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Abstract

The Automated Evaluation of Scientific Writ-
ing, or AESW, is the task of identifying sen-
tences in need of correction to ensure their ap-
propriateness in a scientific prose. The data set
comes from a professional editing company,
VTeX, with two aligned versions of the same
text – before and after editing – and covers a
variety of textual infelicities that proofreaders
have edited. While previous shared tasks fo-
cused solely on grammatical errors (Dale and
Kilgarriff, 2011; Dale et al., 2012; Ng et al.,
2013; Ng et al., 2014), this time edits cover
other types of linguistic misfits as well, in-
cluding those that almost certainly could be
interpreted as style issues and similar “matters
of opinion”. The latter arise because of dif-
ferent language editing traditions, experience,
and the absence of uniform agreement on what
“good” scientific language should look like.
Initiating this task, we expected the participat-
ing teams to help identify the characteristics
of “good” scientific language, and help create
a consensus of which language improvements
are acceptable (or necessary). Six participat-
ing teams took on the challenge.

1 Introduction

The vast number of scientific papers being authored
by non-native English speakers creates an imme-
diate demand for effective computer-based writing
tools to help writers compose scientific articles. Sev-
eral shared tasks have been organized before that in
part addressed this challenge, all with English lan-
guage learners in mind: Helping Our Own, HOO,

with two editions in 2011 and 2012 (Dale and Kil-
garriff, 2011; Dale et al., 2012); and two Grammat-
ical Error Correction Tasks in 2013 and 2014 (Ng
et al., 2013; Ng et al., 2014). The four shared tasks
focused on grammar error detection and correction,
and constituted a major step towards evaluating the
feasibility of building novel grammar error correc-
tion technologies.

An extensive overview of the automated gram-
matical error detection for language learners was
conducted by Leacock et al. (2010). In subse-
quent years two English language learner (ELL)
corpora were made available for research purposes
(Dahlmeier et al., 2013; Yannakoudakis et al., 2011).
While these achievements are critical for language
learners, we also need to develop tools that support
genre-specific writing features. This shared task fo-
cused on the genre of scientific writing.

Most scientific publications are written in English
by non-native speakers of English. Submitted ar-
ticles are often returned to the authors with an en-
couragement to improve the language or have a na-
tive speaker proofread the paper. Pierson (2004) lists
10 top reasons why manuscripts are not accepted for
publication, with poor writing in the 7th place.

In Section 2, we describe the task and its objec-
tives; Section 3 gives an overview of the data set;
Section 4 introduces the participating teams; Section
5 describes the framework used for organizing com-
petitions; Section 6 summarizes the results of the
task; Section 7 provides a detailed analysis and dis-
cussion of the results; and, finally, Section 8 presents
the main conclusions of the Shared Task and our
proposed future actions.
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Institution/Group Abbreviation Contact Person
Harvard University HU Allen Schmaltz
Heidelberg Institute for Theoretical Studies HITS Mohsen Mesgar
ImproveSWDublin ISWD Liliana Mamani Sanchez
Knowlet Knowlet René Witte
National Taiwan Normal University and Yuan Ze University NTNU-YZU Lung-Hao Lee
University of Washington + Stanford University UW-SU Woodley Packard

Table 1: The teams that submitted results.

2 Task Definition

The goal of the Automated Evaluation of Scientific
Writing (AESW) Shared Task was to analyze the
linguistic characteristics of scientific writing to pro-
mote the development of automated writing evalua-
tion tools that can assist authors in writing scientific
papers. More specifically, the task was to predict
whether a given sentence requires editing to ensure
its “fit” within the scientific writing genre.

The main goals of the task were to

– identify sentence-level features that are unique
to scientific writing;

– provide a common ground for development and
comparison of sentence-level automated writ-
ing evaluation systems for scientific writing;

– establish the state-of-the-art performance in the
field.

