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Abstract

We present a multi-modal dialogue sys-
tem for interactive learning of perceptually
grounded word meanings from a human
tutor. The system integrates an incremen-
tal, semantic parsing/generation frame-
work - Dynamic Syntax and Type Theory
with Records (DS-TTR) - with a set of vi-
sual classifiers that are learned through-
out the interaction and which ground the
meaning representations that it produces.
We use this system in interaction with a
simulated human tutor to study the effect
of different dialogue policies and capa-
bilities on accuracy of learned meanings,
learning rates, and efforts/costs to the tu-
tor. We show that the overall performance
of the learning agent is affected by (1)
who takes initiative in the dialogues; (2)
the ability to express/use their confidence
level about visual attributes; and (3) the
ability to process elliptical as well as in-
crementally constructed dialogue turns.

1 Introduction

Identifying, classifying, and talking about objects
or events in the surrounding environment are key
capabilities for intelligent, goal-driven systems
that interact with other agents and the external
world (e.g. robots, smart spaces, and other auto-
mated systems). To this end, there has recently
been a surge of interest and significant progress
made on a variety of related tasks, including gen-
eration of Natural Language (NL) descriptions of
images, or identifying images based on NL de-
scriptions e.g. (Bruni et al., 2014; Socher et al.,
2014). Another strand of work has focused on
learning to generate object descriptions and object
classification based on low level concepts/features
(such as colour, shape and material), enabling sys-
tems to identify and describe novel, unseen images

Figure 1: Example dialogues

(Farhadi et al., 2009; Silberer and Lapata, 2014;
Sun et al., 2013).

Our goal is to build interactive systems that can
learn grounded word meanings relating to their
perceptions of real-world objects – this is differ-
ent from previous work such as e.g. (Roy, 2002),
that learn groundings from descriptions without
any interaction, and more recent work using Deep
Learning methods (e.g. (Socher et al., 2014)).

Most of these systems using machine learning
rely on training data of high quantity with no pos-
sibility of online error correction. Furthermore,
they are unsuitable for robots and multimodal sys-
tems that need to continuously, and incrementally
learn from the environment, and may encounter
objects they haven’t seen in training data. These
limitations should be alleviated if systems can
learn concepts as and when needed, from situated
dialogue with humans. Interaction with human
tutors also enables systems to take initiative and
seek information they need by e.g. asking ques-
tions with the highest information gain (see e.g.
(Skocaj et al., 2011), and Fig. 1). For example, a
robot could ask questions (Cakmak and Thomaz,
2012) to learn the colour of a “square” or to re-
quest to be presented with more “red” things to
improve its performance on the concept (see e.g.
Fig. 1). Furthermore, such systems could allow
for meaning negotiation in the form of clarifica-
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tion interactions with the tutor.
This setting means that the system must be

trainable from little data, compositional, adaptive,
and able to handle natural human dialogue with
all its glorious context-sensitivity and messiness
– for instance so that it can learn visual concepts
suitable for specific tasks/domains, or even those
specific to a particular user. Interactive systems
that learn continuously, and over the long run from
humans need to do so incrementally, quickly, and
with minimal effort/cost to human tutors.

In this paper, we use an implemented dialogue
system (see Yu et al. (2016b) and architecture in
figure 2) that integrates an incremental, semantic
grammar framework, especially suited to dialogue
processing – Dynamic Syntax and Type Theory
with Records (DS-TTR1 (Kempson et al., 2001;
Eshghi et al., 2012)) with visual classifiers which
are learned during the interaction, and which pro-
vide perceptual grounding for the basic seman-
tic atoms in the semantic representations (Record
Types in TTR) produced by the parser (see Fig. 1).

