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Abstract

We present the first known experiments incorpo-
rating unsupervised bilingual nonterminal cat-
egory learning within end-to-end fully unsu-
pervised transduction grammar induction using
matched training and testing models. Despite
steady recent progress, such induction experi-
ments until now have not allowed for learning
differentiated nonterminal categories. We di-
vide the learning into two stages: (1) a boot-
strap stage that generates a large set of cate-
gorized short transduction rule hypotheses, and
(2) a minimum conditional description length
stage that simultaneously prunes away less use-
ful short rule hypotheses, while also iteratively
segmenting full sentence pairs into useful longer
categorized transduction rules. We show that
the second stage works better when the rule
hypotheses have categories than when they do
not, and that the proposed conditional descrip-
tion length approach combines the rules hypoth-
esized by the two stages better than a mixture
model does. We also show that the compact
model learned during the second stage can be
further improved by combining the result of dif-
ferent iterations in a mixture model. In total,
we see a jump in BLEU score, from 17.53 for
a standalone minimum description length base-
line with no category learning, to 20.93 when
incorporating category induction on a Chinese–
English translation task.

1 Introduction

Even simple lexical translations are surprisingly
context-dependent, in this paper we aim to learn a
translation model that can base contextual translation
decision on more than lexical n-grams, both in the in-
put and output language. In a syntactic translation sys-

tem such as inversion transduction grammars (ITGs),
this can be achieved with unsupervised bilingual cat-
egory induction. Surface-based and hierarchical mod-
els only use output language n-grams, and syntactic
model typically choose the categories from either the
input or the output language, or attempts to heuris-
tically synthesize a set of bilingual categories from
the two monolingual sets. In contrast, we attempt to
learn a set of bilingual categories without supervision,
which gives a unique opportunity to strike a good bal-
ance between the two approaches.
The specific translation of words and segments de-

pend heavily on the context. A grammar-based trans-
lation model can model the context with nonterminal
categories, which allows (a) moving beyond n-grams
(as a compliment to the language model prior which is
typically preserved), and (b) taking both the input and
output language context into account. Typical syn-
tactic MT systems either ignore categories (bracket-
ing ITGs and hierarchical models), or derive the cat-
egories from tree-banks, which relies on choosing the
set of categories from either language, or heuristically
synthesize it from both; both approaches eliminates
the full benefits of (b). In contrast, unsupervised in-
duction of a bilingual category set has the potential to
fully take advantage of (b).
Recent work has seen steady improvement in

translation quality for completely unsupervised trans-
duction grammar induction under end-to-end purely
matched training and testing model conditions. In this
paper, we take a further step along this line of research
by incorporating unsupervised bilingual category in-
duction into the learning process. To our knowledge,
no previous attempt has been made to incorporate
bilingual categories under such conditions. Matching
the training and testing models as closely as possible is
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a fundamental principle taken for granted in most ap-
plications of machine learning, but for machine trans-
lation it has been the norm to see very different as-
sumptions during training and testing, which makes it
difficult to assess the effects of changing or tweaking
the model—the observed effect may not be repeatable.
By matching training and testing conditions, this risk
is minimized.
A bilingual category is similar to a monolingual cat-

egory in that it is realized as the left-hand side label
of a (transduction) grammar rule, but differ in what
it represents. A monolingual category only encodes
how something relates to other parts of the language,
a bilingual category should encode how a translation
equivalence relates to other translation equivalences.
It needs to account for the relationship between two
languages as well as the relationship between the parts
of the individual languages. This makes the usage of
existing tagging schemes problematic. It would be
possible to use the categories from either of the lan-
guages (assuming they are languages with enough re-
sources) and impose these on the other language. This
could work for closely related languages, but we are
translating between English and Chinese: two very
different languages, and we know that the category
sets of either language is a poor fit for the other. An-
other possibility is to take the cross-product of the
monolingual category sets, but handling such a large
set of categories becomes unwieldy in ITG induction,
a process which is resource intensive as is, without ex-
ploding the set of nonterminals. Instead, we opt for
unsupervised learning of the bilingual categories dur-
ing induction of the ITG itself.
The novel learning method we propose consists of

an initial hypothesis generator that proposes (a) short
lexical translations and (b) nonterminal categories,
screened by a mechanism that (c) verifies the useful-
ness of the hypotheses while (d) uses them to further
generate longer transduction rules. For convenience,
our implementation breaks this into two stages: one
that generates a large set of short transduction rule hy-
potheses, and another that iteratively segments long
transduction rules (initialized from the sentence pairs
in the training data) by trying to reuse aminimal subset
of the hypotheses while chipping away at the long sen-
tence pair rules until the conditional description length
is minimized.
The paper is structured so that, after giving the back-

ground situated within the context of relevant related
research (Section 2 ), we define the proposed condi-
tional description length approach, which represents
the ideal model search (Section 3 ). We then detail the
two stages of our proposed learning algorithm, which
represents our approximation of the search problem
(Sections 4 and 5 ). After the theory we detail the par-
ticular experiments we conducted (Section 6 ) and the
results from those experiments (Section 7). Finally,
we offer some conclusions (Section 8 ).