A few words should be said about the specifics
of the scientific writing data set. Some proportion
of “corrections” in the shared task data are “real er-
ror” corrections – i.e. such that most of us would
agree that they are errors – for example, wrong pro-
nouns and various other grammatical errors. Others
almost certainly represent style issues and similar
“matters of opinion”, and it seems unfair to expect
someone to spot these. This is because of differ-
ent language editing traditions, experience, and the
absence of uniform agreement of what “good” lan-
guage should look like. The task was organized to
create a consensus of which language improvements
are acceptable (or necessary) and to promote the use
of NLP tools to help non-native writers of English to
improve the quality of their scientific writing.

Some interesting uses of sentence-level quality
evaluations are the following:

– automated writing evaluation of submitted sci-
entific articles;

– authoring tools for writing English scientific
texts;

– identifying sentences that need quality im-
provement.

The task is defined as a binary classification of
sentences, with the two categories needs improve-
ment and does not need improvement. Two types of
predictions are evaluated: Binary prediction (False
or True)1 and Probabilistic estimation (between 0
and 1).

The predictions of the test data set should be re-
ported according to the following format:

– For the Binary prediction task:
<sentenceID><tab><True|False><new line>

e.g., 9.12\tTrue\n
– For the Probabilistic estimation task:

<sentenceID><tab><Real number><new line>

e.g., 9.12\t0.75212\n

3 The Data Set

The data set is a collection of text extracts
from 9,919 published journal articles (mainly from
Physics and Mathematics) with data before and af-
ter language editing. The data are from selected pa-
pers published in 2006–2013 by Springer Publish-
ing Company2 and edited at VTeX3 by professional
language editors who were native English speakers
(Daudaravicius, 2015). Each extract is a paragraph
that contains at least one edit made by the language
editor. All paragraphs in the data set were randomly
ordered from the source text for anonymization. Ad-
ditionally, identifying parts of the text were replaced
with placeholders, specifically authors, institutions,
citations, URLs, and mathematical formulas. This

1Also referred to as Boolean prediction.
2http://www.springer.com/gp/
3http://www.vtex.lt
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Domain # of paragraphs # of sentences with no
changes

# of sentences with changes
before editing after editing

Train Dev Test Train Dev Test Train Dev Test Train Dev Test
Mathematics 78,748 9,679 9,522 218,585 27,784 28,347 353,610 44,571 44,530 353,929 44,755 44,512
Physics 55,949 7,517 7,080 169,160 23,290 19,203 291,917 39,031 35,165 291,902 38,994 35,180
Engineering 54,370 6,360 6,785 145,013 17,309 17,722 244,900 28,997 30,398 244,518 28,942 30,347
Computer Sci-
ence

36,387 4,549 4,039 103,368 12,234 11,694 164,460 19,962 18,493 164,472 19,953 18,497

Statistics 14,724 1,755 1,613 42,390 5,283 4,475 70,121 8,607 7,329 70,139 8,604 7,342
Economics and
Management

6,961 794 726 25,677 2,582 2,646 37,661 3,969 4,080 37,718 3,969 4,086

Astrophysics 3,343 389 321 8,492 588 858 16,571 1,392 1,676 16,630 1,384 1,694
Chemistry 2,581 278 315 7,697 831 1,063 13572 1,562 1,838 13,577 1,559 1,832
Human Sciences 1,081 57 70 2,358 205 176 4090 318 295 4,055 318 294
Total 254,144 31,378 30,471 722,740 90,106 86,184 1,196,902 148,409 143,804 1,196,940 148,478 143,784

Table 2: The main statistics of the AESW data-set (version 1.2).

replacement was done automatically and is based on
annotation in primary data sources that were LATEX
files4. This dataset will be made freely available on
the Internet5 for replications and other studies.

Sentences were tokenized automatically, and then
both text versions – before and after editing – were
automatically aligned with a modified diff algo-
rithm. Some sentences have no edits, and some sen-
tences have edits that are marked with <ins> and
<del> tags. The text tagged with <ins> is the
text that was inserted by the language editor, and the
text tagged with <del> is the text deleted by the
language editor. Substitutions are tagged as inser-
tions and deletions because it is not always obvious
which words are substituted with which. Some edits
introduce or eliminate sentence boundaries. In such
cases, a few sentences are combined into one data set
sentence and, therefore, the number of tagged sen-
tences in the data set differs before and after editing
(see Table 2).

