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Abstract

Non-substitutability is a property of Mul-
tiword Expressions (MWEs) that often
causes lexical rigidity and is relevant for
most types of MWEs. Efficient identifica-
tion of this property can result in the effi-
cient identification of MWEs. In this work
we propose using distributional semantics,
in the form of word embeddings, to iden-
tify candidate substitutions for a candidate
MWE and model its substitutability. We
use our models to rank MWEs based on
their lexical rigidity and study their per-
formance in comparison with association
measures. We also study the interaction
between our models and association mea-
sures. We show that one of our models
can significantly improve over the associ-
ation measure baselines, identifying collo-
cations.

1 Introduction

Multiword expressions (MWEs), commonly re-
ferred to as collocations,1 are idiosyncratic se-
quences of words whose idiosyncrasy can be
broadly classified into semantic, statistical, and
syntactic classes. Semantic idiosyncrasy (also re-
ferred to as non-compositionality) means that the
meaning of an MWE cannot be inferred from the
meaning of its components, as in loan shark. Syn-
tactic idiosyncrasy refers to the situation where the
syntax of an MWE does not follow syntactic rules,
as in in short. Statistical idiosyncrasy means that
components of a statistically idiosyncratic MWE

1In older work, the term collocation refers to all kinds
of MWEs. In more recent work, however, it mainly refers
to statistically idiosyncratic MWEs. In any case, statistical
idiosyncrasy can be considered as a general property of all
kinds of MWEs, regardless of other forms of idiosyncrasy
they may have.

co-occur more than expected by chance, as in
swimming pool. The range of types of idiosyn-
crasy included in MWEs has been characterized in
several other ways (Baldwin and Kim, 2010; Sag
et al., 2002). To avoid getting mired down in this
uncertainty, which mainly emerges while dealing
with borderline MWEs, between completely id-
iosyncratic and fully compositional, we subscribe
to the viewpoint of McCarthy et al. (2007) and
treat idiosyncrasy as a spectrum and focus only
on the (very) idiosyncratic end of this spectrum.
MWEs have application in different areas in NLP
and linguistics, for instance statistical machine
translation (Ren et al., 2009; Carpuat and Diab,
2010); shallow parsing (Korkontzelos and Man-
andhar, 2010); language generation (Hogan et al.,
2007); opinion mining (Berend, 2011); corpus lin-
guistics and language acquisition (Ellis, 2008). In
general, as Green et al. (2011) point out, “MWE
knowledge is useful, but MWEs are hard to iden-
tify.”

In this work, we propose a method of identi-
fying MWEs based on their non-substitutability.
Non-substitutability means that the components of
an MWE cannot be replaced with their synonyms
(Manning and Schütze, 1999; Pearce, 2001). It
implies statistical idiosyncrasy, which is relevant
for all kinds of MWEs, and identifying non-
substitutability in text results in the identification
of a wide range of MWEs. In MWE research, non-
substitutability has been widely considered but
never thoroughly studied, except for a few work
that present low coverage and limited models of
this concept.

We develop a model that takes into account
the semantics of words for identifying statisti-
cal idiosyncrasy, but is highly generalizable and
does not require supervision or labor-intensive re-
sources. The proposed model uses distributional
semantics, in the form of word embeddings, and
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uses them to identify semantically similar words
for the components of a candidate MWE. Non-
substitutability is then measured for the candidate
MWE using log-linear model(s), also computed
using word embeddings. Our proposed models re-
sult in an improvement over the state-of-the-art.

1.1 Syntactic Categories of MWEs

From a syntactic point of view, MWEs are very
heterogeneous, including light verb constructions,
phrasal verbs, noun compounds, verb-object com-
binations and others. In this work, however, we
focus only on noun compounds for the following
reasons: (i) They are the most productive and fre-
quent category of MWEs.() (ii) There are more
datasets of compounds available for evaluation.
(iii) Focusing on one controlled category allows
us to focus on modeling and detecting idiosyn-
crasy in isolation, avoiding complexities such as
gappy MWEs. We also focus only on two-word
noun compounds, because higher order ones are
relatively rare.

2 Related Work

Identification of statistical idiosyncrasy of MWEs
seems to have been first formally discussed in
Choueka et al. (1983) by proposing a statisti-
cal index to identify collocates and further devel-
oped into more efficient measures of collocation
extraction such as Pointwise Mutual Information
(Church and Hanks, 1990), t-score (Church et al.,
1991; Manning and Schütze, 1999), and Likeli-
hood Ratio (Dunning, 1993). Smadja (1993) pro-
poses a set of statistical scores that can be used
to extract collocations. Evert (2005) and Pecina
(2010) study a wide range of association measures
that can be employed to rank and classify colloca-
tions, respectively.

Farahmand and Nivre (2015) assume that a
word pair is a true MWE if the conditional prob-
ability of one word given the other is greater than
the conditional probability of that word given syn-
onyms of the other word, and Riedl and Biemann
(2015), and Farahmand and Martins (2014) use
contextual features to identify MWEs.

