
Proceedings of the 3rd Workshop on Asian Translation,
pages 175–183, Osaka, Japan, December 11-17 2016.

Character-based Decoding in
Tree-to-Sequence Attention-based Neural Machine Translation

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka
The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

{eriguchi, hassy, tsuruoka}@logos.t.u-tokyo.ac.jp

Abstract

This paper reports our systems (UT-AKY) submitted in the 3rd Workshop of Asian Transla-
tion 2016 (WAT’16) and their results in the English-to-Japanese translation task. Our model is
based on the tree-to-sequence Attention-based NMT (ANMT) model proposed by Eriguchi et al.
(2016). We submitted two ANMT systems: one with a word-based decoder and the other with
a character-based decoder. Experimenting on the English-to-Japanese translation task, we have
confirmed that the character-based decoder can cover almost the full vocabulary in the target
language and generate translations much faster than the word-based model.

1 Introduction

End-to-end Neural Machine Translation (NMT) models have recently achieved state-of-the-art results
in several translation tasks (Luong et al., 2015a; Luong et al., 2015b). Those NMT models are based
on the idea of sequence-to-sequence learning (Sutskever et al., 2014), where both of the source and the
target sentences are considered as a sequence of symbols (e.g. words or characters) and they are directly
converted via a vector space. The sequence of symbols on the source side is input into a vector space,
and the sequence of symbols on the target side is output from the vector space. In the end-to-end NMT
models, the above architectures are embodied by a single neural network.

The optimal unit for NMT is an important research question discussed in the community. Early NMT
models employ a word as a unit of the sequence (Cho et al., 2014b; Sutskever et al., 2014). Sennrich et
al. (2016) have used a Byte-Pair Encoding (BPE) method to create a sub-word level vocabulary accord-
ing to the frequencies of sub-word appearance in the corpus. They successfully replaced a large word
vocabulary in German and Russian with a much smaller sub-word vocabulary. They have also shown
that their sub-word-based NMT model gives better translations than the word-based NMT models.

The smallest unit of a sequence of text data is a character. The character-based approach has attracted
much attention in the field of NMT, because it enables an NMT model to handle all of the tokens in the
corpus (Costa-jussà and Fonollosa, 2016; Chung et al., 2016). A hybrid model of the word-based and the
character-based model has also been proposed by Luong and Manning (2016). These studies reported
the success and effectiveness in translating the out-of-vocabulary words.

In this paper, we apply character-based decoding to a tree-based NMT model (Eriguchi et al., 2016).
The existing character-based models focus only on the sequence-based NMT models. The objective of
this paper is to analyze the results of the character-based decoding in the tree-based NMT model. We
also enrich the tree-based encoder with syntactic features. Figure 1 shows an overview of our system. We
conducted the English-to-Japanese translation task on the WAT’16 dataset. The results of our character-
based decoder model show that its translation accuracy is lower than that of the word-based decoder
model by 1.34 BLEU scores, but the character-based decoder model needed much less time to generate
a sentence.

2 Neural Machine Translation

End-to-end NMT models have recently outperformed phrase-based statistical machine translation (SMT)
models in several languages (Luong et al., 2015a; Eriguchi et al., 2016). Those NMT models are ba-

175

Figure 1: WAT’16 Our system: tree-to-character Neural Machine Translation model.

sically composed of two processes called an encoder and a decoder. We feed a sequence of words
x = (x1, x2, · · · , xn) in the source language into the encoder, and the encoder converts the input data
into a vector space until the last n-th word in the sentence is input. Recurrent Neural Networks (RNNs)
are used to obtain the vectors of the sequence of data in the recent NMT models. The i-th hidden state
hi ∈ Rd×1 in the RNN holds a vector computed by the current input xi and the previous hidden state
hi−1 ∈ Rd×1:

hi = RNNencoder(Embed(xi), hi−1), (1)

where Embed(xi) is the word embedding vector of the i-th source word xi. h0 is set to 0.
Another RNN is used as the decoder to obtain the vectors for predicting the words on the target side.

The j-th hidden state sj ∈ Rd×1 of the RNN is computed from the previous hidden state sj−1 ∈ Rd×1

and the previous output word yj−1 as follows:

sj = RNNdecoder(Embed(yj−1), sj−1), (2)

where Embed(yj−1) is the word embedding vector of the (j − 1)-th target word yj−1. The first decoder
s1 is initialized with the last hidden state of the encoder hn.