2 Background

Description length has been used before to drive itera-
tive segmenting ITG learning (Saers et al., 2013). We
will use their algorithm as our baseline, but the simple
mixture model we used then works poorly with our
ITG with categories. Instead, we propose a tighter in-
corporation, where the rule segmenting learning is bi-
ased towards rules that are present in the categorized
ITG.
We refer to this objective as minimizing conditional

description length, since technically, the length of the
ITG being segmented is conditioned on the catego-
rized ITG. Conditional description length (CDL) is de-
tailed in Section 3. The minimum CDL (MCDL) ob-
jective differs from the simple mixture model in that
it separates the rule hypotheses into two groups: the
ones that are used during segmentation and therefor
carries over to the final induced ITG, and those that
do not and are effectively filtered out. As we will see,
MCDL far outperforms the mixture model when one
of the ITGs has categories and the other does not.
A problem with the description length family of

learning objectives is that they tend to commit to a
segmentationwhen it would bewise to keep the unseg-
mented rule as well—a significant part of the success
of phrase-based translation models comes from their
approach to keep all possible segmental translations
(that do not violate the prerequisite word alignment).
We will show that we can counter this by combining
different iterations of the same segmentation process
into a single grammar, which gives a significant bump
in BLEU scores.
By insisting on the fundamental machine learning

principle of matching the training model to the test-
ing model, we do forfeit the short term boost in BLEU
that is typically seen when embedding a learned ITG

27



in the midst of the common heuristics employed in sta-
tistical machine translation. For example, Cherry and
Lin (2007), Zhang et al. (2008), Blunsom et al. (2008),
Blunsom et al. (2009), Haghighi et al. (2009), Saers
and Wu (2009), Blunsom and Cohn (2010), Burkett et
al. (2010), Riesa andMarcu (2010), Saers et al. (2010),
Saers and Wu (2011), Neubig et al. (2011), and Neu-
big et al. (2012) all plug some aspect of the ITGs they
learn into training pipelines for existing, mismatched
decoders, typically in the form of the word alignment
that an ITG imposes on a parallel corpus as it is bi-
parsed. Our own past work has also taken similar ap-
proaches, but it is not necessary to do so—instead, any
ITG can be used for decoding by directly parsing with
the input sentence as a hard constraint, as we do in this
paper. Although it allows you to tap into the vast engi-
neering efforts that have gone into perfecting existing
decoders, it also prevents you from surpassing them
in the long run. The motivation for our present series
of experiments is that, as a field we are well served
by tackling the fundamental questions as well, and not
exclusively focusing on engineering short term incre-
mental BLEU score boosts where the quality of an in-
duced ITG itself is obscured because it is embedded
within many other heuristic algorithms.

When the structure of an ITG is induced without su-
pervision, it is possible to get an effect that resembles
MDL. Zhang et al. (2008) impose a sparsity prior over
the rule probabilities to prevent the search from having
to consider all the rules found in the Viterbi biparses.
Blunsom et al. (2008), Blunsom et al. (2009), Blunsom
and Cohn (2010), Neubig et al. (2011), and Neubig et
al. (2012) use Gibbs sampling to learn ITGs with pri-
ors over the rule structures that serve a similar purpose
to the model length component of description length.
All of the above evaluate their models by biparsing the
training data and feeding the imposed word alignment
into an existing, mismatched SMT learning pipeline.

Transduction grammars can also be induced with
supervision from treebanks, which cuts down the
search space by enforcing external constraints (Gal-
ley et al., 2006). Although this constitutes a way to
borrow nonterminal categories that help the translation
model, it complicates the learning process by adding
external constraints that are bound to match the trans-
lation model poorly.