The above-mentioned methods target statisti-
cal idiosyncrasy of MWEs. There are however
many other approaches to extraction of MWEs
which do not explicitly focus on statistical id-
iosyncrasy. For instance, some identify MWEs
based on their semantic idiosyncrasy (Yazdani et

al., 2015; Im Walde et al., 2013; Hermann et al.,
2012; Reddy et al., 2011; Baldwin et al., 2003;
McCarthy et al., 2003), some approaches are rule-
based (Seretan, 2011; Baldwin, 2005), and some
are both rule-based and statistical (Ramisch, 2012;
Seretan and Wehrli, 2006).

3 Modeling Non-Substitutability

As discussed earlier, we model statistical idiosyn-
crasy based on an assumption inspired by non-
substitutability, which means that the components
of an MWE cannot be replaced with their near syn-
onyms. Let w1w2 represent a word pair. We make
the same assumption as Farahmand and Nivre
(2015) that w1w2 is statistically idiosyncratic if:

P (w2|w1) > P (w2|sim(w1)) (1)

where sim(wi) (defined below in Section 3.1) rep-
resents the words that are similar to wi. With
respect to noun noun compounds, this inequal-
ity roughly means that for an idiosyncratic com-
pound, the probability of the headword (w2) co-
occurring with the modifier (w1) is greater than
the probability of the headword co-occurring with
“synonyms” of the modifier (e.g. climate change
is more probable than weather change). This,
however, is not the case for non or less idiosyn-
cratic compounds (e.g. film director which is sub-
stitutable with movie director).

Farahmand and Nivre (2015) estimate a simi-
lar probability, in both directions, with the help of
WordNet synsets. They show that the model that
considers the probabilities in both directions out-
performs the model that considers only one direc-
tion (head conditioned on modifier).

To study and model the effects of direction we
also consider the following inequality:

P (w1|w2) > P (w1|sim(w2)) (2)

Intuitively, inequality 1 plays a more important
role in lexical rigidity than inequality 2, but this
is something we study in section 4.

In related work, (Pearce, 2001) extracts the syn-
onyms of the constituents of a compound, creates
new phrases called anti-collocations, and based on
the number of anti-collocations of the candidate
MWE decides whether it is a true MWE.

3.1 Modeling Semantically Similar Words
In previous work, WordNet synsets were em-
ployed to model the sim() function. The obvious
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limitation of such an approach is coverage. Other
limitations include costliness and labor intensive-
ness of updating and expanding such a knowledge
base. In this work, we use cosine similarity be-
tween word embeddings to represent semantically
similar words (that include but are not limited to
synonyms). This may result in a drop in pre-
cision, but the coverage will be immensely im-
proved. Moreover, similarity in the word embed-
ding space is shown to provide a relatively good
approximation of synonymy (Chen et al., 2013).

3.2 Ranking with Log-Linear Models
We estimate the probabilities presented in (1) and
(2) using a log linear model. Let φ(wi) represent
the word embedding of wi where φ ∈ R50.

P (w2|w1) =
exp(vw2 · φ(w1))∑

w′
2

exp(vw′
2
· φ(w1))

(3)

where vwi is a parameter vector and v is the
model’s parameter matrix. The analogous equa-
tion is used to define P (w1|w2).

Let Swi represent the set of top-n φ(wj) that
are most similar to φ(wi), Swi = {wj |wj ∈
nGreatest(wi.wj)}. P (w2|sim(w1)) can then be
estimated as:

P (w2|sim(w1)) =
1
|Sw1 |

∑
wj∈Sw1

P (w2|wj)

where P (w2|wj) is defined in (3).
And again, the analogous equation defines

P (w1|sim(w2)).
Combining these gives us the following version

of (1), and an analogous version of (2).

exp(vw2 · φ(w1))∑
w′

2

exp(vw′
2
· φ(w1))

>
1
|Sw1 |

∑
wj∈Sw1

exp(vw2 · φ(wj))∑
w′

2

exp(vw′
2
· φ(wj))

(4)

Given that MWEs lie on a continuum of id-
iosyncrasy, it is natural to treat identification of
MWEs as a ranking problem. We therefore define
an unsupervised ranking function as follows:

δ21 =
exp(vw2 · φ(w1))∑

w′
2

exp(vw′
2
· φ(w1))

− 1
|Sw1 |

∑
wj∈Sw1

exp(vw2 · φ(wj))∑
w′

2

exp(vw′
2
· φ(wj))

(5)

And an analogous function δ12.

4 Evaluation

As our evaluation set we used the dataset of Farah-
mand et al. (2015) who annotate 1042 English
noun compounds for statistical and semantic id-
iosyncrasy. Each compound is annotated by four
judges with two binary votes, one for their seman-
tic and one for their statistical idiosyncrasy.

As our baselines we use three measures that
have been widely used as a means of identify-
ing collocations: Pointwise Mutual Information
(PMI ) (Church and Hanks, 1990; Evert, 2005;
Bouma, 2009; Pecina, 2010), t-score (Manning
and Schütze, 1999; Church et al., 1991; Evert,
2005; Pecina, 2010), and Log-likelihood Ratio
(LLr) (Dunning, 1993; Evert, 2005).

