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Abstract

In this paper, we describe a system (CGLI) for discriminating similar languages, varieties and
dialects using convolutional neural networks (CNNs) and long short-term memory (LSTM) neu-
ral networks. We have participated in the Arabic dialect identification sub-task of DSL 2016
shared task for distinguishing different Arabic language texts under closed submission track.
Our proposed approach is language independent and works for discriminating any given set of
languages, varieties and dialects. We have obtained 43.29% weighted-F1 accuracy in this sub-
task using CNN approach using default network parameters.

1 Introduction

Discriminating between similar languages, language varieties is a well-known research problem in nat-
ural language processing (NLP). In this paper we describe about Arabic dialect identification. Arabic
dialect classification is a challenging problem for Arabic language processing, and useful in several
NLP applications such as machine translation, natural language generation and information retrieval and
speaker identification (Zaidan and Callison-Burch, 2011).

Modern Standard Arabic (MSA) language is the standardized and literary variety of Arabic that is
standardized, regulated, and taught in schools, used in written communication and formal speeches.
The regional dialects, used primarily for day-to-day activities present mostly in spoken communication
when compared to the MSA. The Arabic has more dialectal varieties, in which Egyptian, Gulf, Iraqi,
Levantine, and Maghrebi are spoken in different regions of the Arabic population (Zaidan and Callison-
Burch, 2011). Most of the linguistic resources developed and widely used in Arabic NLP are based on
MSA.

Though the language identification task is relatively considered to be solved problem in official texts,
there will be further level of problems with the noisy text which can be introduced when compiling
languages texts from the heterogeneous sources. The identification of varieties from the same language
differs from the language identification task in terms of difficulty due to the lexical, syntactic and seman-
tic variations of the words in the language. In addition, since all Arabic varieties use the same character
set, and much of the vocabulary is shared among different varieties, it is not straightforward to discrimi-
nate dialects from each other (Zaidan and Callison-Burch, 2011). Several other researchers attempted the
language varsities and dialects identification problems. Zampieri and Gebre (2012) investigated varieties
of Portuguese using different word and character n-gram features. Zaidan and Callison-Burch (2011)
proposed multi-dialect Arabic classification using various word and character level features.

In order to improve the language, variety and dialect identification further, Zampieri et al. (2014),
Zampieri et al. (2015b) and Zampieri et al. (2015a) have been organizing the Discriminating between
Similar Languages (DSL) shared task. The aim of the task is to encourage researchers to propose and
submit systems using state of the art approaches to discriminate several groups of similar languages
and varieties. Goutte et al. (2014) achieved 95.7% accuracy which is best among all the submissions
in 2014 shared task. In their system, authors employed two-step classification approach to predict first
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the language group of the text and subsequently the language using SVM classifier with word and char-
acter level n-gram features. Goutte and Leger (2015) and Malmasi and Dras (2015) achieved 95.65%
and 95.54% state of the art accuracies under open and closed tracks respectively in 2015 DSL shared
task. Goutte et al. (2016) presents a comprehensive evaluation of state of-the-art language identification
systems trained to recognize similar languages and language varieties using the results of the first two
DSL shared tasks. Their experimental results suggest that humans also find it difficult discriminating
between similar languages and language varieties. This year, DSL 2016 shared task proposed two sub-
tasks: first sub-task is about discriminating between similar languages and national language varieties.
Second sub-task is about Arabic dialect identification which is introduced first time in DSL 2016 shared
task. We have participated in the sub-task2 of dialect identification on Egyptian, Gulf, Levantine, and
North-African, and Modern Standard Arabic (MSA) Arabic dialects. We describe about dataset used for
dialect classification in section 4.

In classifying Arabic dialects, Elfardy and Diab (2013), Malmasi and Dras (2014), Zaidan and
Callison-Burch (2014), Darwish et al. (2014) and Malmasi et al. (2015) employed supervised and sem-
supervised learning methods with and without ensembles and meta classifiers with various levels of
word, character and morphological features. Most of these approaches are sensitive to the topic bias in
the language and use expensive set of features and limited to short texts. Moreover, generating these
features can be a tedious and complex process. In this paper, we propose deep learning based super-
vised techniques for Arabic dialect identification without the need for expensive feature engineering.
Inspired by the advances in sentence classification (Kim, 2014) and sequence classification (Hochreiter
and Schmidhuber, 1997) using distributional word representations, we use convolutional neural networks
(CNN) and long short-term memory (LSTM)-based deep neural network approaches for Arabic dialect
identification.