3 Conditional description length

Conditional description length (CDL) is a general
method for evaluating a model and a dataset given a
preexisting model. This makes it ideal for augment-
ing an existing model with a variant model of the same
family. In this paper we will apply this to augment an
existing inversion transduction grammar (ITG) with
rules that are found with a different search strategy.
CDL is similar to description length (Solomonoff,
1959; Rissanen, 1983), but the length calculations
are subject to additional constraints. When minimum
CDL (MCDL) is used as a learning objective, all
the desired properties of minimum description length
(MDL) are retained: the model is allowed to become
less certain about the data provided that the it shrinks
sufficiently to compensate for the loss in precision.
MDL is a goodway to prevent over-fitting, andMCDL
retains this property, but for the task of inducing a
model that is specifically tailored toward augmenting
an existing model. Formally, the conditional descrip-
tion length is:

DL (Φ, D|Ψ) = DL (D|Φ, Ψ) + DL (Φ|Ψ)

whereΨ is the fixed preexisting model,Φ is the model
being induced, and D is the data. The total uncondi-
tional length is:

DL (Ψ, Φ, D) =

DL (D|Φ, Ψ) + DL (Φ|Ψ) + DL (Ψ)

In minimizing CDL, we fix DL (Ψ) instead of allow-
ingΨ to vary as wewould in full MCDL; to be precise,
we seek:

argmin
Φ

DL (Ψ, Φ, D)

= argmin
Φ

DL (D|Φ, Ψ) + DL (Φ|Ψ) + DL (Ψ)

= argmin
Φ

DL (Φ, D|Ψ)

= argmin
Φ

DL (D|Φ, Ψ) + DL (Φ|Ψ)

To measure the CDL of the data, we turn to informa-
tion theory to count the number of bits needed to en-
code the data given the two models under an optimal
encoding (Shannon, 1948), which gives:

DL (D|Φ, Ψ) = −lg P (D|Φ, Ψ)
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To measure the CDL of the model, we borrow the
encoding scheme for description length presented in
Saers et al. (2013), and define the conditional descrip-
tion length as:

DL (Φ|Ψ) ≡ DL (Φ)−DL (Φ∩Ψ)

To determine whether a model Φ has a shorter con-
ditional description length, than another model Φ′, it
is sufficient to be able to subtract one length from the
other. For the model length, this is trivial as we merely
have to calculate the length of the difference between
the two models in our theoretical encoding. For data
length, we need to solve:

DL
(
D|Φ′, Ψ

)
−DL (D|Φ, Ψ)

= −lg P
(
D|Φ′, Ψ

)
−−lg P (D|Φ, Ψ)

= −lg P (D|Φ′, Ψ)

P (D|Φ, Ψ)

4 Generating rule hypotheses

In the first stage of our learning approach, we gener-
ate a large set of possible rules, from which the second
stage will choose a small subset to keep. The goal of
this stage is to keep the recall high with respect to a
theoretical “optimal ITG”, precision is achieved in the
second stage. We rely on chunking and category split-
ting to generate this large set of rule hypotheses.
To generate these high-recall ITGs, we will follow

the bootstrapping approach presented in Saers et al.
(2012), and start with a finite-state transduction gram-
mar (FSTG), do the chunking and category splitting
within the FSTG framework before transferring the re-
sulting grammar to a corresponding ITG. This is likely
to produce an ITG that performs poorly on its own, but
may be informative in the second stage.

5 Segmenting rules

In the second stage of our learning approach, we seg-
ment rules explicitly representing the entire training
data, into smaller—more general—rules, reusing rules
from the first stage whenever we can. By driving
the segmentation-based learning with a minimum de-
scription length objective, we are learning a very con-
cise ITG, and by conditioning the description length
on the rules hypothesized in the first stage, we sepa-
rate the good rule hypotheses from the bad: the good

rules—along with their categorizing left-hand sides—
are reused and the bad are not.
In this work, we are only considering segmenta-

tion of lexical rules, which keeps the ITG in nor-
mal form, greatly simplifying processing without al-
tering the expressivity. A lexical ITG rule has the
form A → e0..T /f0..V , where A is the left-hand side
nonterminal—the category, e0..T is a sequence of T
(from position 0 up to but not including position T )L0

tokens and f0..V is a sequence of V (from position 0 up
to but not including position V )L1 tokens. When seg-
menting this rule, three new rules are produced which
take one of the following forms depending on whether
the segmentation is inverted or not:

A→ [BC] A→ ⟨BC⟩
B → e0..S/f0..U or B → e0..S/fU..V

C → eS..T /fU..V C → eS..T /f0..U

All possible splits of the terminal rule can be ac-
counted for by choosing the identities of B, C, S and
U , as well as whether the split it straight or inverted.

