
Proceedings of the TextGraphs-8 Workshop, pages 44–52,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

Understanding seed selection in bootstrapping

Yo Ehara†∗ Issei Sato‡
† Graduate School of Information Science and Technology ‡ Information Technology Center

The University of Tokyo / 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
∗ JSPS Research Fellow

Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, Japan
{ehara@r., sato@r., oiwa@r., nakagawa@}dl.itc.u-tokyo.ac.jp

Hidekazu Oiwa†∗ Hiroshi Nakagawa‡

Abstract

Bootstrapping has recently become the focus
of much attention in natural language process-
ing to reduce labeling cost. In bootstrapping,
unlabeled instances can be harvested from the
initial labeled “seed” set. The selected seed set
affects accuracy, but how to select a good seed
set is not yet clear. Thus, an “iterative seed-
ing” framework is proposed for bootstrapping
to reduce its labeling cost. Our framework
iteratively selects the unlabeled instance that
has the best “goodness of seed” and labels the
unlabeled instance in the seed set. Our frame-
work deepens understanding of this seeding
process in bootstrapping by deriving the dual
problem. We propose a method called ex-
pected model rotation (EMR) that works well
on not well-separated data which frequently
occur as realistic data. Experimental results
show that EMR can select seed sets that pro-
vide significantly higher mean reciprocal rank
on realistic data than existing naive selection
methods or random seed sets.

1 Introduction

Bootstrapping has recently drawn a great deal of
attention in natural language processing (NLP) re-
search. We define bootstrapping as a method for
harvesting “instances” similar to given “seeds” by
recursively harvesting “instances” and “patterns” by
turns over corpora using the distributional hypothe-
sis (Harris, 1954). This definition follows the def-
initions of bootstrapping in existing NLP papers
(Komachi et al., 2008; Talukdar and Pereira, 2010;
Kozareva et al., 2011). Bootstrapping can greatly

reduce the cost of labeling instances, which is espe-
cially needed for tasks with high labeling costs.

The performance of bootstrapping algorithms,
however, depends on the selection of seeds. Al-
though various bootstrapping algorithms have been
proposed, randomly chosen seeds are usually used
instead. Kozareva and Hovy (2010) recently reports
that the performance of bootstrapping algorithms
depends on the selection of seeds, which sheds light
on the importance of selecting a good seed set. Es-
pecially a method to select a seed set considering
the characteristics of the dataset remains largely un-
addressed. To this end, we propose an “iterative
seeding” framework, where the algorithm iteratively
ranks the goodness of seeds in response to current
human labeling and the characteristics of the dataset.
For iterative seeding, we added the following two
properties to the bootstrapping;

• criteria that support iterative updates of good-
ness of seeds for seed candidate unlabeled in-
stances.

• iterative update of similarity “score” to the
seeds.

To invent a “criterion” that captures the character-
istics of a dataset, we need to measure the influence
of the unlabeled instances to the model. This model,
however, is not explicit in usual bootstrapping algo-
rithms’ notations. Thus, we need to reveal the model
parameters of bootstrapping algorithms for explicit
model notations.

To this end, we first reduced bootstrapping al-
gorithms to label propagation using Komachi et al.

44

(2008)’s theorization. Komachi et al. (2008) shows
that simple bootstrapping algorithms can be inter-
preted as label propagation on graphs (Komachi
et al., 2008). This accords with the fact that
many papers such as (Talukdar and Pereira, 2010;
Kozareva et al., 2011) suggest that graph-based
semi-supervised learning, or label propagation, is
another effective method for this harvesting task.
Their theorization starts from a simple bootstrap-
ping scheme that can model many bootstrapping al-
gorithms so far proposed, including the “Espresso”
algorithm (Pantel and Pennacchiotti, 2006), which
was the most cited among the Association for Com-
putational Linguistics (ACL) 2006 papers.

After reducing bootstrapping algorithms to label
propagation, next, we will reveal the model param-
eters of a bootstrapping algorithm by taking the
dual problem of bootstrapping formalization of (Ko-
machi et al., 2008). By revealing the model param-
eters, we can obtain an interpretation of selecting
seeds which helps us to create criteria for the iter-
ative seeding framework. Namely, we propose ex-
pected model rotation (EMR) criterion that works
well on realistic, and not well-separated data.