The rest of the paper is organized as follows: in section 2, we describe related work on Arabic dialect
classification. In section 3, we introduce two deep learning based supervised classification techniques
and describe about the proposed methodology. We give a brief overview about the dataset used in the
shared task in section 4, and also we present experimental results on dialect classification. In section
5, we discuss about results and analyse various types of errors in dialect classification and conclude the
paper. Additional analysis and comparison with the other submitted systems are available in the 2016
shared task overview (Malmasi et al., 2016)

2 Related Work

In recent years, a very few researchers have attempted the task of automatic Arabic dialect identifica-
tion. Zaidan and Callison-Burch (2011) developed an informal monolingual Arabic Online Commentary
(AOC) annotated dataset with high dialectal content. Authors in this work applied language modelling
approach and performed dialect classification tasks on 4 dialects (MSA and three dialects) and two di-
alects (Egyptian Arabic and MSA) and reported 69.4% and 80.9% accuracies respectively. Several other
researchers (Elfardy and Diab, 2013; Malmasi and Dras, 2014; Zaidan and Callison-Burch, 2014; Dar-
wish et al., 2014) also used the same AOC and Egyptian-MSA datasets and employed different categories
of supervised classifiers such as Naive Bayes, SVM, and ensembles with various rich lexical features such
as word and character level n-grams, morphological features and reported the improved results.

Malmasi et al. (2015) presented a number of Arabic dialect classification experiments namely multi-
dialect classification, pairwise binary dialect classification and meta multi-dialect classification using
the Multidialectal Parallel Corpus of Arabic (MPCA) dataset. Authors achieved 74% accuracy on a 6-
dialect classification and 94% accuracy using pairwise binary dialect classification within the corpus but
reported poorer results (76%) between Palestinian and Jordanian closely related dialects. Authors also
reported that a meta-classifier can yield better accuracies for multi-class dialect identification and shown
that models trained with the MPCA corpus generalize well to other corpus such as AOC dataset. They
demonstrated that character n-gram features uniquely contributed for significant improvement in accu-
racy in intra-corpus and cross-corpus settings. In contrast, Zaidan and Callison-Burch (2011; Elfardy and
Diab (2013; Zaidan and Callison-Burch (2014) shown that word unigram features are the best features
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for Arabic dialect classification. Our proposed approach do not leverage rich lexical, syntactic features,
instead learns abstract representation of features through deep neural networks and distributional rep-
resentations of words from the training data. Proposed approach handles n-gram features with varying
context window-sizes sliding over input words at sentence level.

Habash et al. (2008) composed annotation guidelines for identifying Arabic dialect content in the
Arabic text content, by focusing on code switching. Authors also reported annotation results on a small
data set (1,600 Arabic sentences) with sentence and word-level dialect annotations.

Biadsy et al. (2009; Lei and Hansen (2011) performed Arabic dialect identification task in the speech
domain at the speaker level and not at the sentence level. Biadsy et al. (2009) applied phone recognition
and language modeling approach on larger (170 hours of speech) data and performed four-way clas-
sification task and reported 78.5% accuracy rate. Lei and Hansen (2011) performed three-way dialect
classification using Gaussian mixture models and achieved an accuracy rate of 71.7% using about 10
hours of speech data for training. In our proposed approach, we use ASR textual transcripts and employ
deep-neural networks based supervised sentence and sequence classification approaches for performing
multi-dialect identification task.

In a more recent work, Franco-Salvador et al. (2015) employed word embeddings based continuous
Skip-gram model approach (Mikolov et al., 2013a; Mikolov et al., 2013b) to generate distributed repre-
sentations of words and sentences on HispaBlogs1 dataset, a new collection of Spanish blogs from five
different countries: Argentina, Chile, Mexico, Peru and Spain. For classifying intra-group languages,
authors used averaged word embedding sentence vector representations and reported classification ac-
curacies of 92.7% on original text and 90.8% accuracy after masking named entities in the text. In this
approach, authors utilizes sentence vectors generated from averaged word embeddings and uses logistic
regression or Support Vector Machines (SVMs) for detecting dialects where as in our proposed approach,
we build the task of dialect identification using end to end deep neural representation by learning abstract
features and feature combinations through multiple layers. Our results are not directly comparable with
this work as we use different Arabic dialect dataset.