Algorithm 1 Iterative rule segmenting learning driven
by minimum conditional description length.

Φ ▷ The ITG being induced
Ψ ▷ The ITG the learning is conditioned on
repeat

δsum ← 0
bs← collect_biaffixes(Φ)
bδ ← []
for all b ∈ bs do

δ ← eval_cdl(b, Ψ, Φ)
if δ < 0 then

bδ ← [bδ, ⟨b, δ⟩]
sort_by_delta(bδ)
for all ⟨b, δ⟩ ∈ bδ do

δ′ ← eval_cdl(b, Ψ, Φ)
if δ′ < 0 then

Φ← make_segmentations(b, Φ)
δsum ← δsum + δ′

until δsum ≥ 0
return Φ

The pseudocode for the iterative rule segment-
ing learning algorithm driven by minimal condi-
tional description length can be found in Algo-
rithm 1. It uses the methods collect_biaffixes,
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eval_cdl, sort_by_delta and make_segmentations.
These methods collect all biaffixes in the rules of an
ITG, evaluate the difference in conditional description
length, sorts candidates by these differences, and com-
mits to a given set of candidates, respectively. To eval-
uate the CDL of a proposed set of candidate segmen-
tations, we need to calculate the difference in CDL be-
tween the current model, and the model that would re-
sult from committing to the candidate segmentations:

DL
(
D, Φ′|Ψ

)
−DL (D, Φ|Ψ)

= DL
(
D|Φ′, Ψ

)
−DL (D|Φ, Ψ)

+ DL
(
Φ′|Ψ

)
−DL (Φ|Ψ)

The model lengths are trivial, as we merely have to
encode the rules that are removed and inserted accord-
ing to our encoding scheme and plug in the summed
lengths in the above equation. This leaves the length
of the data, which would be:

DL
(
D|Φ′, Ψ

)
−DL (D|Φ, Ψ) = −lg P (D|Φ′, Ψ)

P (D|Φ,Ψ)

For the sake of convenience in efficiently calculating
this probability, we make the simplifying assumption
that:

P (D|Φ, Ψ) ≈ P (D|Φ) = P (D|θ)
where θ represents the model parameters, which re-
duces the difference in data CDL to

−lg P (D|θ′)
P (D|θ)

which lets us determine the probability through bipars-
ing with the model being induced. Biparsing is, how-
ever, a very expensive operation, and we are making
relatively small changes to the ITG, so we will fur-
ther assume that we can estimate the CDL difference
in closed form based on the model parameters. Given
that we are splitting the rule r0 into the three rules r1,
r2 and r3, and that the probability mass of r0 is dis-
tributed uniformly over the new rules, the new gram-
mar parameters θ′ will be identical to θ, except that:

θ′
r0 = 0

θ′
r1 = θr1 +

1

3
θr0

θ′
r2 = θr2 +

1

3
θr0

θ′
r3 = θr3 +

1

3
θr0

We estimate the CDL of the corpus given this new pa-
rameters to be:

−lg P (D|θ′)
P (D|θ) ≈ −lg

θ′
r1θ

′
r2θ

′
r3

θr0

To generalize this to a set of rule segmentations,
we construct the new parameters θ′ to reflect all the
changes in the set in a first pass, and then sum the dif-
ferences in CDL for all the rule segmentations with the
new parameters in a second pass.

6 Experimental setup

The learning approach we chose has two stages, and
in this section we describe the different ways of using
these two stages to arrive at a final ITG, and how we
intend to evaluate the quality of those ITGs.
For the first stage, we will use the technique de-

scribed in Saers et al. (2012) to start with a finite-state
transduction grammar (FSTG) and perform chunking
before splitting the nonterminal categories andmoving
the FSTG into ITG form. We will perform one round
of chunking, and two rounds of category splitting (re-
sulting in 4 nonterminals and 4 preterminals, which
becomes 8 nonterminals in the ITG form). Splitting
all categories is guarnteed to at least double the size
of the grammar, which makes is impractical to repeat
more times. At each stage, we run a few iterations of
expectationmaximization using the algorithm detailed
in Saers et al. (2009) for biparsing. For comparison
we also bootstrap a comparable ITG that has not had
the categories split. Before using either of the boot-
strapped ITGs, we eliminate all rules that do not have
a probability above a threshold that we fixed to 10−50.
This eliminates the highly unlikely rules from the ITG.
For the second stage, we use the iterative rule seg-