The training, development and test data sets com-
prise data from independent sets of articles (see Ta-
ble 2).

– The training data: A fragment of training data
is shown in Table 3 where multiple insertions
and deletions can be seen.

– The development data: The development data
is distributionally similar to the training data
and the test data with regard to the edited and

4We used tex2txt conversion tool (see demo: http:
//textmining.lt:8080/tex2txt.htm)

5More information is available at http://
textmining.lt/aesw/index.html

<sentence sid="9.1"> For example, separate biasing
of the two gates can be used to implement a
<del>capacitor-less</del><ins>capacitorless</ins>
DRAM cell in which information is stored
<del>in</del><ins>at</ins> the
<del>form</del><ins>back-channel</ins>
<del>of</del><ins>surface</ins>
<del>charge</del><ins>near</ins>
<del>in</del><ins>to</ins> the
<del>body region,</del><ins>source</ins>
<del>at</del><ins>in</ins> the
<del>back channel</del><ins>form</ins>
<del>surface</del><ins>of</ins>
<del>near</del><ins>charge</ins>
<del>to</del><ins>in</ins> the
<del>source</del><ins>body region</ins> _CITE_.
</sentence>

Table 3: A fragment of training data.

non-edited sentences, as well as the domain.
– The test data: Test paragraphs retain texts

tagged with <del> tags but the tags are
dropped. Texts between <ins> tags are re-
moved. However, all edits of the test data were
provided to the teams after the final results were
submitted.

3.1 Supplementary Data

To speed up data preparation for training, develop-
ment and testing, the following supplementary data
were accessible to all participants:

Training, development and test data split into text
before editing and text after editing:
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– Tokenized sentences with sentence ID at the be-
ginning of the line.

– POS tags of sentences with sentence ID at the
beginning of the line.

– CFG trees of sentences with sentence ID at the
beginning of the line.

– Dependency trees of sentences with sentence
ID as the first line of each tree.

Texts from Wikipedia articles (the dump of
April 2015):

– Tokens
– POS tags
– CFG trees of sentences
– Dependency trees of sentences

The data were processed with the Stanford parser
with the following parameters:

– model: englishRNN
– type: typedDependencies
– JAVA code for grammatical structure:

GrammaticalStructure gs =
parser.getTLPParams().

getGrammaticalStructure(tree,
Filters.acceptFilter(),
parser.getTLPParams().

typedDependencyHeadFinder());

Shared Task participating teams were allowed to
use other publicly available data with the exclusion
of proprietary data. All additional data should in that
case be specified in the final system reports. The
participants were encouraged to share their supple-
mentary data, where relevant.

4 Participants

By the time of data release, 18 groups were regis-
tered for the task. The data required an agreement
which allows its use under the Creative Commons
CC-BY-NC-SA 4.0 license with a few extra restric-
tions. The six groups that submitted results and pub-
lished system reports are listed in Table 1, with par-
ticipants spanning several continents.

A high-level summary of the approaches used by
each team is provided in Table 5. The most com-
mon methods were deep learning (HU and NTNU-
YZU) and maximum entropy (Knowlet and UW-
SU). The other teams used logistic regression and
support vector machines. The deep learning mod-
els used only tokens and word embeddings as their

features. NTNU-YZU represented sentences as a se-
quence of word embeddings to train a convolutional
neural network (CNN). HU had a more complex ap-
proach, reporting the majority vote of a CNN using
word embeddings and stacked character-based and
word-based Long Short-Term Memory (LSTM) net-
works.