3 Methodology

Deep neural networks, with or without word embeddings, have recently shown significant improvements
over traditional machine learning–based approaches when applied to various sentence- and document-
level classification tasks.

Kim (2014) have shown that CNNs outperform traditional machine learning–based approaches on
several tasks, such as sentiment classification, question type classification, and subjectivity classification,
using simple static word embeddings and tuning of hyper-parameters. Zhang et al. (2015) proposed
character level CNN for text classification. Lai et al. (2015; Visin et al. (2015) proposed recurrent CNN
while Johnson and Zhang (2015) proposed semi-supervised CNN for solving text classification task.
Palangi et al. (2016) proposed sentence embedding using LSTM network for information retrieval task.
Zhou et al. (2016) proposed attention-based bidirectional lstm Networks for relation classification task.
RNNs model text sequences effectively by capturing long-range dependencies among the words. LSTM-
based approaches based on RNNs effectively capture the sequences in the sentences when compared to
the CNN and SVM-based approaches. In subsequent sub sections, we describe our proposed CNN and
LSTM based approaches for multi-class dialect classification.

3.1 CNN-based Dialect Classification

Collobert et al. (2011) adapted the original CNN proposed by LeCun and Bengio (1995) for modelling
natural language sentences. Following Kim (2014), we present a variant of the CNN architecture with
four layer types: an input layer, a convolution layer, a max pooling layer, and a fully connected softmax
layer. Each dialect in the input layer is represented as a sentence (dialect) comprised of distributional
word embeddings. Let vi ∈ Rk be the k-dimensional word vector corresponding to the ith word in the

1https://github.com/autoritas/RD-Lab/ tree/master/data/HispaBlogs
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AlnfT AlxAm Sfqp jydp jdA llkwyt ElY AlmdY AlmtwsT wAlbEyd

Figure 1: Illustration of convolutional neural networks with an example dialect

sentence. Then a dialect S of length ` is represented as the concatenation of its word vectors:

S = v1 ⊕ v2 ⊕ · · · ⊕ v`. (1)

In the convolution layer, for a given word sequence within a dialect, a convolutional word filter P
is defined. Then, the filter P is applied to each word in the dialect to produce a new set of features.
We use a non-linear activation function such as rectified linear unit (ReLU) for the convolution process
and max-over-time pooling (Collobert et al., 2011; Kim, 2014) at pooling layer to deal with the variable
dialect size. After a series of convolutions with different filters with different heights, the most important
features are generated. Then, this feature representation, Z, is passed to a fully connected penultimate
layer and outputs a distribution over different labels:

y = softmax(W · Z + b), (2)

where y denotes a distribution over different dialect labels, W is the weight vector learned from the
input word embeddings from the training corpus, and b is the bias term.

3.2 LSTM-based Dialect Classification

In case of CNN, concatenating words with various window sizes, works as n-gram models but do not
capture long-distance word dependencies with shorter window sizes. A larger window size can be used,
but this may lead to data sparsity problem. In order to encode long-distance word dependencies, we use
long short-term memory networks, which are a special kind of RNN capable of learning long-distance
dependencies. LSTMs were introduced by Hochreiter and Schmidhuber (1997) in order to mitigate the
vanishing gradient problem (Gers et al., 2000; Gers, 2001; Graves, 2013; Pascanu et al., 2013).

The model illustrated in Figure 2 is composed of a single LSTM layer followed by an average pooling
and a softmax regression layer. Each dialect is represented as a sentence (S) in the input layer. Thus,
from an input sequence, Si,j , the memory cells in the LSTM layer produce a representation sequence
hi, hi+1, . . . , hj . Finally, this representation is fed to a softmax layer to predict the dialect classes for
unseen input dialects.
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Figure 2: Illustration of LSTM networks with an example dialect