mentation learning algorithm driven byminimum con-
ditional description length that we introduced in Sec-
tion 5. We will try three different variants on this al-
gorithm: one without an ITG to condition on, one con-
ditioned on the chunked ITG, and one conditioned on
the chunked ITG with categories. The first variant is
completely independent from the chunked ITGs, sowe
will also try to create mixture models with it and the
chunked ITGs.
Since the MCDL objective tends to segment large

rules and count on them being recreatable when
needed, many of the longer rules that would be good
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Table 1: Experimental results. Chunked is the base model, which has categories added to produce chunked w/categories.
Segmented corresponds to the second learning stage, which can be done in isolation (only), mixed with a base model, or
conditioned on a base model.

Model BLEU NIST Categories
Chunked ITG only 3.76 0.0119 1
Chunked ITG w/categories only 9.39 0.7481 8
Segmented ITG only 17.53 4.5409 1
Segmented ITG mixed with chunked ITG 10.23 0.2886 1
Segmented ITG mixed with chunked ITG w/categories 12.06 1.1415 8
Segmented ITG conditioned on chunked ITG 17.04 4.4920 1
Segmented ITG conditioned on chunked ITG w/categories 19.02 4.6079 8
... with iterations combined 20.20 4.8287 8
... and improved search parameters 20.93 4.8426 8
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Figure 1: Description length in bits over the different iter-
ations of segmenting search. The lower portion represents
the conditional description length of the model,DL (Φ|Ψ),
and the upper portion represents the conditional description
length of the data given the model, DL (D|Φ, Ψ).

to have when translating are not explicitly in the gram-
mar. This is potentially a source of translation mis-
takes, and to investigate this, we create a mixture
model from iterations of the segmenting learning pro-
cess leading up to the learned ITG.
All the above outlined ITGs are trained using the

IWSLT07 Chinese–English data set (Fordyce, 2007),
which contains 46,867 sentence pairs of training data,
and 489 Chinese sentences with 6 English reference
translations each as test data; all the sentences are
taken from the traveling domain. Since the Chinese
is written without whitespace, we use a tool that tries
to clump characters together into more “word like” se-
quences (Wu, 1999).
To test the learned ITGs, we use them as trans-
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Figure 2: Rule count versus BLEU scores for the boot-
strapped ITG, the pruned bootstrapped ITG and the seg-
mented ITG conditioned on the pruned bootstrapped ITG.

lation systems with our in-house ITG decoder. The
decoder uses a CKY-style parsing algorithm (Cocke,
1969; Kasami, 1965; Younger, 1967) and cube prun-
ing (Chiang, 2007) to integrate the language model
scores. For language model, we use a trigram lan-
guage model trained with the SRILM toolkit (Stolcke,
2002) on the English side of the training corpus. To
evaluate the resulting translations, we use BLEU (Pa-
pineni et al., 2002) and NIST (Doddington, 2002).

7 Results

In this section we present the empirical results: bilin-
gual categories help translation quality under the ex-
perimental conditions detailed in the previous section.
The results are summarized in Table 1. As predicted
the base chunked only ITG fares poorly, while the cat-
egories help a great deal in the chunked w/categories
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only ITG—though the scores are not very reliable
when in this low range.
The trade-off between model and data size during

segmentation conditioned on the ITG with categories
is illustrated in Figure 1. It starts out with most of the
total description being used to describe the model, and
very little to describe the data. This is the degenerate
situation where every sentence pair is its own lexical
rule. Then there is a sharp drop in model size with
a slight increase in data size. This is where the most
dramatic generalizations take place. It levels off fairly
quickly, and the minor adjustments that take place on
the plateau still represent valid generalizations, they
just have a very small effect on the over-all description
length of either the model or the data.
That the chunked ITG with split categories suffers

from having too many irrelevant rules is clearly seen
in Figure 2, where we plotted the number of rules con-
trasted to the BLEU score. Merely pruning to a thresh-
old helps somewhat, but the sharper improvement—
both in terms of model size and BLEU score—is seen
with the filtering that MCDL represents.
A number of interesting lessons emerge from the re-

sults, as follows.

7.1 Minimum CDL outperforms mixture modeling
The segmenting approach works as expected (seg-
mented only), essentially reproducing the results re-
ported by Saers et al. (2013) for this style of bilingual
grammar induction.
Interestingly, however, where they had success with

the mixture model combining the base ITGs with the
ITG learned through the segmenting approach (seg-
mented mixed with...), we see a significant drop in
translation quality. This may be because we have cat-
egories in our base ITG and they do not.