Besides tokens and token n-grams, the most com-
mon features were parse trees (ISWD and UW-SU).
ISWD used tree representations of the sentences as
features for a SVM and UW-SU augmented a gram-
mar with a series of “mal-rules”, which license un-
grammatical properties in sentences, and identified
if the mal-rules occurred in the most likely sentence
parses. HITS implemented 82 specific features for
this task, including counts of word types, patterns
found in words (such as contractions), and probabili-
ties. Knowlet tested the efficacy of existing grammar
tools for this task by train their model using features
extracted from LanguageTool and After the Dead-
line.

5 CodaLab.org

In this section we share our experience of using Co-
daLab6 for the AESW Shared Task. CodaLab is an
open-source platform that provides an ecosystem for
conducting computational research in a more effi-
cient, reproducible, and collaborative manner. On
codalab.org, we used Competitions to bring to-
gether all participants of the AESW Shared Task and
to automate the result submission process. Each par-
ticipant had to register on the codalab.org sys-
tem and apply to the task in order to submit results
and receive evaluation scores. We created four eval-
uation phases to distinguish four evaluation tasks:

– Development. Binary decision.
– Development. Probabilistic estimation.
– Testing. Binary decision.
– Testing. Probabilistic estimation.

The training and development data were released on
December 7, and the test data and CodaLab evalua-
tion opened on February 29. The deadline for sub-
mitting results was March 10.

Participants were allowed to submit results many
times (up to 100 submissions per day), with no more

6http://codalab.org/
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Development Testing
Binary Probabilistic Binary Probabilistic

HITS 11 9 3 8
HU 7 0 6 0
ISWD 0 0 8 7
Knowlet 12 2 5 4
NTNU-YZU 22 20 238 68
UW-SU 1 2 2 1
#Failed 23 10 45 16
#Total 76 43 307 104

Table 4: The number of result submissions for each shared task phase on https://competitions.codalab.org.

than two results for their final submission in each
track. Our experience shows that the time span for
evaluation can take one minute to a few hours. Ta-
ble 4 shows the number of successful submissions
of each participant for each evaluation phase. The
average number of submissions for each evaluation
phase was six times except for one participant. In
principle, the multiple unlimited number of submis-
sions allows a team to tune their system based on
performance against the test set as revealed by the
automated scorer. The number of failed uploads is
around ten percent. Therefore, our advice for future
implementations of similar shared tasks is to limit
the number of uploads to five times in the testing
phase.

The system allows us to upload scorer programs
and reference data to the server such that participants
cannot see the reference data, which guarantees that
the scorer program runs honestly. The scorer pro-
gram was initially built using the Haskell program-
ming language, but we could not manage to run
the executable on the server despite the documen-
tation describing such a possibility. Therefore, the
scorer program was reimplemented in Python. The
scorer program written in Python demonstrated un-
expected behavior at the end of the testing phase:
The codalab.org system did not report any er-
rors if participants submitted a truncated list of pre-
dictions. One team uploaded a truncated list of pre-
dictions that was accepted and scored. The scores
were close to a random prediction score. After dou-
ble checking all submitted results, we discovered
that the system accepted results even if the list size
of predictions was shorter than its expected size.
This happened due to the implementation difference
of the zip function in Haskell and in Python. In

Haskell, the length of both lists should be equal
to apply the zip function, otherwise an error is
thrown. In Python, the zip function merges two
lists while a pair of values can be created, and does
not throw an exception when the lists are of unequal
lengths. One particular team was warned and an ad-
ditional day was given for correcting their system
and re-submitting their results. The lesson learned
is that even if a scoring program produces an out-
put score, double checking the final scores should
be done manually.

6 Results

In this section, we describe the results of both tracks
of the shared task.