3.3 Experimental Setup
We modeled dialect classification as a sentence classification task. We tokenized the corpus with white
space tokenizer. We performed multi-class 5-way classification on the given arabic data set containing 5
language dialects. We used Kim’s (2014) Theano implementation of CNN 2 for training the CNN model
and a variant of the standard Theano implementation3 for training the LSTM network. We initialized and
used the randomly generated embeddings in both the CNN and LSTM models in the range [−0.25, 0.25].
We used 80% of the training set for training and 20% of the data for validation set and performed 5-fold
cross validation in CNN. In LSTM, we used 80% of the given training set for building the model and rest
20% of the data is used as development set. We updated input embedding vectors during the training.
In the CNN approach, we used a stochastic gradient descent–based optimization method for minimizing
the cross entropy loss during the training with the Rectified Linear Unit (ReLU) non-linear activation
function. We used default window filter sizes set at [3, 4, 5]. In the case of LSTM, model was trained
using an adaptive learning rate optimizer-adadelta (Zeiler, 2012) over shuffled mini-batches with the
sigmoid activation function at input, output and forget gates and tanh non-linear activation function at
cell state. Post competition we performed experiments without and with average pooling using LSTM
networks and reported the results as shown in tables 5 and 6.

Hyper Parameters. We used hyper-parameters such as drop-out for avoiding over-fitting), and batch
size and learning rates on 20% of the cross-validation/development set. We varied batch sizes, drop-out
rate, embedding sizes, and learning rate on development set. We obtained the best CNN performance
with learning rate decay 0.95, batch size 50, drop-out 0.5, and embedding size 300 and ran 20 epochs on
cross validated dataset. For LSTM, we got the best results on development set with learning rate 0.001,
drop-out 0.5, and embedding size 300, batch-size of 32 and at 12 epochs. We used same settings similar
to the development set but varied drop-out rate over [0.5,0.6,0.7] and obtained best results on test set
using drop-out 0.7. We obtained best results on test set with drop-out 0.5 using average pooling.

Pre-compiled Embeddings. We used the gensim (ehek and Sojka, 2010) word2vec program to com-
pile embeddings from the given training corpus. We compiled 300-dimensional embedding vectors for
the words that appear at least 3 times in the Arabic dialect corpus, and for rest of the vocabulary, embed-
ding vectors are assigned uniform distribution in the range of [−0.25, 0.25]. We used these pre-compiled
embeddings in LSTM and reported run2 results in the test set.

4 Datasets and Results

In this section we describe about DSL 2016 shared task data sets and the experimental results.
2https://github.com/yoonkim/CNN_sentence
3http://deeplearning.net/tutorial/lstm.html
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egy glf lav msa nor Total

Train 1578 1671 1758 999 1612 7618
Test 315 256 344 274 351 1540
Total 1893 1927 2102 1273 1963 9158

Table 1: The distribution of training and test data sets

4.1 Datasets

In 2016, for the first time the DSL shared task included a sub-task on Arabic dialects for 5 dialects:
Egyptian, Gulf, Levantine, North-African, and Modern Standard Arabic (MSA) As dialects are mostly
used in conversational speech, DSL 2016 shared task supplied training and test datasets (Malmasi et
al., 2016) containing ASR transcripts. Test set contains uniform distribution of dialects related to ASR
texts. The distribution of training and test splits are shown in table 1. The samples in test set are slightly
unbalanced.

4.2 Results

We evaluated the given test set using both LSTM and CNN and presented the results as shown in table
2. DSL shared task results are evaluated using weighted-F1 measure for ranking of various participating
systems. Due to the imbalance of classes in the test set, majority baseline is used in this Arabic di-
alect classification task. We have obtained run1 results (0.1779 F1-weighted) with LSTM-based dialect
classification model using random embedding weights at the input layer. Run2 results (0.1944 F1) are
obtained using LSTM-model with pre-compiled word embeddings. Though run2 results are better than
run1 but LSTM-model poorly performed when compared to the base line results (0.2279 weighted-F1)
on the test set. We have obtained fairly comparable results on experimental held-out development set
without pre-compiled embeddings as shown in table 3. We identified that the poor results on test set
are due to the bug in the code of LSTM-results compilation. Post competition, we fixed the bug and
re-evaluated results on test set as shown in tables 5 and 6. We observe that LSTM without using pool-
ing before the softmax layer, performed slightly better (0.4231 F1-weighted) than using average pooling
(0.4172 F1-weighted). LSTM without pooling classified ’egy’, ’msa’ and ’nor’ dialects more accurately
than the LSTM with average pooling. LSTM with average pooling performed better than the LSTM
without pooling in classifying ’glf’ and ’lav’ dialect classes. Run 3 results are obtained using CNN
classification model without using pre-compiled embeddings. We observe that the CNN performance
(0.4329 F1-weighted) is better than the LSTM performance (0.4231 F1-weighted). The performance of
different dialect classes accuracy using CNN is visualized in the confusion matrix as shown in figure
3. We also present the 5-fold cross validation results as shown in the table 4. CNN in cross validation
setting outperformed LSTM-results on development set in four dialect classes (egy,lav,msa,nor) where
as LSTM performed better in case of ’glf’ dialect classification. It took 24 hours to perform 5-fold cross
validation using CNN on a single CPU, 8-GB RAM, Intel, i7-processor machine. We have also tried
building model using CNN and LSTM on sub-task1 but took 10 days of time to train on entire training
set and unable to test it on the test set and produce results in-time. The limitation of CNN and LSTM is
that they need more time to train on on CPU machines and this can be avoided by using GPU machines.