The contributions of this paper are summarized as
follows.

• The iterative seeding framework, where seeds
are selected by certain criteria and labeled iter-
atively.

• To measure the influence of the unlabeled in-
stances to the model, we revealed the model
parameters through the dual problem of boot-
strapping.

• The revealed model parameters provides an in-
terpretation of selecting seeds focusing on how
well the dataset is separated.

• “EMR” criterion that works well on not well-
separated data which frequently occur as real-
istic data. .

2 Related Work

Kozareva and Hovy (2010) recently shed light on
the problem of improving the seed set for bootstrap-
ping. They defined several goodness of seeds and
proposed a method to predict these measures using

support vector regression (SVR) for their doubly an-
chored pattern (DAP) system. However, Kozareva
and Hovy (2010) does not show how effective the
seed set selected by the goodness of seeds that they
defined was for the bootstrapping process while they
show how accurately they could predict the good-
ness of seeds.

Early work on bootstrapping includes that of
(Hearst, 1992) and that of (Yarowsky, 1995). Abney
(2004) extended self-training algorithms including
that of (Yarowsky, 1995), forming a theory different
from that of (Komachi et al., 2008). We chose to ex-
tend the theory of (Komachi et al., 2008) because it
can actually explain recent graph-based algorithms
including that of (Pantel and Pennacchiotti, 2006).
The theory of Komachi et al. (2008) is also newer
and simpler than that of (Abney, 2004).

The iterative seeding framework can be regarded
as an example of active learning on graph-based
semi-supervised learning. Selecting seed sets cor-
responds to sampling a data point in active learn-
ing. In active learning on supervised learning, the
active learning survey (Settles, 2012) includes a
method called expected model change, after which
this paper’s expected model rotation (EMR) is
named. They share a basic concept: the data
point that surprises the classifier the most is selected
next. Expected model change mentioned by (Settles,
2012), however, is for supervised setting, not semi-
supervised setting, with which this paper deals. It
also does not aim to provide intuitive understanding
of the dataset. Note that our method is for semi-
supervised learning and we also made the calcula-
tion of EMR practical.

Another idea relevant to our EMR is an “an-
gle diversity” method for support vector machines
(Brinker, 2003). Unlike our method, the angle diver-
sity method interprets each data point as data “lines”
in a version space. The weight vector is expressed
as a point in a version space. Then, it samples a data
“line” whose angle formed with existing data lines
is large. Again, our method builds upon different
settings in that this method is only for supervised
learning, while ours is for semi-supervised learning.

45

3 Theorization of Bootstrapping

This section introduces a theorization of bootstrap-
ping by (Komachi et al., 2008).

3.1 Simple bootstrapping
Let D = {(y1, x1), . . . , (yl, xl),xl+1, . . . , xl+u}
be a dataset. The first l data are labeled, and the
following u data are unlabeled. We let n = l + u
for simplicity. Each xi ∈ Rm is an m-dimensional
input feature vector, and yi ∈ C is its corresponding
label where C is the set of semantic classes. To han-
dle |C| classes, for k ∈ C, we call an n-sized 0-1
vector yk = (y1k, . . . , ynk)

⊤ a “seed vector”, where
yik = 1 if the i-th instance is labeled and its label is
k, otherwise yik = 0.

Note that this multi-class formalization includes
typical ranking settings for harvesting tasks as its
special case. For example, if the task is to har-
vest animal names from all given instances, such
as “elephant” and “zebra”, C is set to be binary as
C = {animal, not animal}. The ranking is obtained
by the score vector resulting from the seed vector
yanimal − ynot animal due to the linearity.

By stacking row vectors xi, we denote X =
(x1, . . . , xn)⊤. Let X be an instance-pattern (fea-
ture) matrix where (X)ij stores the value of the
jth feature in the ith datum. Note that we can al-
most always assume the matrix X to be sparse for
bootstrapping purposes due to the language sparsity.
This sparsity enables the fast computation.

The simple bootstrapping (Komachi et al., 2008)
is a simple model of bootstrapping using matrix rep-
resentation. The algorithm starts from f0

def
= y and

repeats the following steps until f c converges.

1. ac+1 = X⊤f c. Then, normalize ac+1．

2. f c+1 = Xac+1. Then, normalize f c+1.