The NMT models that simply connect the above two types of RNNs cannot capture strong relations
between the encoder units and the decoder unit, and they often fail to translate a long sentence. An
attention mechanism has been introduced to solve the problem by creating an attention path so that the
hidden states of the decoder can access each hidden state of the encoder (Bahdanau et al., 2015). Luong et
al. (2015a) have refined the calculation of the attention mechanism. In the decoder process, the attention
score αj(i) is computed by the j-th hidden state of the decoder sj and each hidden state of the encoder
hi as follows:

αj(i) =
exp(hi · sj)∑n

k=1 exp(hk · sj)
, (3)

where · represents the inner product, and its value of hi · sj is the similarity score between hi and sj .
The j-th context vector dj ∈ Rd×1 are computed as the summation of the hidden states:

dj =
n∑

i=1

αj(i)hi, (4)

where each of the hidden states is weighted by αj(i). We compute the j-th final decoder s̃j ∈ Rd×1 as
follows:

s̃j = tanh(Wd[sj ; dj] + bd), (5)

where [sj ; dj] ∈ R2d×1 denotes the concatenation of sj and dj . Wd ∈ Rd×2d is a weight matrix.
bd ∈ Rd×1 is a bias vector. The conditional probability of predicting an output is defined as follows:

p(yj |x, y<j) = softmax(Wss̃j + bs), (6)

176

where Ws ∈ Rd×d is a matrix and bs ∈ Rd×1 is a bias.
The objective function to train the NMT models is defined as the sum of the log-likelihoods of the

translation pairs in the training data:

J(θ) =
1
|D|

∑
(x,y)∈D

log p(y|x), (7)

whereD denotes the set of parallel sentence pairs. When training the model, the parameters θ are updated
by Stochastic Gradient Descent (SGD).

3 Our systems: tree-to-character attention-based NMT model

Our system is mostly based on the tree-to-sequence Attention-based NMT (ANMT) model described
in Eriguchi et al. (2016) which has a tree-based encoder and a sequence-based decoder. They employed
Long Short-Term Memory (LSTM) as the units of RNNs (Hochreiter and Schmidhuber, 1997; Gers et
al., 2000). In their proposed tree-based encoder, the phrase vectors are computed from their child states
by using Tree-LSTM units (Tai et al., 2015), following the phrase structure of a sentence. We incorporate
syntactic features into the tree-based encoder, and the k-th phrase vector h

(p)
k ∈ Rd×1 in our system is

computed as follows:

ik = σ(U (i)
l hl

k + U (i)
r hr

k + W (i)zk + b(i)), f l
k = σ(U (fl)

l hl
k + U

(fl)
r hr

k + W (fl)zk + b(fl)),

f r
k = σ(U (fr)

l hl
k + U (fr)

r hr
k + W (fr)zk + b(fr)), ok = σ(U (o)

l hl
k + U (o)

r hr
k + W (o)zk + b(o)),

c̃k = tanh(U (c̃)
l hl

k + U (c̃)
r hr

k + W (o)zk + b(c̃)), ck = ik ⊙ c̃k + f l
k ⊙ cl

k + f r
k ⊙ cr

k,

h
(p)
k = ok ⊙ tanh(ck), (8)

where each of ik, ok, c̃k, ck, cl
k, cr

k, f l
k, and f r

k ∈ Rd×1 denotes an input gate, an output gate, a state for
updating the memory cell, a memory cell, the memory cells of the left child node and the right child node,
the forget gates for the left child and for the right child, respectively. W (·) ∈ Rd×d and U (·) ∈ Rd×m

are weight matrices, and b(·) ∈ Rd×1 is a bias vector. zk ∈ Rm×1 is an embedding vector of the phrase
category label of the k-th node. σ(·) denotes the logistic function. The operator ⊙ is element-wise
multiplication.

The decoder in our system outputs characters one by one. Note that the number of characters in
a language is far smaller than the vocabulary size of the words in the language. The character-based
approaches thus enable us to significantly speed up the softmax computation for generating a symbol,
and we can train the NMT model and generate translations much faster. Moreover, all of the raw text
data are directly covered by the character units, and therefore the decoder in our system requires few
preprocessing steps such as segmentation and tokenization.

We also use the input-feeding technique (Luong et al., 2015a) to improve translation accuracy. The
j-th hidden state of the decoder is computed in our systems as follows:

sj = RNNdecoder(Embed(yj−1), [sj−1; s̃j−1]), (9)

where [sj−1; s̃j−1] ∈ R2d×1 denotes the concatenation of sj−1 and s̃j−1.