Test Set Track Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
run1 C closed 0.1961 0.1961 0.1715 0.1779
run2 C closed 0.2162 0.2162 0.1876 0.1944
run3 C closed 0.4377 0.4377 0.4364 0.4329
baseline - - - - - 0.2279

Table 2: Results for test set C for all runs (closed training).
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Figure 3: Run3 confusion matrix using CNN multi-class classification

Precision Recall f1-score
egy 0.5694 0.5484 0.5587
glf 0.4444 0.5562 0.4940
lav 0.4704 0.4389 0.4541
msa 0.5922 0.6731 0.6301
nor 0.5444 0.4171 0.4723

Table 3: LSTM experimental results (run1) on development set without embeddings after 12 epochs of
training.

5 Discussion and Conclusion

We can assess the degree of confusion between various dialect classes from the confusion matrix of
CNN classification model as shown in figure 3. MSA and Egypt are the dialects that are more accurately
identified when compared to the other dialects. North-african and Laventine have the highest degree
of confusion, mostly with Egypt and gulf Arabic dialects. This might be due to the geographically in
close contact with these languages. We also observe significant amount of confusion between gulf and
the Egyptian and leventine dialects. In our experiments, we observed that CNN performed better than
the LSTM for Arabic dialect classification. There are number of potential directions to improve the
dialect classification accuracy. One possible future work might be to compile the common vocabulary
among most confusing dialect classes and for these vocabulary compile the word embeddings from large,
unlabeled dialect corpora using neural networks, and encode both syntactic and semantic properties of
words. Studies have found the learned word vectors to capture linguistic regularities and to collapse
similar words into groups (Mikolov et al., 2013b).

As our proposed CNN model is built using default network parameters, tuning of hyper-parameters can
significantly improve the dialect classification accuracy and this will be considered as our future work.
Learning word embeddings from the larger dialect corpus and using them in the input layer of CNN and
LSTM networks can also improve the dialect classification accuracy. Since Arabic language dialects are
morphologically rich and pose various syntactic and semantic challenges at word level, experimenting
with character level CNNs and bi-directional LSTMs can be more useful for accurate classification of
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Precision Recall f1-score
egy 0.5582 0.6363 0.5947
glf 0.4716 0.4629 0.4672
lav 0.6153 0.4861 0.5432
msa 0.6597 0.7356 0.6956
nor 0.5750 0.6174 0.5954

Table 4: CNN Average 5-fold cross-validation results (run3) without embeddings after 20 epochs

Precision Recall f1-score
egy 0.4444 0.4190 0.4314
glf 0.3172 0.2305 0.2670
lav 0.4179 0.4215 0.4197
msa 0.4605 0.6606 0.5427
nor 0.4637 0.4188 0.4401
F1 (macro) - - 0.4202
F1 (weighted) - - 0.4232

Table 5: LSTM experimental results on test set
without pooling

Precision Recall f1-score
egy 0.4353 0.3523 0.3895
glf 0.2678 0.3516 0.3040
lav 0.4059 0.4389 0.4218
msa 0.5301 0.5146 0.5222
nor 0.4662 0.4131 0.4381
F1 (macro) - - 0.4151
F1 (weighted) - - 0.4172

Table 6: LSTM experimental results on test set with
average pooling

various Arbaic dialects. As our proposed approach do not rely much on language specific analysis on the
corpus, it can be easily adapted to more similar languages, varieties and classification tasks.
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