The score vector after c iterations of the simple
bootstrapping is obtained by the following equation.

f =

(
1

m

1

n
XX⊤

)c

y (1)

“Simplified Espresso” is a special version of the
simple bootstrapping where Xij = pmi(i,j)

max pmi and we
normalize score vectors uniformly: f c ← f c/n,

ac ← ac/m. Here, pmi(i, j) def
= log p(i,j)

p(i)p(j) .

Komachi et al. (2008) pointed out that, although
the scores f c are normalized during the iterations in
the simple bootstrapping, when c → ∞, f c con-
verges to a score vector that does not depend on
the seed vector y as the principal eigenvector of(

1
m

1
nXX⊤)

becomes dominant. For bootstrapping
purposes, however, it is appropriate for the resulting
score vector f c to depend on the seed vector y.

3.2 Laplacian label propagation
To make f seed dependent, Komachi et al. (2008)
noted that we should use a power series of a ma-
trix rather than a simple power of a matrix. As
the following equation incorporates the score vec-
tors ((−L)cy) with both low and high c values, it
provides a seed dependent score vector with taking
higher c into account.

∞∑
c=0

βc ((−L)cy) = (I + βL)−1 y (2)

Instead of using
(

1
m

1
nXX⊤)

, Komachi et al.

(2008) used L
def
= I − D−1/2XX⊤D−1/2, a nor-

malized graph Laplacian for graph theoretical rea-
sons. D is a diagonal matrix defined as Dii

def
=∑

j(XX⊤)ij . This infinite summation of the ma-
trix can be expressed by inverting the matrix under
the condition that 0 < β < 1

ρ(L) , where ρ(L) be the
spectral radius of L.

Komachi et al. (2008)’s Laplacian label propaga-
tion is simply expressed as (3). Given y, it outputs
the score vector f to rank unlabeled instances. They
reports that the resulting score vector f constantly
achieves better results than those by Espresso (Pan-
tel and Pennacchiotti, 2006).

f = (I + βL)−1 y. (3)

4 Proposal: criteria for iterative seeding

This section describes our iterative seeding frame-
work. The entire framework is shown in Algo-
rithm 1.

Let gi be the goodness of seed for an unlabeled
instance i. We want to select the instance with the
highest goodness of seed as the next seed added in
the next iteration.

î = arg max
i

gi (4)

46

Algorithm 1 Iterative seeding framework
Require: y, X , the set of unlabeled instances U ,

the set of classes C.
Initialize gk,i′ ; ∀k ∈ C, ∀i′ ∈ U
repeat

Select instance î by (4).
Label î. Let k′ be î’s class.
U ← U\{̂i}
for all i′ ∈ U do

Recalculate gk′,i′

end for
until A sufficient number of seeds are collected.

Each seed selection criterion defines each good-
ness of seed gi. To measure the goodness of seeds,
we want to measure how an unlabeled instance will
affect the model underlying Eq. (3). That is, we
want to choose the unlabeled instance that would
most influence the model. However, as the model
parameters are not explicitly shown in Eq. (3), we
first need to reveal them before measuring the influ-
ence of the unlabeled instances.

4.1 Scores as margins
This section reveals the model parameters through
the dual problem of bootstrapping. We show that
the score obtained by Eq. (3) can be regarded as
the “margin” between each unlabeled data point and
the hyperplane obtained by ridge regression; specif-
ically, we can show that the i-th element of the re-
sulting score vector obtained using Eq. (3) can be
written as fi = β (yi − ⟨ŵ, ϕ (xi)⟩), where ŵ is
the optimal model parameter that we need to reveal
(Figure 1). ϕ is a feature function mapping xi to a
feature space and is set to make this relation hold.
Note that, for unlabeled instances, yi = 0 holds, and
thus fi is simply fi = −β ⟨ŵ, ϕ (xi)⟩. Therefore,
|fi| ∝ ∥ ⟨ŵ, ϕ (xi)⟩ ∥ denotes the “margin” between
each unlabeled data point and the underlying hyper-
plane.

Let Φ be defined as Φ
def
= (ϕ (x1) , . . . , ϕ (xn))⊤.

The score vector f can be written using Φ as in (6).
If we set Φ as Eq. (6), Eq. (5) is equivalent to Eq.
(3).

f =
(
I + βΦΦ⊤

)−1
y (5)

Figure 1: Scores as margins. The absolute values of the
scores of the unlabeled instances are shown as the mar-
gin between the unlabeled instances and the underlying
hyperplane in the feature space.