7.2 Category induction strongly improves
minimum CDL learning

When we use the base ITGs to condition the segment-
ing approach, we see something interesting. The base
ITG that has categories causes a sharp 1.5 BLEU point
rise in translation quality (compare segmented only to
segmented conditioned on chunked w/categories).
In contrast, the base ITG that does not have cate-

gories causes a slight 0.5 BLEU point fall in trans-
lation quality (compare segmented only to segmented
conditioned on chunked).

7.3 Redundant segmental rule granularities help

As mentioned, the minimum description length objec-
tive may be theoretically nice, but it also relies on the
learned ITG being able to reassemble segmented rules
with fairly high fidelity at decoding time. To demand
that all transduction rules are reduced to exactly a sin-
gle right level of granularity may be a bit of a tall order.
Our way to test this was to uniformly mix the

ITGs at different iterations though the segmenting pro-
cess. By mixing the ITG after each iteration up to
the one labeled segmented conditioned on chunked
w/categories, we get the same model labeled ...with
iterations combined, which secures an additional 1.18
BLEU points.

7.4 Tuning search parameters

Lastly, for the best approach, we further experimented
with adjusting the parameters somewhat. Pruning the
base grammar harder (a threshold of 10−10 instead of
10−50), and allowing for a wider beam (100 items in-
stead of 25) during the parsing part of the segment-
ing learning approach, we see the BLEU score rise to
20.93.

7.5 Analysis of learned rules

A manual inspection of the content of the categories
learned reveals that the main nonterminal contains
mainly structural rules, segments that it could not seg-
ment further. The latter type of rules varies from full
clauses such as that ' s a really beautiful dress/真是件漂
亮的衣服 to reasonable translation units such as Kazuo
Yamada/ＫａｚｕｏＹａｍａｄａ, which is really hard
to capture because each Latin character on the Chinese
side is its own individual token whereas the English
side has whole names as individual tokens.
A second nonterminal category contains punctua-

tion such as full stop and question mark, along with ,
sir/，先生, which can be considered as a form of punc-
tuation in the domain of the training data.
A third nonterminal category contains personal pro-

nouns in subject form (I, we, he, and also ambiguous
pronouns that could be either subject or object form
such as you and it) paired up with their respective Chi-
nese translations. It also contains please/请, which—
like pronouns in subject form—occurs frequently in
the beginning of sentence pairs.
A fourth nonterminal category contains pairs such
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as can/吗, do you/吗, is/吗, could you/吗 and will you/吗—
instances where Chinese typically makes a statement,
possibly eliding the pronoun, and adds the question
particle (吗) to the end, and where English prefixes
that statement with a verb; both languages use a ques-
tion mark in the particular training data we used. The
main nonterminal learned that this category typically
was used in inverted rules, and the other translation
equivalences conform to that pattern. They include
where/在哪, where the Chinese more literally trans-
lates to on/at which, what/什么 which is a good trans-
lation, and have/了, where the English auxiliary verb
corresponds well to the Chinese particle signaling per-
fect aspect—that the action described in the preceed-
ing clause is finished.
Other categories appear to still be consolidating,

with a mix of nouns, verbs, adjectives, and adverbials.
Chinese words and phrases typically can function as
any of these, so it is possible that differentiating them
may require increased emphasis on the English half of
the rules.
Although the well-formed categories are few and

somewhat trivial, it is very encouraging to see them
emerging without any form of human supervision. Fu-
ture work will expand to continue learning an even
wider range of categories.

8 Conclusions

We have presented the first known experiments for
incorporating bilingual category learning within com-
pletely unsupervised transduction grammar induction
under end-to-end matched training and testing model
conditions. The novel approach employs iterative
rule segmenting driven by a minimum conditional de-
scription length learning objective, conditioned on a
prior defined by a stochastic ITG containing automat-
ically induced bilingual categories. We showed that
this learning objective is superior to the previously
used mixture model, when bilingual categories are in-
volved. We also showed that the segmenting learn-
ing algorithm may be committing too greedily to seg-
mentations since combining the ITGs with different
degrees of segmentation gives better scores than any
single point in the segmentation process; this points
out an interesting avenue of future research. We fur-
ther saw that the segmenting minimization of condi-
tional description length can pick up some of the sig-

nal in categorization that was buried in noise in the
base ITG the induction was conditioned on, leading to
an ITG with much clearer categories. In total we have
seen an improvement of 3.40 BLEU points due to the
incorporation of unsupervised category induction.
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