We use this system in interaction with a simu-
lated human tutor, to test hypotheses about how
the accuracy of learned meanings, learning rates,
and the overall cost/effort for the human tutor are
affected by different dialogue policies and capabil-
ities; specifically: (1) who takes initiative in the
dialogues; (2) the agent’s ability to utilise their
level of uncertainty about an object’s attributes;
and (3) their ability to process elliptical as well
as incrementally constructed dialogue turns. The
results show that differences along these dimen-
sions have significant impact both on the accuracy
of the learned, grounded word meanings, and the
processing effort required by the tutors.

2 Related work

Please see (Yu et al., 2016b) for a full discussion of
related work. Most similar to our work is probably
that of Kennington & Schlangen (2015) who learn
a mapping between individual words - rather than
logical atoms - and low-level visual features (e.g.
colour-values) directly. The system is composi-
tional, yet does not use a grammar (the composi-
tions are defined by hand). Further, the ground-
ings are learned from pairings of object references
in NL and images rather than from dialogue.

What sets our approach apart from others is:
a) that we use a domain-general, incremental se-

1Download from http://dylan.sourceforge.net

mantic grammar with principled mechanisms for
parsing and generation; b) Given DS model of di-
alogue (Eshghi et al., 2015), representations are
constructed jointly and interactively by the tutor
and system over the course of several turns (see
Fig. 1); c) perception and NL-semantics are mod-
elled in a single logical formalism (TTR); d) we
effectively induce an ontology of atomic types
in TTR, which can be combined in arbitrarily
complex ways for generation of complex descrip-
tions of arbitrarily complex visual scenes (see e.g.
(Dobnik et al., 2012) and compare this with (Ken-
nington and Schlangen, 2015), who do not use a
grammar and therefore do not have logical struc-
ture over grounded meanings).

3 Experimental Setup

Our goal in this paper is an experimental study of
the effect of different dialogue policies and capa-
bilities on the overall performance of the learning
agent, which, as we describe below is a measure
that combines accuracy of learned meanings with
the cost of tutoring over time.

Design. We use the dialogue system outlined
above to carry out our main experiment with a
2 × 2 × 2 factorial design, i.e. with three fac-
tors each with two levels. Together, these fac-
tors determine the learner’s dialogue behaviour:
(1) Initiative (Learner/Tutor): determines who
takes initiative in the dialogues. When the tu-
tor takes initiative, s/he is the one that drives the
conversation forward, by asking questions to the
learner (e.g. “What colour is this?” or “So this
is a ....” ) or making a statement about the at-
tributes of the object. On the other hand, when
the learner has initiative, it makes statements, asks
questions, initiates topics etc. (2) Uncertainty
(+UC/-UC): determines whether the learner takes
into account, in its dialogue behaviour, its own
subjective confidence about the attributes of the
presented object. The confidence is the proba-
bility assigned by any of its attribute classifiers
of the object being a positive instance of an at-
tribute (e.g. ‘red’) - see below for how a confi-
dence threshold is used here. In +UC, the agent
will not ask a question if it is confident about the
answer, and it will hedge the answer to a tutor
question if it is not confident, e.g. “T: What is
this? L: errm, maybe a square?”. In -UC, the
agent always takes itself to know the attributes of
the given object (as given by its currently trained
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Figure 2: Architecture of the teachable system, see (Yu et al., 2016b)

Figure 3: Example dialogues in different conditions

classifiers), and behaves according to that assump-
tion. (3) Context-Dependency (+CD/-CD): de-
termines whether the learner can process (pro-
duce/parse) context-dependent expressions such
as short answers and incrementally constructed
turns, e.g. “T: What is this? L: a square”, or “T:
So this one is ...? L: red/a circle”. This setting can
be turned off/on in the DS-TTR dialogue model.

Tutor Simulation and Policy: To run our exper-
iment on a large-scale, we have hand-crafted an In-
teractive Tutoring Simulator, which simulates the
behaviour of a human tutor. The tutor policy is
kept constant across all conditions. Its policy is
that of an always truthful, helpful and omniscient
one: it (1) has complete access to the labels of
each object; and (2) always acts as the context of
the dialogue dictates: answers any question asked,
confirms or rejects when the learner describes an
object; and (3) always corrects the learner when it
describes an object erroneously.