ΦΦ⊤ = L = I −D− 1
2 XXT D− 1

2 (6)

By taking the diagonal of ΦΦ⊤ in Eq. (6), it is
easy to see that ∥ϕ (xi) ∥2 = ⟨ϕ (xi) , ϕ (xi)⟩ ≤ 1.
Thus, the data points mapped into the feature space
are within a unit circle in the feature space shown
as the dashed circles in Figure 1-3. The weight vec-
tor is then represented by the classifying hyperplane
that goes through the origin in the feature space.
The classifying hyperplane views all the points posi-
tioned left of this hyperplane as the green class, and
all the points positioned right of this hyperplane as
the blue gray-stroked class. Note that all the points
shown in Figure 1 are unlabeled, and thus the clas-
sifying hyperplane does not know the true classes of
the data points. Due to the lack of space, the proof
is shown in the appendix.

4.2 Margin criterion
Section 4.1 uncovered the latent weight vector for
the bootstrapping model Eq. (3). A weight vector
specifies a hyperplane that classifies instances into
semantic classes. Thus, weight vector interpretation
easily leads to an iterative seeding criterion: an unla-
beled instance closer to the classifying hyperplane is
more uncertain, and therefore obtains higher good-
ness of seed. We call this criterion the “margin cri-
terion” (Figure 2).

First, we define gk,i′
def
= |(fk)i′ |/sk as the good-

ness of an instance i′ to be labeled as k. sk is the
number of seeds labeled as class k in the current
seed set. In the margin criterion, the goodness of the
seed i′ is then obtained by the difference between

47

Figure 2: Margin criterion in binary setting. The instance
closest to the underlying hyperplane, the red-and-black-
stroked point, is selected. The part within the large gray
dotted circle is not well separated. Margin criterion con-
tinues to select seeds from this part only in this example,
and fails to sample from the left-bottom blue gray-stroked
points. Note that all the points are unlabeled and thus the
true classes of data points cannot be seen by the underly-
ing hyperplane in this figure.

the largest and second largest gk,i′ among all classes
as follows:

g
Margin
i

def
= −

(
max

k
g

Margin
k,i′ − 2ndlargestkg

Margin
k,i′

)
.

(7)
The shortcoming of Margin criterion is that it can

be “stuck”, or jammed, or trapped, when the data are
not well separated and the underlying hyperplanes
goes right through the not well-separated part. In
Figure 2, the part within the large gray dotted cir-
cle is not well separated. Margin criterion continues
to select seeds from this part only in this example,
and fails to sample from the left-bottom blue gray-
stroked points.

4.3 Expected Model Rotation
To avoid Margin criterion from being stuck in the
part where the data are not well separated, we pro-
pose another more promising criterion: the “Ex-
pected Model Rotation (EMR)”. EMR measures the
expected rotation of the classifying hyperplane (Fig-
ure 3) and selects the data point that rotates the un-

Figure 3: EMR criterion in binary setting. The instance
that would rotate the underlying hyperplane the most is
selected. The amount denoted by the purple brace “{” is
the goodness of seeds in the EMR criterion. This criterion
successfully samples from the left bottom blue points.

derlying hyperplane “the most” is selected. This se-
lection method prevents EMR from being stuck in
the area where the data points are not well sepa-
rated. Another way of viewing EMR is that it selects
the data point that surprises the current classifier the
most. This makes the data points influential to the
classification selected in early iteration in the itera-
tive seeding framework. A simple rationale of EMR
is that important information must be made available
earlier.

To obtain the “expected” model rotation, in EMR,
we define the goodness of seeds for an instance i′,
gi′ as the sum of each per-class goodness of seeds
gk,i′ weighted by the probability that i′ is labeled
as k. Intuitively, gk,i′ measures how the classifying
hyperplane would rotate if the instance i′ were la-
beled as k. Then, gk,i′ is weighted by the probability
that i′ is labeled as k and summed. The probability
for i′ to be labeled as k can be obtained from the
i′-th element of the current normalized score vector
pi′ (k)

def
=

|(fk)i′/sk|∑
k∈C|(fk)i′/sk| , where sk is the number

of seeds labeled as class k in the current seed set.