First, we define the primary evaluation metric for
both tracks, the F1 score:

F1 =
2P ·R
P +R

For the Binary decision track, precision and recall
are defined as

Pbool =
TP

TP + FP
(1)

Rbool =
TP

TP + FN
(2)

where TP (true positive) indicates the number of
sentences correctly predicted to need improvement;
FP indicates the number of false positives, or the
sentences incorrectly predicted to need improve-
ment); and FN (false negative) is the number of sen-
tences incorrectly predicted to not need improve-
ment. We additionally report Pearson’s correlation
coefficient and the agreement calculated with Co-
hen’s kappa.
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Team Acronym Algorithms Features Tools used Data used
HU CNN, RNN, LSTM Tokens Torch, word2vec AESW 2016, word2vec
HITS HMM,

Logistic Regression
CFG trees, POS n-grams,
token n-grams,
hand-made features

scikit-learn, pyenchant AESW 2016,
American English dic-
tionary, WordNet

ISWD SVM,
SubSet Tree kernel

Constituent tree SVM-Light, SST AESW 2016

Knowlet MaxEnt AtD.rule, AtD.string,
LT.rule, LT.string,
Token.root n-grams,
Token.category n-grams

GATE,
After the Deadline (AtD),
LanguageTool (LT)

AESW 2016

NTNU-YZU CNN Tokens,
Bag Of Words

Theano, word2vec AESW 2016,
word2vec, GloVe

UW-SU MaxEnt Parse trees, mal-rules DELPH-IN, ERG,
ACE parser

AESW 2016

Table 5: The summary of AESW 2016 Shared Task participant systems.

Team Precision Recall F-Score Correlation Kappa Mean rank
HU 0.5444 0.7413 0.6278 (1) 0.3760 (1) 0.3628 (1) 1
NTNU-YZU 0.5025 0.7785 0.6108 (2) 0.3324 (2) 0.3070 (2) 2
ISWD 0.4482 0.7279 0.5548 (3) 0.2168 (5) 0.1957 (5) 4.33
UW-SU 0.4145 0.8201 0.5507 (4) 0.1770 (6) 0.1373 (6) 5.33
HITS 0.3765 0.9480 0.5389 (5) 0.1037 (7) 0.0469 (8) 6.67
ISWD† 0.3960 0.6970 0.5051 (6) 0.0971 (8) 0.0835 (7) 7
NTNU-YZU† 0.6717 0.3805 0.4858 (7) 0.3282 (3) 0.3043 (3) 4.33
Knowlet 0.6241 0.3685 0.4634 (8) 0.2854 (4) 0.2672 (4) 5.33
baseline 0.3607 0.6004 0.4507 (9) 0.0001 (9) 0.0001 (9) 9

Table 6: Binary prediction results.

For the Probabilistic estimation track, rankings
are calculated based on F1 score using the mean
squared error (MSE):

Pprob =1− 1
n

∑
i

(πi −Gi)
2

πi > 0.5

Rprob =1− 1
m

∑
i

(πi −Gi)
2

Gi ∈ improve

For a sentence i, Gi = 1 if the sentence needs im-
provement in the gold standard, otherwise Gi = 0.
πi is the probabilistic estimate that the sentence
needs improvement, n is the number of sentences
predicted to need improvement (πi > 0.5), and m is
the number of sentences that actually need improve-
ment. We also calculated the cross-entropy between
the predictions and gold standards, defined as

H = −
∑

i

Gi log πi

Finally, we represented each probability with its
corresponding boolean value (y′i = True if πi >
0.5 else y′i = False) and calculated the binary-task

F-score (with precision and recall calculated as in
Equations 1 and 2), the correlation, and agreement
statistic.

The results of the Binary decision task are shown
in Table 6. The results for the Probabilistic estima-
tion task are provided in Table 7 and the analysis
over the corresponding boolean values is shown in
Table 8. When a team submitted more than one set
of results, we identify the two submissions as TEAM
and TEAM†.