4 Experiment in WAT’16 task

4.1 Experimental Setting
We conducted experiments for our system using the 3rd Workshop of Asian Translation 2016 (WAT’16)1

English-to-Japanese translation task (Nakazawa et al., 2016a). The data set is the Asian Scientific Paper
Excerpt Corpus (ASPEC) (Nakazawa et al., 2016b). The data setting followed the ones in Zhu (2015) and
Eriguchi et al. (2016). We collected 1.5 million pairs of training sentences from train-1.txt and the first

1http://lotus.kuee.kyoto-u.ac.jp/WAT/

177

Sentences Parsed sentences

Train dataset 1,346,946 1,346,946
Dev. dataset 1,790 1,789
Test dataset 1,812 1,811

Table 1: The details of dataset in the ASPEC corpus.

Vocabulary size

|Vword| in English 87,796
|Vword| in Japanese 65,680
|Vcharacter| in Japanese 3,004

Table 2: Vocabulary sizes in the training models.

half of train-2.txt. We removed the sentences whose lengths are greater than 50 words. In the tree-based
encoder, binary trees of the source sentences were obtained by Enju (Miyao and Tsujii, 2008), which is a
probabilistic HPSG parser. We used phrase category labels as the syntactic features in the proposed tree-
based encoder. There are 19 types of phrase category labels given by Enju. In the word-based decoder
model, we employed KyTea (Neubig et al., 2011) as the segmentation tool for the Japanese sentences. We
performed the preprocessing steps of the data as recommended in WAT’16.2 Table 1 and Table 2 show
the details of the final dataset and the vocabulary sizes in our experiments. Each vocabulary includes
the words and the characters whose frequencies exceed five or two in the training data, respectively. The
out-of-vocabulary words are mapped into a special token i.e. “UNK”. As a result, the vocabulary size of
the characters in Japanese is about 22 times smaller than that of the words.

NMT models are often trained on a limited vocabulary, because the high computational cost of the
softmax layer for target word generation is usually the bottleneck when training an NMT model. In the
word-based models, we use the BlackOut sampling method (Ji et al., 2016) to approximately compute
the softmax layer. The parameter setting of BlackOut follows Eriguchi et al. (2016). In the character-
based models, we use the original softmax in the softmax layer. All of the models are trained on CPUs.3

We employed multi-threading programming to update the parameters in a mini-batch in parallel. The
training times of the single word-based model and the single character-based model were about 11 days
and 7 days, respectively.

We set the dimension size of the hidden states to 512 in both of the LSTMs and the Tree LSTMs. The
dimension size of embedding vectors is set to 512 for the words and to 256 for the characters. In our
proposed tree-based encoder, we use 64 and 128 for the dimension size of the phrase label embedding.
The model parameters are uniformly initialized in [−0.1, 0.1], except that the forget biases are filled with
1.0 as recommended in Józefowicz et al. (2015). Biases, softmax weights and BlackOut weights are filled
with 0. We shuffle the training data randomly per each epoch. All of the parameters are updated by the
plain SGD algorithm with a mini-batch size of 128. The learning rate of SGD is set to 1.0, and we halve it
when the perplexity of development data becomes worse. The value of gradient norm clipping (Pascanu
et al., 2012) is set to 3.0.

We use a beam search in order to obtain a proper translation sentence with the size of 20 and 5 in the
word-based decoder and the character-based decoder, respectively. The maximum length of a generated
sentence is set to 100 in the word-based decoder and to 300 in the character-based decoder. Cho et
al. (2014a) reported that an RNN-based decoder generates a shorter sentence when using the original
beam search. We used the beam search method proposed in Eriguchi et al. (2016) in order to output
longer translations. We evaluated the models by the BLEU score (Papineni et al., 2002) and the RIBES
score (Isozaki et al., 2010) employed as the official evaluation metrics in WAT’16.