gEMR
i′

def
=

∑
k∈C

pi′ (k) gEMR
k,i′ (8)

The per-class goodness of seeds gk,i′ can be cal-
culated as follows:

gEMR
k,i′

def
= 1−

∣∣∣∣ w⊤
k

||wk||
wk,+i′

||wk,+i′ ||

∣∣∣∣ . (9)

48

From Eq. (17) in the proof, w = Φ⊤f . Here, ei′

is a unit vector whose i′-th element is 1 and all other
elements are 0.

wk = Φ⊤fk = Φ⊤ (I + βL)−1 yk (10)

wk,+i′ = Φ⊤fk,+i′ = Φ⊤ (I + βL)−1 (yk + ei′) (11)

Although Eqs. (10) and (11) use Φ, we do not
need to directly calculate Φ. Instead, we can use Eq.
(6) to calculate these weight vectors as follows:

w⊤
k wk,+i′ = f⊤k

(
I −D− 1

2 XXT D− 1
2

)
fk,+i′ (12)

||w|| =
√

f⊤
(
I −D− 1

2 XXT D− 1
2

)
f . (13)

For more efficient computation, we cached
(I + βL) ei′ to boost the calculation in Eqs. (10)
and (11) by exploiting the fact that yk can be writ-
ten as the sum of ei for all the instances in class k.

5 Evaluation

We evaluated our method for two bootstrapping
tasks with high labeling costs. Due to the nature
of bootstrapping, previous papers have commonly
evaluated each method by using running search en-
gines. While this is useful and practical, it also re-
duces the reproducibility of the evaluation. We in-
stead used openly available resources for our evalu-
ation.

First, we want to focus on the separatedness of the
dataset. To this end, we prepared two datasets: one
is “Freebase 1”, a not well-separated dataset, and
another is “sb-8-1”, a well-separated dataset. We
fixed β = 0.01 as Zhou et al. (2011) reports that
β = 0.01 generally provides good performance on
various datasets and the performance is not keen to β
except extreme settings such as 0 or 1. In all exper-
iments, each class initially has 1 seed and the seeds
are selected and increased iteratively according to
each criterion. The meaning of each curve is shared
by all experiments and is explained in the caption of
Figure 4.

“Freebase 1” is an experiment for information ex-
traction, a common application target of bootstrap-
ping methods. Based on (Talukdar and Pereira,
2010), the experiment setting is basically the same
as that of the experiment Section 3.1 in their paper1.

1Freebase-1 with Pantel Classes, http://www.
talukdar.net/datasets/class_inst/

As 39 instances have multiple correct labels, how-
ever, we removed these instances from the exper-
iment to perform the experiment under multi-class
setting. Eventually, we had 31, 143 instances with
1, 529 features in 23 classes. The task of “Freebase
1” is bootstrapping instances of a certain semantic
class. For example, to harvest the names of stars,
given {Vega, Altair} as a seed set, the bootstrap-
ping ranks Sirius high among other instances (proper
nouns) in the dataset. Following the experiment set-
ting of (Talukdar and Pereira, 2010), we used mean
reciprocal rank (MRR) throughout our evaluation 2.

“sb-8-1” is manually designed to be well-
separated and taken from 20 Newsgroup subsets3.
It has 4, 000 instances with 16, 282 features in 8
classes.

Figure 4 and Figure 5 shows the results. We can
easily see that “EMR” wins in “Freebase 1”, a not
well-separated dataset, and “Margin” wins in “sb-8-
1”, a well-separated dataset. This result can be re-
garded as showing that “EMR” successfully avoids
being “stuck” in the area where the data are not
well separated. In fact, in Figure 4, “Random” wins
“Margin”. This implies that the not well-separated
part of this dataset causes the classifying hyperplane
in “Margin” criterion to be stuck and make it lose
against even simple “Random” criterion.

In contrast, in the “sb-8-1”, a well-separated bal-
anced dataset, “Margin” beats the other remaining
two. This implies the following: When the dataset
is well separated, uncertainty of a data point is the
next important factor to select a seed set. As “Mar-
gin” exactly takes the data point that is the most un-
certain to the current hyperplane, “Margin” works
quite well in this example.

Note that all figures in all the experiments show
the average of 30 random trials and win-and-lose re-
lationships mentioned are statistically tested using
Mann-Whitney test.