7 Discussion

All submissions in both tasks have higher F-scores
than a random baseline. In the Binary task, the
deep learning approaches outperformed the other
models, which included support vector machines,
maximum entropy models, and logistic regression.
HU, which uses a combination of CNN and RNNs,
achieves the highest F-score and agreement with
the gold standard (Table 6). The second best sys-
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Team Precision Recall F-Score Correlation Cross-entropy Average STD Dev Mean rank
HITS 0.9333 0.7491 0.8311 (1) 0.0600 (8) 35,992 (5) 0.4986 0.0255 4.67
UW-SU 0.7118 0.8748 0.7849 (2) 0.2471 (5) 22,162 (1) 0.6276 0.0973 2.67
ISWD 0.7062 0.8182 0.7581 (3) 0.2690 (4) 28,385 (2) 0.5444 0.1941 3
NTNU-YZU 0.7678 0.7177 0.7419 (4) 0.4043 (2) 40,716 (6) 0.3948 0.2264 4
ISWD† 0.6576 0.8014 0.7224 (5) 0.1298 (7) 32,979 (4) 0.5743 0.2225 5.33
HITS† 0.6655 0.7889 0.7220 (6) 0.1666 (6) 30,238 (3) 0.5441 0.2031 5
NTNU-YZU† 0.7900 0.6166 0.6926 (7) 0.4173 (1) 54,903 (9) 0.3033 0.2280 5.67
Knowlet 0.7294 0.6591 0.6925 (8) 0.3516 (3) 50,370 (8) 0.3709 0.2942 6.33
Baseline 0.5963 0.7163 0.6508 (9) -0.0028 (9) 44,843 (7) 0.5511 0.2845 8.33
Gold standard 0.3606 0.4802

Table 7: Probabilistic estimation results.

Team Precisionb Recallb F-Scoreb Correlationb Kappab Mean rank
HITS 0.9282 0.0065 0.0129 (9) 0.0594 (7) 0.0079 (7) 7.67
UW-SU 0.3606 1.0000 0.5301 (3) n/a a (9) 0.0000 (8) 6.67
ISWD 0.4482 0.7279 0.5548 (2) 0.2168 (4) 0.1957 (4) 3.33
NTNU-YZU 0.5922 0.5344 0.5618 (1) 0.3350 (1) 0.3340 (1) 1
ISWD† 0.3960 0.6970 0.5051 (6) 0.0971 (6) 0.0835 (6) 6
HITS† 0.4514 0.6070 0.5177 (5) 0.1833 (5) 0.1775 (5) 5
NTNU-YZU† 0.6717 0.3805 0.4858 (7) 0.3282 (2) 0.3043 (2) 3.67
Knowlet 0.5832 0.4778 0.5254 (4) 0.3002 (3) 0.2969 (3) 3.33
Baseline 0.3600 0.6000 0.4500 (8) -0.0017 (8) -0.0015 (9) 8.33

Table 8: Probabilistic estimation results, using the corresponding boolean value.

aUW-SU reported all probabilities πi > 0.5, and therefore σπ = 0 and r is undefined.

tem is NTNU-YZU, which trained a CNN model.
Both of these models used word2vec word embed-
dings, with NTNU-YZU testing both word2vec and
GloVe. The bottom two teams according to the F-
score, NTNU-YZU† and Knowlet, have the third
and fourth strongest agreement with the gold stan-
dard, respectively. Compared to the other submis-
sions, these systems have the highest precision of
0.6717 and 0.6241, respectively, with the precision
of the other systems ranging from 0.38 to 0.54. They
also had the lowest recall (0.3805 and 0.3685) com-
pared to the other teams, with recall between 0.70–
0.95. This suggests the importance of precision in
this task.

For the Probabilistic estimation track, HITS had
the highest precision (0.9333) and F-score (0.8311)
(Table 7). The other teams all had precision >=
0.66 and recall >= 0.62. However, the rankings
found by the F-score and the correlation diverge sig-
nificantly for three systems: HITS, NTNU-YZU†,
and Knowlet. While HITS has the highest F-score,
it also has the weakest correlation with the gold
standard. NTNU-YZU† and Knowlet have the low-
est F-score but the first and third strongest corre-

lation, respectively. The ranking by cross-entropy
is similar to the F-score ranking with the exception
of HITS, which has the fifth highest cross-entropy.
To address this disparity, we calculated additional
rankings of the systems by converting the output
probabilities into the corresponding boolean value
(True if πi > 0.5, and False otherwise) and report-
ing the values of the same metrics we used to eval-
uate the Binary prediction task (Table 8). These
statistics are indicated with a subscript b. In this
analysis, the ranking of HITS declines significantly
from the original Probabilistic evaluation, with the
lowest F-scoreb of all systems. The precisionb of
HITS is nearly perfect (0.9282) but recallb is al-
most 0 (0.0129), which explains why the F-scoreb,
Correlationb, and Kappab statistics are all so low.
Knowlet improves to the fourth-ranked system by
F-scoreb from the last. By the correlation and agree-
ment statistics, NTNU-YZU and NTNU-YZU† are
the best two systems in the converted probabilities
analysis.