4.2 Experimental Results

Table 3 shows the experimental results of the character-based models, the word-based models and the
baseline SMT systems. BP denotes the brevity penalty in the BLEU score. First, we can see small
improvements in the RIBES score of the single tree-to-sequence ANMT models with the character-
based decoder using syntactic features, compared to our proposed baseline system. System 1 is one of our
submitted systems. The translations are output by the ensemble of the three models, and we used a simple

2http://lotus.kuee.kyoto-u.ac.jp/WAT/baseline/dataPreparationJE.html
316 threads on Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20GHz

178

Model BLEU (BP) RIBES

Character-based decoder

Our proposed baseline: tree-to-seq ANMT model 31.52 (0.96) 79.39
+ phrase label input (m = 64) 31.49 (0.95) 79.51
+ phrase label input (m = 128) 31.46 (0.95) 79.48

System1: Ensemble of the above three models w/ the original beam search 33.21 (0.86) 81.45

Word-based decoder

seq-to-seq ANMT model (Luong et al., 2015a) 34.64 (0.93) 81.60
tree-to-seq ANMT model (d = 512) 34.91 (0.92) 81.66
System2: Ensemble of the tree-to-seq ANMT models (Eriguchi et al., 2016) 36.95 (0.92) 82.45

Baseline system

Baseline 1: Phrase-based SMT 29.80 (——) 69.19
Baseline 2: Hierarchical Phrase-based SMT 32.56 (——) 74.70
Baseline 3: Tree-to-string SMT 33.44 (——) 75.80

Table 3: The results of our systems and the baseline systems.

beam search to confirm how much it effects the BLEU scores in the character-based models. We showed
the results of our proposed character-based decoder models by using the beam search method proposed
in Eriguchi et al. (2016). We collects the statistics of the relation between the source sentence length (Ls)
and the target sentence length (Lt) from training dataset and adds its log probability (log p(Lt|Ls)) as the
penalty of the beam score when the model predicts “EOS”. The BLEU score is sensitive to the value of
BP, and we observe the same trend in that the character-based approaches generate a shorter sentence by
the original beam search. As a result, each of the character-based models can generate longer translation
by +0.09 BP scores at least than System 1 using the original beam search.

The word-based tree-to-sequece decoder model shows slightly better performance than the word-
based sequence-to-sequence ANMT model (Luong et al., 2015a) in both of the scores. The results
of the baseline systems are the ones reported in Nakazawa et al. (2015). Compared to these SMT base-
lines, each of the character-based models clearly outperforms the phrase-based system in both of the
BLEU and RIBES scores. Although the hierarchical phrase-based SMT system and the tree-to-string
SMT system outperforms the single character-based model without phrase label inputs by +1.04 and by
+1.92 BLEU scores, respectively, our best ensemble of character-based models shows better performance
(+5.65 RIBES scores) than the tree-to-string SMT system.

All the submitted systems are evaluated by pairwise cloudsourcing. System 1 is ranked as the 9th out
of the 10 submitted models, and System 2 is ranked as the 6th.

5 Discussion

Table 4 shows a comparison of the speeds to predict the next word between the word-based decoder
and the character-based decoder when generating a sentence by a beam size of 1. The character-based
decoder is about 41 times faster than the word-based decoder. It is because the time to output a word by
using a softmax layer is roughly proportional to the vocabulary sizes of the decoders. In addition to the
low cost of predicting the outputs in the character-based model, the character-based decoder requires the
smaller size of beam search than the word-based model. The word-based decoder requires a beam size
of 20 when decoding, but a beam size of 5 is enough for the character-based decoder. It requires smaller
beam size for the character-based decoder to find the best hypothesis. We therefore conclude that the
character-based model works more efficiently as a translation model than the word-based model in terms
of the cost of the outputs.

Some translation examples of our systems are shown in Table 5. There are two types of source sen-

179

Time (msec / sentence)

Word-based decoder 363.7
Character-based decoder 8.8

Table 4: Comparison of the times when outputting a sentence.

Source sentence A The electric power generation was the 380 micro watt.

Ground truth A 発電量は３８０マイクロワットであった。

Word-based 発電は３８０ UNKWであった。

Character-based 発電は３８０マイクロワットであった。

+ label input (m = 64) 電力発電は３８０マイクロワットであった。

Source sentence B This paper describes development outline of low-loss forsterite porcelain.

Ground truth B 低損失フォルステライト磁器の開発概要などをのべた。

Word-based ここでは，UNK UNKの開発概要を述べた。

Character-based 低損失フォルステライト磁器の開発概要を述べた。

+ label input (m = 64) 低損失フォルステライト磁器の開発概要を述べた。

Table 5: Translation examples of test data.

tences, the ground truth target sentences, and the translated sentences by the word-based model, by
the character-based model, and the character-based model using the syntactic features embedded with a
dimension size of 64. The words in the same color semantically correspond to each other.