While “sb-8-1” is a balanced dataset, realistic data
like “freebase 1” is not only not-well-separated, but
also imbalanced . Therefore, we performed ex-
periments “sb-8-1”, an imbalanced well-separated
dataset, and “ol-8-1”, an imbalanced not-well sepa-

2MRR is defined as MRR
def
= 1

|Q|
∑

i∈Q
1
ri

, where Q is
the test set, i ∈ Q denotes an instance in the test set Q, and ri

is the rank of the correct class among all |C| classes.
3http://mlg.ucd.ie/datasets/20ng.html

49

Figure 4: Freebase 1, a NOT well-separated dataset. Av-
erage of 30 random trials. “Random” and “Margin” are
baselines. “Random” is the case that the seeds are se-
lected randomly. “Margin” is the case that the seeds
are selected using the margin criterion described in §4.2.
“EMR” is proposed and is the case that the seeds are se-
lected using the EMR criterion described in §4.3. At the
rightmost point, all the curves meet because all the in-
stances in the seed pool were labeled and used as seeds
by this point. The MRR achieved by this point is shown
as the line “All used”. If a curve of each method crosses
“All used”, this can be intepretted as that iterative seeding
of the curve’s criterion can reduce the cost of labeling all
the instances to the crossing point of the x-axis. “EMR”
significantly beats “Random” and “Margin” where x-axis
is 46 and 460 with p-value < 0.01.

rated dataset under the same experiment setting used
for “sb-8-1”. “sl-8-1” have 2, 586 instances with
10, 764 features. “ol-8-1” have 2, 388 instances with
9, 971 features. Both “sl-8-1” and “ol-8-1” have 8
classes.

Results are shown in Figure 6 and Figure 7. In
Figure 6, “EMR” beats the other remaining two even
though this is a well-separated data set. This im-
plies that “EMR” can also be robust to the imbal-
ancedness as well. In Figure 7, although the MRR
of “Margin” eventually is the highest, the MRR of
“EMR” rises far earlier than that of “Margin”. This
result can be explained as follows: “Margin” gets
“stuck” in early iterations as this dataset is not well
separated though “Margin” achieves best once it gets
out of being stuck. In contrast, as “EMR” can avoid
being stuck, it rises early achieving high perfor-
mance with small number of seeds, or labeling. This
result suggests that “EMR” is pereferable for reduc-

Figure 5: sb-8-1. A dataset manually designed to be well
separated. Average of 30 random trials. Legends are the
same as those in Figure 4. “Margin” beats “Random” and
“EMR” where x-axis is 500 with p-value < 0.01.

Figure 6: sl-8-1. An imbalanced well separated dataset.
Average of 30 random trials. Legends are the same as
those in Figure 4. “EMR” significantly beats “Random”
and “Margin” where x-axis is 100 with p-value < 0.01.

ing labeling cost while “Margin” can sometimes be
preferable for higher performance.

6 Conclusion

Little is known about how best to select seed sets
in bootstrapping. We thus introduced the itera-
tive seeding framework, which provides criteria for
selecting seeds. To introduce the iterative seed-
ing framework, we deepened the understanding of
the seeding process in bootstrapping through the
dual problem by further extending the interpretation
of bootstrapping as graph-based semi-supervised
learning (Komachi et al., 2008), which generalizes

50

Figure 7: ol-8-1. An imbalanced NOT well separated
dataset. Average of 30 random trials. Legends are the
same as those in Figure 4. “EMR” significantly beats
“Random” and “Margin” where x-axis is 100 with p-
value < 0.01. “Margin” significantly beats “EMR” and
“Random” where x-axis is 1, 000 with p-value < 0.01.

and improves Espresso-like algorithms.
Our method shows that existing simple “Margin”

criterion can be “stuck” at the area when the data
points are not well separated. Note that many real-
istic data are not well separated. To deal with this
problem, we proposed “EMR” criterion that is not
stuck in the area where the data points are not well
separated.

We also contributed to make the calculation of
“EMR” practical. In particular, we reduced the num-
ber of matrix inversions for calculating the goodness
of seeds for “EMR”. We also showed that the param-
eters for bootstrapping also affect the convergence
speed of each matrix inversion and that the typical
parameters used in other work are fairly efficient and
practical.

