with 93.3% average accuracy for the
seven resource-rich languages from their experi-
ment. They also simulated a low-resource sce-
nario, where they used gold POS and omitted lan-
guage guessing.

WALS data has been heavily exploited in NLP
research. In that line of work, and partly related
to our paper, Søgaard and Wulff (2012) proposed
adapting delexicalized parsers through distance-
based instance weighting over WALS data. Their
work in turn relates to Naseem et al. (2012), who
also use WALS features in a multilingual parser
adaptation model. The research by Naseem et
al. (2012) and Täckström et al. (2013) addresses
the issues with multi-source delexicalized trans-
fer by selectively sharing model parameters, also
with typological motivation through WALS fea-
tures. This line of work has seen subsequent im-
provements by Zhang and Barzilay (2015), who
introduce a hierarchical tensor-based model for
constraining the learned representations based on
desired feature interactions. Georgi et al. (2010)
and Rama and Kolachina (2012) used WALS to
evaluate the concept of language similarity for fa-
cilitating cross-lingual NLP. Östling (2015) used
WALS to evaluate word order typologies induced
through word alignments. O’Horan et al. (2016)
provide a comprehensive survey on the usage of
typological information in NLP.

Plank and Van Noord (2011) applied similarity
measures over cross-domain data for dependency

Figure 2: Distribution of per-sentence top-scoring
source parsers over their test-set ranks. Blue: Per-
centage of sentences for which the best parser was
ranked #1 in test set-based evaluation. Red: Sen-
tences where the best parser was ranked #2-25,
i.e., not ranked #1. The percentages are averaged
over 26 languages.

parser adaptation. Prior to our contribution, only
Rosa and Žabokrtský (2015a; 2015b) attempted to
address source parser selection, by using KL di-
vergence over gold POS tags.

8 Conclusions

We introduced an unbiased approach for cross-
lingual transfer of delexicalized parsers. It is a
robust and scalable source parser selection and
reparsing system for low-resource languages. In
a realistic experiment over cross-lingual POS tags
and varying quantities of input text, our method
remarkably outperformed even the informed up-
per bound delexicalized system. We emphasize
the importance of acknowledging specifics of ac-
tual low-resource languages through realistic ex-
periment design when proposing solutions aimed
at addressing these languages.
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