Since we are concerned with the idiosyncratic
end of the spectrum of MWEs, we look at the iden-
tification of MWEs as a ranking problem. To eval-
uate this ranking, we use precision at k (p@k) as
the evaluation metric, considering different values
of k.

4.1 Individual Models

To train the log-linear model, we first extracted
all noun-noun compounds from a POS-tagged
Wikipedia dump (only articles) with a frequency
of at least 5. This resulted in a list of ≈ 560, 000
compounds. We created word embeddings of size
50 for words of Wikipedia that had the frequency
of at least 5 using word2vec2. These word em-
beddings were used both to determine the set of
similar words for each word of a compound and
to train the log-linear model by stochastic mini-
mization of the cross entropy. We discarded 30 in-
stances of the evaluation set because (having type
frequency of below 5) word embeddings were not
available for at least one of their components.

To measure precision, we assume those evalu-
ation set instances that were annotated as statis-
tically or semantically idiosyncratic by three or
more judges (out of four) are MWE and other in-
stances are not. This results in the total of 369 pos-
itive instances. Figure 1 shows the performance of
the different models.

At the top of the ranked list, δ21 outperforms
one of the baselines (t-score) but performs sim-
ilarly to the other two baselines, PMI and LLr.
It, however, shows a more steady performance up

2
https://code.google.com/archive/p/word2vec/
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Figure 1: p@ k for our models and the baselines.

until p@ 100. As it moves further from the id-
iosyncratic end of the spectrum its precision drops
further. δ12, on the other hand, shows a weaker
performance. It, however, outperforms t-score
for the most part. The best baseline is PMI, the
worst is t-score. Again, considering lexicaliza-
tion, the main process that MWEs should undergo
to become useful for other NLP applications, a
high precision at a small (proportional) k is what
we should be really concerned about: lexicons
cannot grow too large so every multi-word entry
should be sufficiently idiosyncratic and lexically
rigid. On the other hand, we do not want to limit
a model’s ability to generalize by lexicalizing ev-
ery word sequence that appears slightly idiosyn-
cratic. Looking back at the models, we know that
δ21, PMI, and LLr independently perform well at
the top of their ranked list. On the other hand, we
know that in theory δ21 bases its ranking on rela-
tively different criteria from PMI and LLr. The
question we seek to answer in the next section
is whether merging these criteria (semantic non-
substitutability and statistical association) can im-
prove on the best performance.

4.2 Combining Non-Substitutability and
Association

Our first combined model of non-substitutability
integrates both directions (head to modifier and
modifier to head). To emphasize precision, we
propose a combination function H1 that requires
both δ21 and δ12 to be high.

H1 = min(δ21, δ12)

By ranking according to the minimum of the
scores δ21 and δ12, each highly-ranked data point

must be highly ranked by both individual models.3

To combine an association measure with our
non-substitutability models we chose PMI be-
cause its performance at the top of the ranked list
is better than other baselines. The values of PMI
and the δs have different scales. We measured the
linear correlation in terms of Pearson r between
PMI and δs in order to see whether we can scale
up the δs’ by a linear factor. The correlation was
very small and almost negligible, so instead of us-
ing min() we combined the two rankings as:

H2 = H1 ◦ PMI

where ◦ denotes the element-wise product.
We perform the same experiments as in Section

4.1 with the combined models4 and compare their
performance with the best models from the previ-
ous experiments. The results can be seen in Figure
2.
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Figure 2: p@ k forH1,H2 and previous best mod-
els.

H2 clearly outperforms other models at the top
of the ranked list. It reaches a significantly higher
precision than other models. This confirms our
assumption that in practice association measures
and substitutability based models that are seman-
tically motivated5 base their decisions on differ-
ent pieces of information that are complementary.
Also, the results for H1 show that combining both
δ21 and δ12 gives us an improvement for high pre-
cision and performs similarly to the best one (δ21)
at lower k.

3We also tried element-wise multiplication in order to
combine these models. The performance of min(), however,
was slightly better.

4We also combined different association measures which
resulted in models with performances that were mainly simi-
lar to the performance of their sub-models.

5Assuming that word embeddings represent semantics in
a slightly more meaningful way than first order statistical as-
sociation.
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5 Conclusions

We presented a method for identifying MWEs
based on their semantic non-substitutability. We
assumed that non-substitutability implies statisti-
cal idiosyncrasy and modeled this property with
word embedding representations and a log-linear
model. We looked at MWE identification as a
ranking problem due the nature of idiosyncrasy,
which is better defined as a continuum than as a bi-
nary phenomenon. We showed our best model can
reach the same performance as the best baseline.
We showed that joining our models lead to a bet-
ter performance compared to that of the baselines
and individual models. We also showed that join-
ing our models -that are aware of semantic non-
substitutability, and association measures (base-
lines) can result in a model with a performance
that is significantly higher than the performance
of the baselines.
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