In sentence A, we can see that the character-based models correctly translated the source word “micro”
with the characters “マイクロ”, while the word-based decoder requires the unknown replacement (Luong
et al., 2015b; Jean et al., 2015). When the word-based model outputs the target word “UNK”, the source
phrase ”micro watt” has the highest attention score (α = 0.78) and the source word “micro” has the
second highest attention score (α = 0.16). The word-based decoder model is successful in outputting
the original number (“３８０”) in the source side to the target side, and both of the character-based
decoder model has also succeeded in predicting a correct sequence of characters “３”, “８”, and “０”
one by one. The training dataset includes the translation of the word “380” into the characters“３８０”,
so the character-based model can be trained without copy mechanism (Ling et al., 2016) in this case.

In sentence B, the character-based models successfully translate “low-loss forsterite porcelain” into “
低損失フォルステライト磁器”. The word-based decoder model generates two “UNK”s. The source
word “forsterite” (“フォルステライト” in Japanese) has the highest attention score (α = 0.23) to the
first “UNK”, and the phrase “forsterite porcelain” has the second highest attention score (α = 0.21). The
second “UNK” is softly alined to the source word “porcelain” (“磁器” in Japanese) with the highest at-
tention score (α = 0.26) and to the source phrase “forsterite porcelain” with the second highest attention
score (α = 0.16).

6 Related Work

There are many NMT architectures: a convolutional network-based encoder (Kalchbrenner and Blun-
som, 2013), sequence-to-sequence models (Cho et al., 2014b; Sutskever et al., 2014) and a tree-based
encoder (Eriguchi et al., 2016). The objective of these research efforts focused on how to encode the
data in a language into a vector space and to decode the data in another language from the vector space.
Sennrich and Haddow (2016) improved the vector space of NMT models by adding linguistic features.
The text data is basically considered as the sequence of words.

180

The word-based NMT models cannot usually cover the whole vocabulary in the corpus. Rare words
are mapped into “unknown” words when the NMT models are trained. Luong et al. (2015b) proposed an
ex post facto replacement technique for such unknown words, and Jean et al. (2015) replace the unknown
word with the source word which has the highest attention score to the unknown word. Sennrich et al.
(2016) adopted a sub-word as a unit of the vocabulary for the NMT models and created the sub-word-
based vocabulary by the BPE method. The vocabulary based on the sub-words can cover much more
words in German and Russian, compared to the vocabulary based on the words. The NMT models
trained with the sub-word-based vocabulary performed better than the ones trained on the word-based
vocabulary.

Since the smallest units of text data are characters, character-based approaches have been introduced
into the fields of NMT. Costa-jussà and Fonollosa (2016) have shown that the character-based encoding
by using convolutional networks and the highway network as shown in Kim et al. (2016). Chung et
al. (2016) applied the character-based decoding to the NMT models, whose encoder is based on the
BPE units. Luong and Manning (2016) have proposed a hybrid NMT model flexibly switching from the
word-based to the character-based model. Each character-based NMT model shows better performance
than the word-based NMT models. All of theses models are, however, applied to sequence-based NMT
models, and there are no results of the character-based decoding applied to tree-based NMT models yet.

7 Conclusion

In this paper, we reported our systems (UT-AKY) submitted to the English-to-Japanese translation task
in WAT’16. Both of our systems are based on tree-to-sequence ANMT models, and one is a word-
based decoder model and the other is a character-based decoder model. We incorporated phrase category
labels into the tree-based ANMT model. The experimental results on English-to-Japanese translation
shows that the character-based decoder does not outperform the word-based decoder but exhibits two
promising properties: 1) It takes much less time to compute the softmax layer; and 2) It can translate any
word in a sentence.

Acknowledgements

This work was supported by CREST, JST, and JSPS KAKENHI Grant Number 15J12597.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine Translation by Jointly Learning

to Align and Translate. In Proceedings of the 3rd International Conference on Learning Representations.

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014a. On the Properties of
Neural Machine Translation: Encoder-Decoder Approaches. In Proceedings of Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation (SSST-8).

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014b. Learning Phrase Representations using RNN Encoder–Decoder for Statistical
Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, pages 1724–1734.

Junyoung Chung, Kyunghyun Cho, and Yoshua Bengio. 2016. A character-level decoder without explicit seg-
mentation for neural machine translation. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, pages 1693–1703.