Confidence Threshold: To determine when and
how the agent properly copes with its attribute-
based predictions, we use confidence-score thresh-
olds. It consists of two values, a base threshold
(e.g. 0.5) and a positive threshold (e.g. 0.9).

If the confidences of all classifiers are under the
base threshold (i.e. the learner has no attribute la-

bel that it is confident about), the agent will ask
for information directly from the tutor via ques-
tions (e.g. “L: what is this?”).

On the other hand, if one or more classifiers
score above the base threshold, then the positive
threshold is used to judge to what extent the agent
trusts its prediction or not. If the confidence score
of a classifier is between the positive and base
thresholds, the learner is not very confident about
its knowledge, and will check with the tutor, e.g.
“L: is this red?”. However, if the confidence score
of a classifier is above the positive threshold, the
learner is confident enough in its knowledge not
to bother verifying it with the tutor. This will lead
to less effort needed from the tutor as the learner
becomes more confident about its knowledge.

However, since a learner with high confidence
will not ask for assistance from the tutor, a low
positive threshold may reduce the chances that
allow the tutor to correct the learner’s mistakes.
Hence, we set up an auxiliary experiment, in
which we kept all other conditions constant (i.e.
assume that the learner has initiative (L) and al-
ways considers the prediction confidence(+U)),
but only varied the threshold values. This addi-
tional experiment determined a 0.5 base threshold
and a 0.9 positive threshold as the most appropri-
ate values for an interactive learning process - i.e.

50



Table 1: Recognition Score Table
Yes LowYes LowNo No

Yes 1 0.5 -0.5 -1
No -1 -0.5 0.5 1

this preserved good classifier accuracy while not
requiring much effort from the tutor.

Recognition score: We follow metrics proposed
by Skocaj et al. (2009). ‘Recognition score’ mea-
sures the overall accuracy of the learned word
meanings / classifiers, which “rewards success-
ful classifications (i.e. true positives and true neg-
atives) and penalizes incorrect predictions (i.e.
false positives and false negatives)” (Skočaj et al.,
2009). As the proposed system considers both cor-
rectness of predicted labels and prediction confi-
dence on learning tasks, the measure will also take
the true labels with lower confidence into account,
as shown in Table 1; “LowYes” means that the sys-
tem made positive predictions but with lower con-
fidence. In this case, the system can generate a po-
lar question to request tutor feedback. “LowNo” is
similar to “LowYes”, but for negative predictions.

Cost: This measure reflects the effort needed by
a human tutor in interacting with the system. Sko-
caj et. al. (2009) point out that a teachable system
should learn as autonomously as possible, rather
than involving the human tutor too frequently.
There are several possible costs that the tutor
might incur, see Table 2: Cin f refers to the cost
of the tutor providing information on a single at-
tribute (e.g. “this is red” or “this is a square”); Cack

is the cost for a simple confirmation (like “yes”,
“right”) or rejection (such as “no”); Ccrt is the cost
of correction for a single concept (e.g. “no, it is
blue”). We associate a higher cost with correction
of statements than that of polar questions. This is
to penalise the learning agent when it confidently
makes a false statement – thereby incorporating an
aspect of trust in the metric (humans will not trust
systems which confidently make false statements).
And finally, parsing (Cparse) as well as production
(Cproduction) costs for tutor are taken into account:
each single word costs 0.5 when parsed by the tu-
tor, and 1 if generated (production costs twice as
much as parsing).

Performance Score: As mentioned above, an
efficient learner dialogue policy should consider
both classification accuracy (Recognition score)

Table 2: Tutoring Cost Table
Cin f Cack Ccrt Cparsing Cproduction

1 0.25 1 0.5 1

and tutor effort (Cost). We thus define an inte-
grated measure – the Overall Performance Ratio
(Rper f ) – that we use to compare the learner’s over-
all performance across the different conditions:

Rper f =
∆S recog

Ctutor

i.e. the increase in Recognition Score (S recog) per
unit of the cost, or equivalently the gradient of the
curve in Fig. 4c. We seek dialogue strategies that
maximise this.