As demonstrated, different statistics produce dis-
similar system rankings. The official scores for both
tasks are the F-score, as defined in the workshop
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description, but there is evidence that the evalua-
tion could be improved in future tasks. UW-SU
and HITS pointed out that favoring recall over preci-
sion improves their F-score, which increases the sys-
tem’s ranking but decreases its accuracy. Precision
has been shown to be more effective when providing
feedback on grammatical errors, with less, accurate
feedback better than inaccurate feedback (Nagata
and Nakatani, 2010). For future shared tasks, ad-
ditional evaluation methods should be investigated,
including F0.5, which weights precision more than
recall, and a comparison to human evaluation, such
as is done by the Workshop on Machine Translation
(Bojar et al., 2015).

7.1 The trends of system predictions

The initial impetus to organize this competition was
to gain insight into the specifics of scientific writing
as a genre and, with the help of participants, to make
an estimation of whether it is possible to offer any
robust automatic solutions to support researchers
with non-native English background in writing sci-
entific reports. There are several facts and their im-
plications to be considered:

– The first fact deals with formal requirements of
the genre. Scientific writing has very clear – and
to a certain extent limited – aims, namely to in-
form other researchers in the field of the latest
findings or important issues, usually presented in
the form of articles, reports, grant proposals, the-
ses, etc. Each of these follow roughly the same
structure comprising more or less obligatory parts
(e.g. abstract, data, method). The intended audi-
ence – i.e. other researchers – should be famil-
iar with the standard to be able to skim for ma-
jor findings and conclusions in the document, not
wasting time on irrelevant parts. Scientific lan-
guage is therefore rather rigid to fit this need.

– Another fact we need to consider is that most
of the scientific writing is done by mature users
of English, who in most cases do not make
second-language-learner types of mistakes, at
least not frequently. This fact is reflected in
the type of edits in our data: they are cor-
rections, mostly reflecting linguistic conventions
of the genre. Correct use of punctuation, hy-
phenation, digits, capitalization, abbreviations,

and domain-appropriate lexical choices are the
type of corrections that dominate profession-
ally proofread scientific papers, and are unique
to scientific writing. Among more classical
second-language type of errors, we can see
verb (dis)agreement; (in)appropriate use of ar-
ticles, prepositions and plurals, (mis)spellings,
(in)correct choice of word, etc. However, these
traditional error types are much less represented
in scientific writing.

To see how successfully our task participants have
coped with the challenges of scientific writing, we
have analyzed main trends concerning which error
types were detected by all algorithms (successfully
detected as ‘need improvement’ by all systems) ver-
sus which none were able to capture (i.e. sentences
that were annotated as ‘need improvement’ but no
one could detect these sentences).

There are four cases presented in Table 9:

Prediction of
all systems

Gold annotation Total
Correction

needed
Correct

Correction needed 7,899 2,663 10,563
Correct 32 1,201 1,234

Table 9: Agreement between gold annotations and all systems

on test data, in number of sentences

We can observe 7,899 cases of successful agree-
ment between the proofreaders and all the teams
about sentences that need correction. Most cases
of article misuse, punctuation infelicities, diverting
capitalization, unconventional usage of digits, ab-
breviations and hyphenation were detected by all
teams, including sentences where lexical choices
were not optimal, e.g.:

– For computations we chose _MATH_ and
a spectral interval in the vicinity of the resonance
frequency of the mode with radial number
_MATH_, _MATH_.