R. Marta Costa-jussà and R. José A. Fonollosa. 2016. Character-based neural machine translation. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics, pages 357–361.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. 2016. Tree-to-sequence attentional neural ma-
chine translation. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics,
pages 823–833.

Felix A. Gers, Jürgen Schmidhuber, and Fred A. Cummins. 2000. Learning to Forget: Continual Prediction with
LSTM. Neural Computation, 12(10):2451–2471.

181

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation, 9(8):1735–
1780.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito Sudoh, and Hajime Tsukada. 2010. Automatic Evaluation
of Translation Quality for Distant Language Pairs. In Proceedings of the 2010 Conference on Empirical Methods
in Natural Language Processing, pages 944–952.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. 2015. On Using Very Large Target
Vocabulary for Neural Machine Translation. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 1–10.

Shihao Ji, S. V. N. Vishwanathan, Nadathur Satish, Michael J. Anderson, and Pradeep Dubey. 2016. BlackOut:
Speeding up Recurrent Neural Network Language Models With Very Large Vocabularies. In Proceedings of the
4th International Conference on Learning Representations.

Rafal Józefowicz, Wojciech Zaremba, and Ilya Sutskever. 2015. An Empirical Exploration of Recurrent Network
Architectures. In Proceedings of the 32nd International Conference on Machine Learning, volume 37, pages
2342–2350.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent continuous translation models. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, pages 1700–1709.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. 2016. Character-aware neural language models.
In The Thirtieth AAAI Conference on Artificial Intelligence, AAAI 2016.

Wang Ling, Phil Blunsom, Edward Grefenstette, Moritz Karl Hermann, Tomáš Kočiský, Fumin Wang, and Andrew
Senior. 2016. Latent predictor networks for code generation. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 599–609. Association for
Computational Linguistics.

Minh-Thang Luong and D. Christopher Manning. 2016. Achieving open vocabulary neural machine translation
with hybrid word-character models. In Proceedings of the 54th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1054–1063.

Thang Luong, Hieu Pham, and Christopher D. Manning. 2015a. Effective Approaches to Attention-based Neural
Machine Translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 1412–1421.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals, and Wojciech Zaremba. 2015b. Addressing the Rare
Word Problem in Neural Machine Translation. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 11–19.

Yusuke Miyao and Jun’ichi Tsujii. 2008. Feature Forest Models for Probabilistic HPSG Parsing. Computational
Linguistics, 34(1):35–80.

Toshiaki Nakazawa, Hideya Mino, Isao Goto, Graham Neubig, Sadao Kurohashi, and Eiichiro Sumita. 2015.
Overview of the 2nd Workshop on Asian Translation. In Proceedings of the 2nd Workshop on Asian Translation
(WAT2015), pages 1–28.

Toshiaki Nakazawa, Hideya Mino, Chenchen Ding, Isao Goto, Graham Neubig, Sadao Kurohashi, and Eiichiro
Sumita. 2016a. Overview of the 3rd workshop on asian translation. In Proceedings of the 3rd Workshop on
Asian Translation (WAT2016), Osaka, Japan, December.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchimoto, Masao Utiyama, Eiichiro Sumita, Sadao Kurohashi,
and Hitoshi Isahara. 2016b. Aspec: Asian scientific paper excerpt corpus. In Proceedings of the 10th Confer-
ence on International Language Resources and Evaluation (LREC2016), Portoroz, Slovenia, 5.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori. 2011. Pointwise Prediction for Robust, Adaptable Japanese
Morphological Analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 529–533.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: A Method for Automatic Eval-
uation of Machine Translation. In Proceedings of the 40th Annual Meeting on Association for Computational
Linguistics, pages 311–318.

182

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2012. Understanding the exploding gradient problem.
arXiv: 1211.5063.

Rico Sennrich and Barry Haddow. 2016. Linguistic input features improve neural machine translation. In Pro-
ceedings of the First Conference on Machine Translation, pages 83–91.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword
units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 1715–
1725.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence Learning with Neural Networks. In
Advances in Neural Information Processing Systems 27, pages 3104–3112.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved Semantic Representations From
Tree-Structured Long Short-Term Memory Networks. In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th International Joint Conference on Natural Language Pro-
cessing, pages 1556–1566.

Zhongyuan Zhu. 2015. Evaluating Neural Machine Translation in English-Japanese Task. In Proceedings of the
2nd Workshop on Asian Translation (WAT2015), pages 61–68.

183