3.1 Evaluation and Cross-validation

We performed a 20-fold cross validation with 500
images for training and 100 for testing (see (Yu
et al., 2016b) for details of the dataset). For
each training instance, the learning system inter-
acts (only through dialogue) with the simulated
tutor. Each interaction episode ends either when
both the shape and the colour of the object are
agreed upon, or when the learner requests to be
presented with the next image. We define a learn-
ing step as comprised of 10 such episodes. At the
end of each learning step, the system is tested us-
ing the test set. The values used for the Tutoring
Cost and the Recognition Score at each learning
step correspond to averages across the 20 folds.

4 Results

Fig. 3 shows example interactions between the
learner and the tutor in some of the experimental
conditions. Note how the system is able to deal
with (parse and generate) utterance continuations
as in T+UC+CD, short answers as in L+UC+CD,
and polar answers as in T + UC + CD.

Fig. 4 plots Recognition Score against Tutor-
ing Cost directly. Note that it is expected that
the curves should not terminate in the same place
on the x-axis since the different conditions incur
different total costs for the tutor. The gradient of
this curve corresponds to increase in Recognition
Score per unit of the Tutoring Cost. It is the gradi-
ent of the line drawn from the beginning to the end
of each curve (tan(β) on Fig. 4) that constitutes our
main evaluation measure of the system’s overall
performance in each condition, and it is this mea-
sure for which we report statistical significance re-
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Figure 4: Evolution of Overall Learning Performance

sults: a between-subjects ANOVA shows signif-
icant main effects of Initiative (p < 0.01; F =

469.2), Uncertainty (p < 0.01; F = 179.8) and
Context-Dependency (p < 0.01; F = 20.12) on
the system’s overall performance. There is also a
significant Initiative×Uncertainty interaction (p <
0.01; F = 181.72).

5 Discussion

The cumulative cost for the tutor progresses more
slowly when the learner has initiative (L) and takes
its confidence into account in its behaviour (+UC).
This is so because a form of active learning is tak-
ing place here: the learner only asks a question
about attribute if it isn’t confident enough already
about that attribute. As the agent is exposed to
more training instances its subjective confidence
about its own predictions increases over time, and
thus there is progressively less need for tutor-
ing. On the other hand, the Recognition Score in-
creases more slowly too in the L+UC conditions.
This is because the agent’s confidence score in the
beginning is unreliable as it has only seen a few
training instances: in many cases it doesn’t have
any interaction with the tutor and so there are in-
formative examples that it doesn’t get exposed to.

However, comparing the gradients of the two
curves on Fig. 4 shows that the above trade-off

between Recognition Score and Cost is in fact a
good one: the overall performance of the agent
is significantly better in the L+UC conditions (re-
call the Initiative × Uncertainty interaction). The
significant main effect of Context-Dependency on
overall performance is explained by the fact that

in +CD conditions, the agent can process context-
dependent and incrementally constructed turns,
leading to less repetition, shorter dialogues, and
so better overall performance.

6 Conclusion and Future work

We have presented a multi-modal dialogue system
that learns grounded word meanings from a hu-
man tutor, incrementally, over time. The system
integrates a semantic grammar for dialogue (DS),
a logical theory of types (TTR), with a set of vi-
sual classifiers in which the TTR semantic rep-
resentations are grounded. We used this imple-
mented system to study the effect of different dia-
logue policies and capabilities on the overall per-
formance of a learning agent - a combined mea-
sure of accuracy and cost. The results show that
in order to maximise its performance, the agent
needs to take initiative in the dialogues, take into
account its confidence about its predictions, and
be able to process natural, human-like dialogue.
Ongoing work uses Reinforcement Learning to ac-
quire adaptive dialogue policies that optimise such
an agent’s performance (Yu et al., 2016a).
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