– Provided _MATH_ has no zero in its initial
data, the log-logarithmic singularity at _MATH_
causes the left -hand side to blow up at _MATH_,
thereby forcing _MATH_ as _MATH_.

– Given this reasoning we have evaluated the one
one loop and eighteen18 two loop vacuum bubble
graphs contributing to (_REF_).
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– SimilarSimilarly to the previous case, we have a
line of fixed points with positive slope _MATH_ in
(_MATH_, _MATH_) plane as shown in Figure 2.

In 32 cases all the teams have unanimously dis-
agreed with the gold standard on the need of cor-
rection. These cases cover

– context deficit, where on the sentence level it is
impossible to identify the correct need of an arti-
cle or an adverb, e.g.:
– Next, we give thea stability analysis.
– The algorithm then terminates.

– alternative lexical choices, in particular more for-
mal variants or special terminological usages,
e.g. notice versus note, fitted parameter versus
fit parameter;

– a number of notorious matters of opinion, such as
replacing this paper for the paper and vice versa,
e.g.:
– TheThis paper is organized as follows.
– Section 5 concludes thisthe paper.
– First, we derive the following: _MATHDISP_.

– style/tense requirements of the genre, e.g. using
present tense referring to the results in tables:
– The results wereare presented in Figure

_REF_.
– use of punctuation in the following cases:

– Namely, we observe the following.:
– Example:.

– stylistic preferences:
– Since _MATH_ and _MATH_, we can easily

get _MATH_.
– This error is only limited by the instrument

resolution of the instrument.

It can be argued that in most of those 32 cases
corrections are optional.

One conclusion that can be drawn from this task
performance analysis is that scientific writing as a
genre needs standardization. We have encountered
several types of inconsistencies in the data, for ex-
ample in the case of hyphenation (nonlinear for
non-linear; and vice versa); or in the case of expres-
sions like this paper for the paper and vice versa.
Even though it seems that the area could benefit
from standardization, we are well aware that lan-
guage can never be fully standardized. At most,

there are only and can only be guidelines or con-
sensus on what good language should look like.

Another conclusion is that automatic detection of
scientific prose errors as an area of research would
benefit from error-type annotation. More rigorous
analysis of the data in terms of the type of corrected
deviations could give us a better insight into what
the genre of scientific writing is and facilitate more
error-aware approaches to automatic proofreading of
scientific papers.

Yet another conclusion is that stepping outside of
a sentence boundary may facilitate recognition of a
number of other error types that at the moment go
unnoticed due to context deficit, among others in-
consistent use of abbreviations, certain cases of arti-
cle usage, and lacking adverbs, just to name a few.

8 Conclusions

In this work we have reported and described the re-
sults of the AESW Shared Task (Automatic Eval-
uation of Scientific Writing), which focuses on the
problem of identifying sentences in scientific works
that require editing. The main motivation of this task
is to promote the use of NLP tools to help non-native
writers of English to improve the quality of their sci-
entific writing. From the research perspective, on the
other hand, this effort aims at promoting a common
framework and standard data set for developing and
testing automatic evaluation systems for the scien-
tific writing domain.

From a total of 18 groups registered for the
shared task, six of them submitted results and pub-
lished reports describing their implemented sys-
tems. As a consequence, different machine learn-
ing paradigms (including neural networks, support
vector machines, maximum entropy, and logistic re-
gression) have been tested over the two proposed
evaluation modalities (binary and probabilistic esti-
mation). The shared task has helped establish a ref-
erence for the state-of-the-art in the automatic eval-
uation of scientific writing, in which the obtained
results demonstrate that there is still room for im-
provement. The availability of both the data set and
the evaluation tools will facilitate the path for future
research work in this area.

In the future, we plan to improve on current sys-
tem performances by implementing and evaluating
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different system combination strategies. Addition-
ally, as suggested by the observed ranking inconsis-
tencies across the different evaluation metrics in the
probabilistic estimation task, we also need to con-
duct further analysis and take a more detailed look at
these results to determine the best evaluation scheme
to be used for this modality.
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