Through experiments, we showed that the pro-
posed “EMR” significantly beats “Margin” and
“Random” baselines where the dataset are not well
separated. We also showed that the iterative seed-
ing framework with the proposed measures for the
goodness of seeds can reduce labeling cost.

Appendix: Proof Consider a simple ridge regres-
sion of the following form where 0 < β < 1 is a
positive constant.

minw
β

2

n∑
i=1

∥yi − ⟨w, ϕ (xi)⟩∥2 + ∥w∥2 . (14)

We define ξi = yi − ⟨w, ϕ (xi)⟩. By using ξi, we
can rewrite Eq. (14) into an optimization problem

with equality constraints as follows:

minw
β

2

n∑
i=1

ξ2
i + ∥w∥2 (15)

s.t.∀i ∈ {1, . . . , n} ; yi = w⊤ϕ (xi) + ξi. (16)

Because of the equality constraints of Eq. (16),
we obtain the following Lagrange function h. Here,
each bootstrapping score fi occurs as Lagrange mul-
tipliers: h (w, ξ, f)

def
= 1

2 ∥w∥
2 + β

2

∑n
i=1 ξ2

i −∑n
i=1 (⟨w, ϕ (xi)⟩+ ξi − yi) fi.
By taking derivatives of h, we can derive ŵ by

expressing it with the sum of each fi and ϕ (xi).

∂h

∂w
= 0⇒ ŵ =

n∑
i=1

fiϕ (xi) (17)

∂h

∂ξi
= 0⇒ fi = β (ξi = βyi − ⟨ŵ, ϕ (xi)⟩) (18)

Substituting the relations derived in Eqs. (17) and
(18) to the equation ∂h

∂fi
= 0 results in Eq. (19).

∂h

∂fi
= 0⇒

n∑
j=1

fjϕ (xi)
⊤ ϕ (xj)+

1

β
fi = yi (19)

Equation (19) can be written as a matrix equation
using Φ defined as Φ

def
= (ϕ (x1) , . . . , ϕ (xn))⊤.

From Eq. (20), we can easily derive the form of Eq.

(3) as
(
ΦΦ⊤ + 1

β I
)−1

y ∝
(
I + βΦΦ⊤

)−1
y.(

ΦΦ⊤ +
1

β
I

)
f = y (20)

2

References
Steven Abney. 2004. Understanding the yarowsky algo-

rithm. Computational Linguistics, 30(3):365–395.
Klaus Brinker. 2003. Incorporating diversity in active

learning with support vector machines. In Proc. of
ICML, pages 59–66, Washington D.C.

Zelling S. Harris. 1954. Distributional structure. Word.
Marti A. Hearst. 1992. Automatic acquisition of hy-

ponyms from large text corpora. In Proc. of COLING,
pages 539–545.

Mamoru Komachi, Taku Kudo, Masashi Shimbo, and
Yuji Matsumoto. 2008. Graph-based analysis of se-
mantic drift in Espresso-like bootstrapping algorithms.
In Proc. of EMNLP, pages 1011–1020, Honolulu,
Hawaii.

51

Zornitsa Kozareva and Eduard Hovy. 2010. Not all seeds
are equal: Measuring the quality of text mining seeds.
In Proc. of NAACL-HLT, pages 618–626, Los Angeles,
California.

Zornitsa Kozareva, Konstantin Voevodski, and Shanghua
Teng. 2011. Class label enhancement via related in-
stances. In Proc. of EMNLP, pages 118–128, Edin-
burgh, Scotland, UK.

Patrick Pantel and Marco Pennacchiotti. 2006. Espresso:
Leveraging generic patterns for automatically harvest-
ing semantic relations. In Proc. of ACL-COLING,
pages 113–120, Sydney, Australia.

Burr Settles. 2012. Active Learning. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Mor-
gan & Claypool Publishers.

Partha Pratim Talukdar and Fernando Pereira. 2010.
Experiments in graph-based semi-supervised learning
methods for class-instance acquisition. In Proc. of
ACL, pages 1473–1481, Uppsala, Sweden.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In Proc. of
ACL, pages 189–196, Cambridge, Massachusetts.

Xueyuan Zhou, Mikhail Belkin, and Nathan Srebro.
2011. An iterated graph laplacian approach for rank-
ing on manifolds. In Proc. of KDD, pages 877–885.

52

